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Abstract: The extrapolation of forest structural attributes from LiDAR has traditionally been re-
stricted to local or regional scales, hindering a thorough assessment of single-year versus time
series predictors across expansive spatial scales. We extrapolated the vertical complexity captured
by the Land, Vegetation, and Ice Sensor (LVIS) full-wave form LiDAR of boreal forests in the
Alaska–Yukon–Northwest Territories region, utilizing predictors from Landsat images from 1989
to 2019. This included both single-year and long-term estimates of vegetation indices, alongside
constant factors like terrain slope and location. Random forest regression models comparing the
single-year and 15-year and 30-year time series models were applied. Additionally, the potential
of estimating horizontal forest complexity from vertical complexity was explored using a moving
window approach in the Kluane Valley. While the extended time series marginally enhanced model
accuracy, a fine-tuned single-year model proved superior (R2 = 0.84, relative RRMSE = 8.4%). In
estimating the horizontal complexity, the variance in a 5 × 5 moving window displayed the most
promising results, aligning with traditional horizontal structure measures. Single-year Landsat
models could potentially surpass time series models in predicting forest vertical complexity, with the
added capability to estimate horizontal complexity using variance in a moving window approach.

Keywords: boreal forest; remote sensing; LiDAR extrapolation

1. Introduction

Forest ecosystems play a crucial role in mitigating climate change, supporting biodiver-
sity, and providing essential resources for human livelihoods [1]. Therefore, the demand for
accurate and current forest data becomes paramount in ensuring effective sustainable forest
management, conserving biodiversity, and monitoring carbon sequestration and climate
change effects [2,3]. Fortunately, the rise of remote sensing technologies, including satellite
and airborne sensors, has revolutionized this field, providing comprehensive information
across various spatial and temporal scales [4]. The implications of these advances are
far-reaching, resulting in remarkable improvements in our ability to monitor and manage
forest resources [5,6].

Vertical complexity is a fundamental component in affecting forest biodiversity [7].
It refers to the stratification or layering of vegetation at different heights, encompassing
undergrowth, shrub layers, understory, canopy, and emergent layers. It promotes habitat
heterogeneity, creating diverse niches for various organisms, and enhancing overall biodi-
versity and ecosystem resilience [8,9]. Therefore, it is indispensable for the conservation of
endangered species and the preservation of ecosystem functions [10]. Similarly, horizontal
forest vegetation, encompassing tree density, size, species composition, and gap distribu-
tion, creates heterogeneous landscapes that support diverse habitat types, species richness,
and essential resources for wildlife [11,12].
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With remote sensing technologies like LiDAR and satellite imagery, we can now use
predictive models to accurately map and monitor forests at different spatial scales by esti-
mating attributes like tree height, biomass, and species composition [13–18]. By combining
these technologies, researchers have obtained wall-to-wall estimates of forest structure,
assuming the observed relationships between LiDAR and satellite imagery hold true in
areas beyond the data collection points [19]. More recently, researchers have embraced
the use of time series Landsat reflectance data to better predict forest attributes [20,21].
Time series data offer a more comprehensive view of forest dynamics compared to single-
year data, potentially leading to improved estimates of forest structure [22]. For example,
Bolton et al. [20] showed that Landsat time series length improved accuracy over single-
year data, but Bolton et al. [21] found that a fixed time extent (i.e., 30 years) does not
translate to optimal predictions of forest attributes.

However, the use of satellite imagery introduces several factors that can affect data
quality, sensor calibration [23], and geometric distortions [24], which thereby introduce
noise and uncertainty into the data and can complicate the construction of time series
predictors. In particular, cloud cover poses a challenge, as it omits information in the time
series [25], requiring the use of advanced methods like spectral trend analysis to create
gap-free composite imagery [26]. Similarly, when using multiple sensors or satellites with
different characteristics to create a time series, ensuring data homogeneity and compatibility
between different datasets can be challenging [27]. Despite advances in cloud and parallel
computing, the computational demands of extrapolating forest attributes across large
scales remain challenging, prompting the need to evaluate the efficacy of time series data
compared to single-year predictors in mapping new forest attributes.

As the interest in utilizing time series data for forest inventory updates grows, there
remains a notable gap in research regarding the comparative effectiveness of single-year
and time series predictors when it comes to extrapolating vertical forest complexity. Sur-
prisingly, forest complexity assessment comprises a mere 3% of the literature exploring
modeling LiDAR-derived estimates of forest attributes [28]. However, the study of horizon-
tal structure has been significantly advanced by integrating remote sensing indices, texture
analysis, and ground-truth measurements [29–31].

Texture analysis, a technique used to discern spatial variations in pixel values [32],
elevates our interpretation of high-resolution satellite and aerial imagery. It enables the
identification of patterns and structures within the forest landscape, thereby enhancing
our understanding of forest spatial heterogeneity. Consequently, the need for evaluating
whether established methods that capture spatial heterogeneity in horizontal forest struc-
ture can effectively be applied to extrapolated vertical forest structure becomes imperative
and timely, especially with the increasing prevalence of LiDAR extrapolation data inte-
grated with satellite imagery [33]. Therefore, it is vital to explore the application of texture
analysis and its potential to bridge the gap between vertical and horizontal complexity.

Given the escalating global ecological concerns, the focus of our study is to determine
the most effective methodologies for constructing comprehensive maps of forest complexity,
leveraging both time series and single-year Landsat predictors. Our geographic area of
interest is the northern boreal forest of North America, a region of paramount importance
for its diverse ecological dynamics and the accelerated rate at which it is undergoing
climate change [34–36]. This rapid ecological transformation intensifies the forest biome’s
susceptibility to disturbances such as wildfires, pest outbreaks, and extreme weather
events [37]. Recognizing the pressing need for enhanced understanding of the ecosystem’s
responses to these changes, initiatives like the Arctic–Boreal Vulnerability Experiment
(ABoVE) have been launched [38–40]. As part of this initiative in particular, data collected in
2019 by the Land, Vegetation, and Ice Sensor (LVIS) across the vast regions of Alaska, Yukon,
and the Northwest Territories (AYNWT) provide an unparalleled resource to develop
comprehensive maps of vertical and horizontal forest structure.

In this study, we ask the following: (1) Do predictive models of vertical forest structure
improve when single-year Landsat metrics are replaced with time series metrics in the
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northern boreal forest? (2) When using time series metrics, what length of time yields the
best results for forest complexity estimates—15-year or 30-year predictors? (3) Is it possible
to use a moving window on the vertical complexity to calculate horizontal complexity?
(4) What statistical metrics and window sizes are most appropriate for characterizing forest
horizontal complexity? Answers to these questions provide valuable insights into the trade-
offs between the accuracy of forest complexity estimates with time series versus single-year
data. Our findings have important implications for forest management, conservation
efforts, and further development of remote sensing-based forest inventory methods.

2. Materials and Methods
2.1. Study Area

The study encompasses the northern part of the North American boreal forest, in-
cluding Alaska, Yukon, and the Northwest Territories (AYNWT) (Figure 1). This region
is defined by a mosaic of coniferous and deciduous trees, with species such as spruce
(Picea mariana and Picea glauca), trembling aspen (Populus tremuloides), and balsam poplar
(Populus balsamifera) on the landscape. The forest understory includes shrubs like willows
(Salix spp.), birch (Betula spp.), and alders (Alnus spp.), as well as herbaceous plants.
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Figure 1. Boreal forest within the regions of Alaska (USA), Yukon, and the Northwest Territories
(Canada). The red point indicates the location of the Kluane Valley in southwestern Yukon. The
boreal forest data are derived from the research of Brandt [41].

Boreal forests in this region exhibit a heterogeneous stand structure with variations in
tree density, age, and height. The forest’s structure is influenced by environmental factors
like climate, soil, topography, and natural or anthropogenic disturbance events [42,43].
Across this expansive landscape, the tree density fluctuates from sparse woodlands to dense
forest stands [44]. This region experiences long, cold winters and short, cool summers, with
winter precipitation primarily falling as snow. The widespread presence of permafrost is
also responsible for distinct soil and vegetation features [45].

Our analysis of the horizontal complexity is primarily concentrated in the Kluane
region of southwest Yukon (61◦07′N 138◦24′W) (Figure 1). In this region, the forest canopy
includes mostly white spruce and aspen, while the understory is predominantly occupied
by willows and birch [46].

2.2. Datasets
2.2.1. LVIS-L3 Full-Waveform LiDAR Data

The ABoVE (Arctic–Boreal Vulnerability Experiment) LVIS (Land, Vegetation, and Ice
Sensor) L3 Gridded Vegetation Structure dataset represents the vegetation structure across
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North America (2017–2019), and is available through the Oak Ridge National Laboratory
Distributed Active Archive Center (ORNL DAAC) https://daac.ornl.gov/ABOVE/guides/
ABoVE_LVIS_VegetationStructure.html (accessed on 1 August 2023). The L3 dataset com-
prises gridded information on the canopy relative height (RH), complexity, canopy cover
(CC), ground elevation, and the number of LVIS footprints used to generate each pixel’s es-
timate, at 30 m resolution. The dataset provides information on vertical vegetative structure
using relative canopy height metrics supplemented by canopy cover estimates at various
heights. The data covers a diverse range of landscapes, in support of the Arctic–Boreal
Vulnerability Experiment (ABoVE) and Global Ecosystem Dynamics Investigation (GEDI)-
related scientific objectives. For our study, we selected the 2019 data of the AYNWT, as it
offers the most recent dataset. Then, we clipped these data to the boundaries of the North
American boreal forest extent [41].

2.2.2. Landsat

We used Landsat data derived from the Landsat Surface Reflectance Tier 1, including
Landsat 5™, Landsat 7 (ETM+), and the Landsat 8 (OLI) sensors at 30 m spatial resolution,
and with spectral bands from visible to short-wave infrared and a 16-day revisit time (with
single sensors) [47]. Landsat surface reflectance data are generated by applying atmospheric
corrections to raw satellite images, removing the effects of atmospheric scattering and
absorption, and providing surface representation that facilitates analysis of land cover
and other environmental variables [48]. Landsat Surface Reflectance Tier 1 is subject to
strict quality control for geometric and radiometric criteria. We harmonized the spectral
consistency among sensors in the Landsat archive (Landsat 5, 7, and 8 satellites) by adopting
appropriate regression slope and intercept values from Roy et al. [27].

2.3. Data Processing
2.3.1. Estimating Vertical Forest Complexity

Understanding changes in forest ecosystems needs reliable and consistent data across
time and space. We selected summer median composite images (1989–2019) to ensure
temporal alignment with LVIS data collection, eliminating any temporal mismatches. This
approach was chosen, as it effectively eliminated outliers and provided a well-balanced
representation of forest conditions [49]. In addition, this approach provided us with
statistical consistency across time and sensors, an essential feature for enhancing the
validity of our multi-temporal study.

We generated a random sample of LVIS L3 complexity data using approximately
70,000 points separated by >500 m to ensure a diverse representation of the study area
and reduce the likelihood of sampling bias [50] (Figure 2). Complexity is a comprehensive
metric derived from the waveform captured by the LVIS sensor. It factors in both the
count and intensity of peaks within a waveform, acting as an indicator that highlights
the deviation of the waveform from a uniform surface. In forested areas, this waveform
complexity mirrors the vertical complexity of the vegetation structure [51].

The training dataset included relevant predictor variables at the locations of the
random sample points, including data for a single year (2019) and a time series of Tasseled-
cap Greenness (TCG), Tasseled-cap Brightness (TCB), and Tasseled-cap Wetness (TCW)
constructed from the Landsat composites [52]. We included elevation via ALOS DSM
v3.3 to obtain cross-boundary (USA and Canada) consistency at 30 m. Additionally, we
calculated slope, and latitude and longitude were used to account for location-specific
variation where geographic differences correspond to environmental and climatic variations
influencing forest structure. Coordinates aid in distinguishing between areas with similar
vegetation index values but different forest structures. For the time series (15 and 30 years),
we estimated long-term means, standard deviation, and slope of the tasseled cap indices.
We used Sen’s Slope because it is a non-parametric technique offering advantages of being
robust to outliers, lacking normality, and heteroscedasticity [53].

https://daac.ornl.gov/ABOVE/guides/ABoVE_LVIS_VegetationStructure.html
https://daac.ornl.gov/ABOVE/guides/ABoVE_LVIS_VegetationStructure.html
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Figure 2. Boreal forest of North America derived from Brandt [41] showing the approximately 70,000
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For unbiased modeling, we used the same sampling points for all 5 random forest
regression models predicting vertical forest complexity, incorporating elevation, slope,
latitude, and longitude as covariates (Table 1). While the single-year model included the
2019 tasseled cap values, the other models integrated time series tasseled cap metrics,
including mean, standard deviation, and Sens Slope calculated from either 15 or 30 years of
data [20]. Two models were designed to assimilate both time series and single-year metrics.
Random forest models were trained with 70% of the data and computed with 10 trees,
with all other parameters set to default (variables per split = square root the number of
predictors; bag fraction = 0.5; min leaf population = 1; max nodes = null) [54]. Accordingly,
we tested each model’s accuracy with the remaining 30% of the data. The coefficient of
determination (R2) and relative root mean squared error (RRMSE) were used to test model
accuracy between observed and predicted values, as well as model performance. To identify
any significant differences in model residuals, we employed the Kruskal–Wallis test on
model residuals by limiting validation data to the same 5000 points.

Table 1. Predictor variables for each model. The filled boxes represent the variables used in
each model.

Model A:
Single-Year
Predictors

Model B:
15-Year

Predictors

Model C:
Single-Year and

15-Year Predictors

Model D:
30-Year

Predictors

Model E:
Single-Year and

30-Year Predictors
Single-year: 2019 TCB, TCG, TCW

Time series: 2004–2019: Mean,
Standard Deviation, Regression

Slope of TCB, TCG, TCW
1989–2019: Mean, Standard

Deviation, Regression Slope of TCB,
TCG, TCW

Location: Latitude and Longitdue
Topographic: Elevation, Slope

To bolster the performance and generalizability of our single-year model, we con-
ducted a model calibration [55]. Simulations involving 10–50 trees and a bag fraction of
0.5–0.7 to gauge model accuracy vis-à-vis the time series approach. We refrained from
modifying other parameters, as we observed a notable increase in R2 and a decrease in
RRMSE. By employing the single-year model (Model A), we extended forest complexity
estimates to regions where only response variables were available, owing to its comparable
performance with other models.
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2.3.2. Estimating Horizontal Forest Complexity

We used the single-year model and texture measurements to convert vertical forest
complexity to horizontal complexity. This texture analysis was performed on a moving
window that encompassed both first-order and second-order statistics [56], thus capturing
the spatial variability within the forest landscape.

We applied a spatial filter to calculate a metric of spatial variability within the moving
window, creating a continuous surface of horizontal complexity. We evaluated three
window sizes (3 × 3, 5 × 5, and 7 × 7) to balance spatial resolution and smoothing effect,
initially using a 5 × 5 window to estimate entropy, variance (first-order), and GLCM
variance (second-order) metrics, with the most intuitive and simple metric prioritized as a
descriptor of horizontal forest complexity [57].

To identify redundancy among texture metrics, we conducted a Spearman rank corre-
lation test [57]. We validated our approach by comparing our optimized texture metric with
a traditional horizontal structure assessment technique, summarizing pixel values with
mean and standard deviation from texture computations within a 100 m radius for each
sample point [57,58]. We treated the mean and standard deviation as separate measures,
one representing central tendency and the other data dispersion, and compared them across
all sample points using a Spearman correlation.

To illustrate our approach, we selected the Kluane region, southwest Yukon to charac-
terize effectiveness of the moving window methodology in estimating horizontal forest
complexity. To substantiate our results, we evaluated the explanatory power of our derived
horizontal complexity layer in explaining densities of snowshoe hare (Lepus americanus)
pellets across the landscape; hare pellet counts are correlated with hare population den-
sity [59–61]. The premise of this effort is that hares tend to occupy and select habitats that
have abundant horizontal cover [62–64].

3. Results
3.1. Vertical Forest Complexity

Random forest models revealed a strong correspondence between predicted and
observed values, with the 30-year time series model including single-year predictors
(Model E) exhibiting the highest accuracy (R2 = 0.84; RRMSE = 8.97%). Generally, longer
time series metrics improved model accuracy (R2 = 0.77–0.84; RRMSE = 9.0–10.3%), though
the 30-year model (Model D) was an exception, with only a small difference in accuracy
(R2 = 0.8; RRMSE = 9.96%). Furthermore, incorporating single-year predictors into both
the 15- and 30-year time series models enhanced their predictive power and accuracy.
Specifically, in Model B, there was a slight R2 increase from 0.81 to 0.83 coupled with an
RRMSE descent from 9.91% to 9% in Model C. Correspondingly, in Model D, an increase in
R2 was observed from 0.8 to 0.84, along with a decline in RRMSE from 9.96% to 8.97% in
Model E (Table 2).

Table 2. R2 and RRMSE values between observed and predicted values for the validation data using
the same validation points.

Metric Model A: Single-Year
Predictors

Model B: 15-Year
Predictors

Model C:
Single-Year and

15-Year Predictors

Model D: 30-Year
Predictors

Model E:
Single-Year and

30-Year Predictors

R2 0.77 0.81 0.83 0.8 0.84

RRMSE 10.30% 9.99% 9% 996% 897%

Despite improvements in model accuracy with additional predictors and extending
the time series, all of the models maintained a comparable level of agreement between
the observed and predicted values, indicating their practical utility and effectiveness.
Scatterplots in Figure 3 show improved agreement from Model A to Model E. Upon a
closer examination of the residual values with a Kruskal–Wallis test reveals no statistically
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significant differences between the residuals of both models (p > 0.9). Given its accuracy
and comparable performance to more complex models, Model A was chosen for projecting
vertical forest complexity across the AYNWT region (Figure 4).
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Figure 4. Spatial predictions of vertical forest complexity across the boreal regions of Alaska, Yukon,
and the Northwest Territories. The color scale shows the predicted values from less to most complex.
Adjacent marginal plots showcase the average forest complexity values distributed across latitude
and longitude. Note: All white areas signify either bodies of water or regions with unavailable data.

Post-calibrated Model A exhibited enhanced precision over the initial single-year
model (Figure 5), denoted by a rise in R2 from 0.77 to 0.84 and a decline in RRMSE from
10.3% to 8.4%. Significantly disparate residuals (p < 0.001) between the pre-tuned and
calibrated Model A underscored the potential of a single-year predictor to outperform
time series models with basic parameter adjustments. The variable importance for our
best-performing models can be found in Appendix A.
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Figure 5. Scatterplot between observed and predicted attributes for the validation data using hyper-
parameter tuning on the single-year model. The red line is the linear trend.

3.2. Horizontal Forest Complexity

We clipped the vertical forest extrapolation layer for the Kluane Valley region. Figure 6
presents the results of the 5 × 5 moving estimated metrics, along with their correspond-
ing Spearman’s correlations. Among the metrics, variance displayed robust correlations of
rs = 0.91 and rs = 0.77 with entropy and GLCM variance, respectively. These strong correla-
tions, coupled with inherent simplicity, highlight the merits of sample variance as an effective
metric for assessing horizontal forest complexity in this study. The relationship between the
mean value of the texture-estimated variance and standard deviation of the original vertical
complexity layer was strong (R2 = 0.84; RRMSE = 8.4%), illustrating the effectiveness of using
texture analysis with a 5 × 5 window to estimate horizontal forest complexity.
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We applied the same procedure using both 3 × 3 and 7 × 7 windows, and the results
consistently aligned with those from the 5 × 5 window. Specifically, the estimated variance
from the 3 × 3 window demonstrated a Spearman’s correlation coefficient 0.86, versus
0.90 for the 7 × 7 window. Notably, the 5 × 5 window exhibited an equivalent correlation
coefficient of 0.9. These findings underscore the effectiveness of the 5 × 5 window in
capturing the essence of horizontal forest structure, all while preserving intricacies of fine-
scale variability. As such, it is evident that the 5× 5 window is well-suited for estimating the
horizontal forest structure from pre-existing vertical forest complexity data. The estimated
variance with the 3 × 3 window presented a rs value of 0.86, slightly lower than the 0.9
shown by both the 7 × 7 and 5 × 5 windows.

4. Discussion
4.1. Vertical Forest Complexity

Vegetation structure complexity strongly influences animal habitat selection and
ecosystem processes, but measuring this nuanced heterogeneity at broad scales is chal-
lenging, especially in the boreal forests of Alaska, Yukon, and the Northwest Territories.
These forests face pressures from climate change, forest fires, pest outbreaks, and human
activities, which modify forest structure and habitats. Thus, accurately characterizing vege-
tation structure in these regions is vital for mapping, monitoring changes, and informing
proactive conservation strategies in dynamic environmental conditions.

Emerging methodologies that leverage LiDAR-derived forest attributes, Landsat pre-
dictors, and terrain metrics present a potent solution, enabling the estimation of crucial
structural forest attributes even in regions without existing LiDAR data [65,66]. Our
analysis supports these findings by revealing strong relationships between predicted and
observed values, aligning with the findings of recent research [21]. While most of the
research has primarily concentrated on forest biometric and stand attributes such as forest
height, DBH, basal area, and stem volume, as opposed to vertical or horizontal complexity,
our findings stand out [67,68]. The results indicate a superior model fit than most research,
with strikingly accurate RRMSE and R2 values of 8.97% and 0.84, respectively, and com-
pare favorably with analogous research that employs full-waveform LiDAR for estimating
vertical structure [69].

Previous studies have shown that Landsat time series are more effective at capturing
variability in structural forest attributes than single-year Landsat predictors [28]. While our
research aligns with these findings, we did not observe the same substantial increase in
accuracy reported in other studies. As an example, Pflugmacher et al. [69] reported that
Landsat time series significantly improved model predictions over single-year predictors for
four forest structural attributes (e.g., above ground live biomass: R2 = 0.80; RRMSE = 41%
versus R2 = 0.58; RRMSE = 57%). Bolton et al. [20] documented a significant increase in
accuracy (e.g., forest top height: R2 = 0.25; RRMSE = 22.8% to R2 = 0.54; RRMSE = 16.5%)
when transitioning from single-year to 30-year Landsat predictors, while our findings
show marginal improvement (vertical complexity: R2 = 0.77; RRMSE = 10.3% to R2 = 0.8;
RRMSE = 9.96%) for the same transition in the time series. Similarly, Bolton et al. [21] found
that longer Landsat time series (>15 years) consistently provide more accurate estimations
of forest structural attributes across different forest types, productivities, and histories
of disturbances (R2 = 0.45–0.70). In contrast, we observed that extending the time series
from 15 to 30 years did not improve the accuracy (R2 = 0.81 to R2 = 0.80), whereas adding
single-year predictors to both time series lengths provided a greater accuracy boost. This
contrasts with Bolton et al. [20], where including single-year predictors slightly reduced
the accuracy for certain attributes within the 30-year time series (e.g., net stem volume:
R2 = 0.57; RRMSE = 34.1% to R2 = 0.55: RRMSE = 34.9%). Consequently, we find no
significant benefits in developing time series predictors for extrapolating vertical forest
structure complexity.

While time series predictors exhibited slight improvements in model accuracy com-
pared to the single-year model, these benefits are marginal. Additionally, our residual
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analysis showed no significant differences between residuals in the single-year and most
comprehensive time series model, highlighting this point further (p > 0.9). Also, a con-
siderable increase in predictive accuracy is observed when shifting from a 30-year model
(R2 = 0.80; RRMSE = 9.96%) to a calibrated single-year model (R2 = 0.84; RRMSE = 8.97%),
as revealed by pronounced differences in residuals between pre-tuned and calibrated
models (p < 0.001). Therefore, given the challenges associated with processing time series
data, time series predictors may not always be necessary or beneficial for extrapolating
vertical forest complexity. However, our findings are specific to the northern boreal for-
est of North America and spatial extrapolations. For temporal predictions, using time
series predictors could be valuable by capturing dynamic ecosystem changes over time,
including seasonality, long-term trends, forest growth, disturbance recovery, and stressor
responses [70,71]. Notably, to our knowledge, there are no existing direct comparisons
utilizing LiDAR measurements as the response variable and Landsat time series as predic-
tors for estimating vertical forest complexity. Thus, our study represents an initial attempt
to understand the successful employment of Landsat time series predictors and terrain
attributes for this purpose.

Our approach diverges from other studies in that we employ median composites
rather than the commonly used best available pixel (BAP) composite approach or annual
time series stacks of images [22,70]. In contrast to image stacks, they provide a single,
annually representative image of the forest. These traits are especially beneficial for time
series analyses, as they facilitate detection of actual trends and reveal underlying patterns in
the imagery. While median composites potentially hold advantages over other compositing
methods in the realm of time series predictors in the boreal forest [72], this claim requires
additional research to validate, particularly when comparing them to BAP composites.

Our study adopts a distinct sampling methodology compared to many others. While
many favor a stratified sampling approach for LiDAR data, valuing its capability to compre-
hensively sample all features and its efficiency in reducing spatial autocorrelation, we chose
a systematic random sampling method [50]. This method provided extensive coverage
over all strata due to the large volume of data collected. While we acknowledge that
this approach may not be as efficient and could lean towards capturing more abundant
features in the landscape, our results show that the accuracy remained consistent across
the entire range of complexity values. This reaffirms our confidence in the effectiveness of
our sampling approach, which successfully encompassing the full spectrum of variability
within our study area.

We focused on capturing forest structure variability across a vast region with a large
sample size. This heterogeneity likely enhanced the training model and its generalizability,
resulting in improved model accuracy compared to studies with a more localized focus.
However, we did not account for disturbances directly, which may have introduced bias, as
Landsat time series imagery has shown good predictive capability for structural attributes
in recently disturbed areas [20,70]. Disturbance history has also aided in modeling biomass
and other attributes over a 30-year period [22]. Including disturbances as predictors could
have improved the accuracy of our time series models, but it was beyond the scope of
our study.

Although other studies had comparable sample sizes and more extensive spatial
coverage than ours [19], their extrapolated forest attributes did not achieve the accuracy
levels of ours (R2: 0.12–0.61 and RRMSE: 24.5–78.7% versus our R2 = 0.84 and RRMSE = 8.4%
in our single-year model calibration). However, comparing the accuracy metrics of our
study with those of others requires careful interpretation, since other research primarily
focused on point cloud-derived forest attributes, which may interact differently with
Landsat-derived spectral predictors and spectral saturation based on canopy closure [33].

Despite using fewer predictor variables (no disturbance history or other spectral
indices) than other similar studies [20,21,70] we achieved superior agreement between
predicted and observed values. This may be largely attributed to the successful integration
of vertical forest complexity measurements from large footprint full-waveform systems
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with Landsat imagery and terrain attributes, as seen with other forest attributes [69,73–76].
Moreover, preliminary analysis in areas without recent disturbances, our models have
consistently maintained the relationships between predictor variables. This robustness in
maintaining these relationships can be attributed to the limited changes observed in forest
structures over preceding years, demonstrating the robustness of our modeling approach
in regions with relatively low disturbance rates.

4.2. Horizontal Forest Complexity

Texture analysis has consistently demonstrated its ability to capture vegetation struc-
ture [77–79]. In this research, we found that vertical complexity can be effectively converted
into a measure of horizontal complexity using suitable texture analysis methods. Among
the metrics considered, variance particularly stands out in assessing horizontal forest com-
plexity, with robust correlations with entropy and GLCM variance (rs = 0.91 and rs = 0.77,
respectively) and a strong association with the standard deviation of original vertical
complexity (R2 = 0.84; RRMSE = 8.4%).

Previous studies support our findings. For example, Hudak and Wessman [79]
and Wood et al. [57] found that first-order standard deviation and variance, respectively,
were effective in measuring vegetation structure in different ecosystems. However, our
study approach limits direct comparisons, and our results diverge from studies like Kayi-
takire et al. [80], which propose variance as being less effective for capturing specific forest
structural attributes. This suggests that researchers may need to tailor metric selection to
the specific forest attributes under study.

Applying a 5 × 5 window to estimate variance proved highly effective in capturing
horizontal forest structure at our study location, showing a robust correlation (rs = 0.90)
with an adapted method of measuring horizontal vegetation structure [59]. Although using
3 × 3 and 7 × 7 windows resulted in consistent outcomes, the 3 × 3 window exhibited
a slightly lower correlation coefficient (rs = 0.86), suggesting less optimal performance
in capturing horizontal forest structure compared to the other windows. However, the
5 × 5 window outperforms the 7 × 7 window in preserving fine-scale phenomena that
are crucial for delineating complex forest structure. Larger windows may smooth out
details, reducing sensitivity to finer variations of vertical complexity. For localized anal-
ysis of horizontal forest complexity, the 5 × 5 window, paired with variance, offers an
advantageous approach.

In a separate ongoing analysis, we are further validating our horizontal complexity
layer by examining its relation to snowshoe hare pellet densities. Preliminary findings
from our investigation reveal that horizontal complexity emerged as the second most
influential variable, after vertical complexity, in estimating hare pellet densities in the
Kluane Valley (Appendix A). This aligns with previous studies that established a strong
relationship between dense horizontal vegetation structure and habitat use and density
of snowshoe hares [81–84], and further highlights the ecological relevance of robustly
estimating forest complexity.

This study proposes an innovative approach for quantifying horizontal complexity
derived from extrapolated vertical complexity and provides initial evidence of its ecological
significance. For future research, we recommend tailoring window size to the study’s ob-
jectives: smaller windows for analyzing horizontal structure in heterogeneous landscapes,
and larger windows for quantifying horizontal structure at a landscape scale. For our study,
the 5 × 5 window effectively captured horizontal structure, but different window sizes
may be more appropriate depending on the scale of analysis.

5. Conclusions

Our research highlights the effectiveness of methodologies incorporating full-waveform
LiDAR, Landsat predictors, and terrain metrics to accurately characterize forest structural
complexity. The study finds superior models fit with calibrated single-year models over
15- and 30-year time series, questioning the often-preferred time series approach for pre-
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dicting forest attributes. Nonetheless, these findings are specific to the northern boreal
forest of North America, and future research is warranted to validate these methodolo-
gies in other forest ecosystems, at different spatial scales, and with other forest attributes.
Furthermore, building upon existing research, our study suggests that texture analysis
can effectively convert vertical vegetation complexity into horizontal complexity, with
variance standing out as an important metric. Our innovative approach deviates from
traditional methods, utilizing LiDAR extrapolations and a moving window to perform the
conversion. This method, while new, offers valuable insights, and preliminary results also
indicate its ecological relevance, as shown by its correspondence with snowshoe hare pellet
densities. Nonetheless, we urge future studies to tailor their window size selection to their
specific objectives.
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