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Abstract: Interferometric synthetic aperture radar (InSAR) technology has become one of the main-
stream techniques for active landslide identification over a large area. However, the method for
interpreting anomalous deformation areas derived from InSAR data is still mainly manual delin-
eation through human–computer interaction. This study focuses on using a deep learning semantic
segmentation model to identify the boundaries of anomalous deformation areas automatically. We
experimented with the delineation results based on an InSAR deformation map, hot spot map, and
different combinations of topographic datasets to build the optimal model. The result indicates
that the hot spot map, aspect, and Google Earth image as input features based on the U-Net model
can achieve the best performance, with the precision, recall, F1 score, and intersection over union
(IoU) being 0.822, 0.835, 0.823, and 0.705, respectively. Our method promotes the development of
identifying active landslides using InSAR technology automatically and rapidly at a regional scale.
Moreover, applying a new method for automatically and rapidly identifying potential landslides in
susceptible areas is necessary for landslide hazard mitigation and risk management.

Keywords: landslide delineation; semantic segmentation; InSAR; deep learning

1. Introduction

Landslides are one of the most devastating natural disasters, causing huge economic
losses and thousands of deaths every year around the world [1–3]. Affected by destructive
earthquakes [4–6], rapid snowmelts [7–9], intense rainfalls [10–12], and human activi-
ties [13–16], landslides may tend to occur in susceptible areas, posing a great threat to local
residents [17]. Rapidly obtaining the scopes of active potential landslides is helpful in order
to take effective measures to save people’s lives and property before disaster and provide
useful information regarding landslide risk management for governments [3].

Surface deformation is an apparent indicator for identifying active potential land-
slides [18]. Although the traditional methods including the global positioning system
(GPS), total stations, and inclinometers can detect surface deformation accurately, they are
not suitable for large-scale detection [19]. Interferometric synthetic aperture radar (InSAR)
technology can detect millimeter-level surface deformation over a large scale, with the
characteristics of all-weather performance, a wide range, and high precision [20,21], and has
been widely applied for potential landslide recognition [22–27]. The process of identifying
active potential landslides using InSAR surface deformation is achieved through visual
interpretation based on remote sensing images. The boundaries of active slopes can be
determined by superimposing on optical remote sensing images with reference to surface
geomorphological features (e.g., scarps, sliding masses, and bulging toes) [23], a process
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which can delineate landslides accurately but is quite dependent on expert knowledge and
time-consuming [28].

In order to identify the boundaries of anomalous InSAR deformation areas effectively
and accurately, some researchers have proposed methods including spatial statistical anal-
ysis, object-based image analysis (OBIA), and deep learning models. Spatial statistical
clustering analysis depends on the distribution of anomalous deformation points to obtain
the areas with evident clustering properties in space [29,30], which is similar to the idea
of delineating clustered anomalous deformation points in the manual interpretation. The
identification results are consistent with the distribution of anomalous deformation points,
but this process may result in omissions when landslides are partly reactivated. The OBIA
method can segment separate objects with similar characteristics of texture, shape, and
spatial structure [31–33], and then classifies them using a machine learning algorithm to
produce the final classification results [34]. However, this method has high requirements
regarding the segmentation scale and the used features, which are determined by means of
visual judgment. No particular combination of segmentation scale and optimal classifica-
tion features is suitable for all targets, implying that multiple experiments and practical
experience are needed to obtain optimal results [35], limiting the applicability of the OBIA
method. Deep learning semantic segmentation is a typical application in computer vision
that aims to annotate every pixel within imagery with a specific semantic label [36–40] and
has achieved remarkable performance in landslide delineation with innovative architec-
tures [41–43]. Deep learning methods can easily obtain optimal parameters based on the
back propagation strategy and multiple epochs for training [44], without the requirement
for extracting image features. Although some research has pointed to identifying anoma-
lous deformation areas, the corresponding work continues to only use InSAR deformation
maps [42,45–47]. An appropriate combination of InSAR deformation maps, optical remote
sensing images, and other supplementary data will be the future development trend, which
is more akin to simulating the process of manual interpretation.

The upper reaches of the Yellow River, affected by the strong uplift of the Qinghai–
Tibet Plateau, has become one of the regions where geological hazards are most severe
in China [48]. Many ancient large-scale and unstable landslides are distributed on both
sides of the Yellow River, which pose a great threat to local residents [49]. In addition, the
construction and operation of hydropower stations may contribute to the development
of unstable slopes in reservoir areas [49]. Identifying potential landslides is necessary
for preventing the losses of life and property caused by landslides and ensuring the safe
operation of hydropower stations. In addition, the sparse vegetation coverage of the area
is favorable for InSAR analysis [50]. Therefore, the upper reaches of the Yellow River
were selected as the study area to explore the method for identifying InSAR anomalous
deformation areas rapidly and accurately.

In this paper, we use a combination of InSAR techniques, hot spot analysis, and
a semantic segmentation model to establish identification models. We then compare
the performance of different input features and different semantic segmentation models.
Finally, we establish the optimal model and conclude its further directions. Our results
contribute to establishing models for delineating active potential landslides automatically
and provide valuable information for landslide susceptibility regions in terms of landslide
early warnings and prevention over a large scale.

2. Study Area

The upper reaches of the Yellow River are located in the transitional zone between
the Loess Plateau and the Qinghai–Tibetan Plateau [51]. Since the Late Pliocene, the
Qinghai-Tibetan Plateau has experienced extensive uplift, while the upper reaches of
the Yellow River and its tributaries have incised deeply into a series of intermountain
basins and bedrock ranges [52], forming a landform with high reliefs and steep slopes,
thus providing suitable topographic conditions for landslides’ development [53]. A large
number of historical landslides have developed along both sides of the upper reaches
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of the Yellow River, and most landslides are distributed in Qunke–Jianzha Basin and
Guide Basin [54]. Therefore, a 15 km buffer zone on both sides of the upper reaches
of the Yellow River, from Guide Basin to Xunhua Basin, was selected as the study area
(35◦40′–36◦20′N, 101◦20′–102◦0′E), in the east of Qinghai Province.

In the study area, the Yellow River flows from west to east through Guide Basin, Lijia
Gorge, Qunke–Jianzha Basin, and Xunhua Basin. High valleys and flat intermountain
basins, with altitudes varying from 1837 to 4421 m, dominate the topography of the study
area (Figure 1b). Many ancient large-scale landslides are distributed in the study area
including Xijitan landslide, Suozi landslide, Garang landslide, and so on [54–56], which
are still unstable. The boundaries of these ancient large-scale landslides are shown in
Figure 1. There are about nine faults developed in the study area, and most of these faults
trend from NW to SE, with the Songba fault oriented from N to S. Tectonic movement is
affected by the Xi Qinling–Jishishan fault located on the south side and the Lajishan fault
located on the north side [49]. The lithology of the study area is mainly Triassic slate and
fine-grained sandstone, Paleogene and Neogene sandstone and mudstone, and Quaternary
sediments, characterized by heavy weathering (Figure 1c) [53]. The area is dominated by a
continental semi-arid climate characterized by a dry and windy spring, a short and cool
summer, a wet and rainy autumn, and a long and dry winter [50]. The average annual
precipitation is 255–354 mm, which is mainly concentrated in summer and autumn, while
the average annual evaporation is 1901–2136 mm [49]. The daily temperature ranges
from −28 ◦C to 25 ◦C. The Lijia Gorge hydropower station was built in November 1999
with a normal storage water level of 2180 m a.s.l. The operation of a hydropower station
may seriously affect the stability of slopes in reservoir areas due to the fluctuation of the
water level of the reservoir [57]. In Lijia Gorge, several active landslides have developed,
like the Lijia Gorge III landslide [49], which has seriously threatened the highway near the
landslide and the operation of the hydropower station.

Figure 1. Cont.
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Figure 1. Location of the study area. (a) Geographical location of the upper reaches of the Yellow
River; the red polygon indicates the area covered by Sentinel-1A; the black star indicates the location
of the study area. (b) Topography environment, faults, and main landslides in the study area.
(c) Geological map of the study area (collected from the China Geological Survey).

3. Datasets and Methodology

In this study, InSAR technology, hot spot analysis, and a semantic segmentation model
were combined to extract the boundaries of the anomalous areas (Figure 2). Firstly, the
displacement rate map of the study area was obtained using InSAR technology, and the
anomalous areas were interpreted as labels manually based on the Google Earth image.
Subsequently, a hot spot map obtained based on the hot spot analysis, Google Earth image,
and topographic information were input into the deep learning semantic segmentation
algorithms. In turn, the established semantic segmentation model enabled the identification
of the boundaries of anomalous areas accurately.

3.1. Data

A Google Earth image captured on 11 March 2021 with a spatial resolution of 2.5 m
(corresponding level 16 of Google Earth) was used to interpret the anomalous deforma-
tion areas and input as a feature image for training the model. In order to reduce the
brightness, tones, and distortions difference of different Google Earth image tiles, the
obtained Google Earth image was pre-processed, including color balance, haze removal,
histogram equalization, a low pass filter, and a Gaussian filter based on ENVI (the Envi-
ronment for Visualizing Images) software (v5.3). A total of 39 C-band (a wavelength of
5.63 cm) synthetic aperture radar (SAR) images of the Sentinel-1A satellite, spanning from
4 January 2020 to 28 April 2021, were collected to generate the displacement using InSAR
technology. SAR images were captured along satellite track 135, in descending orbit, with
an incidence angle of 39.2◦. The imaging mode was the interference wide (IW) mode, and
the polarization mode was vertical–vertical (VV) polarization. The spatial coverage of the
SAR images is shown in Figure 1a. After the InSAR deformation monitoring, the coordinate
system of the deformation vector was converted to be consistent with the Google Earth
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image. The topography data including elevation, slope, and aspect, obtained from the
Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture
Radar (PALSAR) digital elevation model (DEM) with 12.5 m resolution, were used as
feature images to analyze the semantic segmentation ability of the models. The cell size of
the DEM was resampled to match the Google Earth image, and the coordinate system was
converted to be consistent with the Google Earth image.

Figure 2. Workflow of the proposed method for identifying anomalous InSAR deformation areas.
First, the input datasets, including the InSAR ground deformation map, hot spot map, Google Earth
image, topographic dataset, and sample annotation are prepared and processed. Then, we selected
the U-Net and SegNet models to train on the training set. Finally, a variety of metrics were adopted
on the test set to evaluate the prediction performance of each model.

3.2. Interferometric Point Target Analysis (IPTA)

IPTA is a typical time series InSAR algorithm which can detect surface ground defor-
mation with high precision (mm) for large areas and provide ground displacement rate
maps associated with many geophysical processes [20,58]. IPTA, which has advantages in
finding stable backscatters in areas of low coherence and can use large baselines for phase
interpretation, was presented by [59]. The objective of IPTA is to identify target points with
high quality which were determined through spectral diversity, amplitude dispersion, and
standard deviation of the point target candidates [59].

First, all of the SAR images were co-registered to the selected reference scene (20200831),
and then 71 interferograms were generated with a perpendicular baseline threshold of
160 m and a temporal baseline of 30 days (Figure 3). A reference point was selected to
remove the residual terrain phase, which was determined by means of field investiga-
tion. After the differential interferograms were calculated, a two-dimensional regression
analysis was performed to obtain height corrections, linear deformation rates, residual
phases, and the unwrapped interferometric phase. Finally, the atmospheric phase and
non-linear deformation phase were obtained from the residual phase by filtering the spatial
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and temporal dimensions [59]. The coherence threshold was set as 0.7 to maintain a balance
between the coverage density and ground deformation quality of the target points. An
important aspect of the IPTA concept is the possibility of a step-wise, iterative improve-
ment of different parameters. We processed the IPTA technology using GAMMA software
(v20210701). Precise orbit data from the European Space Agency were used to correct the
orbit error. The topographic phase can be removed by introducing external DEM. Two
types of open-source DEM, obtained from 1-arc-second Shuttle Radar Topography Mission
(SRTM) DEM with a resolution of 30 m and the ALOS PALSAR terrain corrected product
with a resolution of 12.5 m, were used to compare the phase unwrapping results shown
in Figure 4. Visually, both SRTM-1 and ALOS 12.5 have significant phase unwrapping
errors, but ALOS 12.5 has extensive unwrapping null values in the lower right corner. The
unwrapping percentages of SRTM-1 and ALOS 12.5 are 69.5% and 67.7%, respectively. The
results indicate that SRTM-1 is more suitable for InSAR monitoring. As for why ALOS 12.5
has a worse effect, because 12.5 m is not the real resolution of the DEM, it is not generated
from the PALSAR data itself, instead being obtained through interpolation after resampling
from SRTM-1 [60,61]. It should not be used in place of a regular DEM because elevation
values are altered by geoid corrections in preparation for radiometric terrain correction
processing [61].

Figure 3. Spatial-temporal baselines of the generated interferograms. The numbered points represent
SAR images and lines are the interferometric pairs used to form interferograms.

Figure 4. Phase unwrapping results based on two types of digital elevation models. (a) SRTM-1, and
(b) ALOS 12.5.
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3.3. Hot Spot Analysis

Hot spot analysis is a spatial statistics approach which can semi-automatically extract
areas with large ground movement over mountain regions [62] and has been widely ap-
plied to identify and map anomalous areas with clustered high-velocity coherent targets
(CTs) [30,63,64]. Hot spot analysis consists of the Getis–Ord Gi* statistic and kernel density
estimation. The Getis–Ord Gi* statistic is a local spatial statistic model which was proposed
to calculate the degree of aggregation of CTs within a specified distance, taking the defor-
mation velocity as the weighting factor [65,66]. For each single CT at a site i and other CT
at a site j, the Gi* can be calculated as follows:

Gi∗ =
∑n

j=1 wi,j∗xj − X ∑n
j=1 wi,j

S∗
√

[n ∑n
j=1 w2

i,j−(∑
n
j=1 wi,j)

2]

n−1

(1)

where n is the total number of CTs; wi,j is the spatial weight with 1 for all CTs within a
specified distance of CT i and 0 for other CTs including the CT i itself; xj represents the
deformation velocity of each CT; X is the mean deformation velocity of all CTs; and S is
the standard deviation of the deformation velocity of all CTs. In this study, the specified
distance d was set as 150 m according to the scale of historical landslides in the study area
and the spatial resolution of Sentinel 1A data. After the Getis–Ord Gi* statistic, the z-score
(standard deviation) and p-value (independence probability) were calculated.

In order to highlight the distribution anomalous areas, the kernel density estimation
was used, taking the z-score ass the weighting factor. Kernel density estimation can fit
a smoothly tapered surface and can be used to calculate the density of the elements in a
neighborhood around the elements [63,67]. The kernel density estimation can be calculated
as follows [68]:

Density =
1

d2 ∑n
i=1[

3
π

pi(1− (
x− xi

d
)

2
)

2

] (2)

where d is the search radius; x− xi is the distance from each calculating pixel to CT i; n is
the total number of CTs; and pi is the weighting factor for each CT. Finally, the anomalous
areas were highlighted by several hot spots, which enable us to straightforwardly and
easily understand the locations of anomalous areas. In this study, the hot spot analysis was
implemented in the Spatial Statistics Tools in ArcGIS v10.6.

3.4. Semantic Segmentation Models

In this study, two popular deep learning models, namely U-Net and SegNet, were
used to compare their performance in extracting the boundaries of anomalous areas.

3.4.1. U-Net Model

The U-Net model [69] is widely applied to semantic segmentation tasks owing to its
robust network structure, fast training speed, and suitability for small data sets [70,71].
The U-Net model is a deep learning framework based on fully convolutional networks
and has an encoder–decoder architecture similar to the letter “U”. The U-Net structure
used, as illustrated in Figure 5, comprises a contracting path (an encoder) for extracting
main and complex features and an expanding path (a decoder) for retrieving the relevant
spatial location [72]. In the encoder, the convolution and max pooling layers are combined,
which follows the typical CNN architecture to extract the characteristics of feature images
including the spectral information and texture in the spatial dimension [72]. The encoder
path is composed of several blocks of two convolution layers with a 3 × 3 kernel size, each
followed by a Rectified Linear Unit (ReLU) activation function and a max-pooling layer
with a size of 2 × 2. After a max-pooling operation, the spatial dimension of the feature
maps is reduced to half of the input size. In the decoder, the transposed convolution and
skip connection methods were applied to retain the dimensions and information that were
lost during down-sampling [70]. The decoder path is composed of several blocks with a
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transpose convolutional layer of size 2 × 2 and two convolutional layers with a kernel
size of 3 × 3 each followed by ReLU as an activation function. Finally, a convolutional
layer with a 1 × 1 kernel size with a sigmoid function is added to output the segmentation
result. The most important part of the U-Net architecture is the skip connections between
the encoder and decoder stages. The output from each block before max pooling in the
encoder part is concatenated with the symmetrical position in the decode part, which can
retrieve the relevant spatial information lost in the encoder path [73].

Figure 5. Illustration of the U-Net architecture. The number of channels is indicated at the top of the
box, where n represents the number of input image channels. The x–y size is shown in the lower left
corner of the box. White boxes represent maps of copied resources. Modified from [69].

3.4.2. SegNet Model

The SegNet model is another well-known encoder–decoder network for image se-
mantic segmentation [36,74]. The architecture of SegNet is illustrated in Figure 6, which
consists of an encoder portion and a corresponding decoder portion [75]. The encoder
portion is used to train the segmentation engine, while the decoder portion is used to
obtain pixel-wise classification [74,76]. Each encoder contains 3 × 3 convolution layer
followed by a batch normalization layer and a ReLU activation function to produce a set of
feature maps. Each encoder repeats the implementation of this combination of convolution,
batch normalization, and ReLU activation multiple times in each encoder layer. At the
end of each encoder layer, a 2 × 2 max-pooling layer with stride of 2 is applied to down-
sample the output feature map by 2, and the number of feature channels is doubled at
each down-sampling step. A total of 13 convolution layers are added in the encoder part,
which resembles the VGG16 network [77]. At each decoder layer, the number of feature
channels is reduced by half, while the size of the output feature map is doubled by using a
2 × 2 inverse max-pooling layer with stride of 2 where the memorized max-pooling indices
are received to up-sample the feature maps to a larger scale [74,78]. After performing
up-sampling, these feature maps are applied with repeated multiple 3 × 3 convolution
layers followed by a batch normalization layer and a ReLU activation function. Finally, the
high dimensional feature map at the output of the final decoder is applied with the softmax
function to classify the image into two classes.
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Figure 6. Illustration of the SegNet architecture. The number of channels is indicated at the top of the
box, where n represents the number of input image channels. Modified from [74].

3.5. Evaluation Indexes

To evaluate the performance of the built models, evaluation indexes including recall,
precision, F1-score, and Intersection over Union (IoU) were used as quantitative metrics to
evaluate the extraction results. Precision represents the ratio of pixels of correctly predicted
anomalous areas to the total number of pixels of predicted anomalous areas, and recall
is the ratio of pixels of correctly predicted anomalous areas to the labels annotated. The
F1-score is the harmonic average between precision and recall, which attempts to takes
into account both precision and recall [36,79]. The IoU computes the overlapping of areas
between the label annotation and the model extraction. These evaluation indexes are
defined as follows [36]:

Precision =
TP

TP+FP
(3)

Recall =
TP

TP+Fn
(4)

F1 =
2× Precision× Recall

Precision + Recall
(5)

IoU =
A∩ B
A∪ B

=
TP

TP + FP + FN
(6)

where TP is true positive, which represents the pixels that were correctly detected as
anomalous areas; FP is false positive, which represents the pixels that were incorrectly
detected as anomalous areas; and FN is false negative, which represents the pixels that
were incorrectly detected as non-anomalous areas.

4. Experiment and Results
4.1. Dataset Preparation
4.1.1. InSAR Deformation

The mean displacement rate map along the direction of radar line-of-sight (LOS)
obtained from the descending Sentinel datasets is illustrated in Figure 7. We obtained
930,193 CTs covering the study area with an average density of 264 CTs/km2, which is
sufficient to detect potential landslides using InSAR technology. However, in the southern
part of Lijiaxia reservoir, an absence of CTs was observed in the high-altitude mountainous
areas, resulting in geometric distortion and low coherence of the radar signal. The LOS
displacement rate ranged from−234 to 366 mm/y, the negative values representing ground
motion away from the satellite, and the positive values representing movement towards
the satellite. In practice, the stability threshold of InSAR displacement rates is determined
based on the standard deviation of the velocity of the whole region [80,81], so a stability
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threshold of ±10 mm/y was chosen to identify anomalous areas which were regarded as
the possible locations of potential landslides.

Figure 7. LOS displacement rate derived by IPTA technique. A positive value indicates a point
moving toward the satellite and a negative value indicates a point moving away from the satellite.

In the experiment, the InSAR deformation result was used as the input feature by
converting the CTs into a raster dataset with a value of −234 to 366 in ArcGIS (Figure 8).
The locations of the CTs were replaced by cells and the values of the cells were determined
based on the displacement rate of the CTs. The value of cells without CTs located in them
was set as null value. In order to match the cells in the output raster alignment of the
Google Earth image raster, the output cell size was set to be consistent with the Google
Earth image and the function of the snap raster was set. Finally, the InSAR deformation
raster was used as a band combined with the Google Earth image to build the semantic
segmentation model.

Figure 8. Example of conversion results from coherent targets into a raster dataset.
(a) Coherent targets distribution, and (b) raster dataset distribution.

4.1.2. Hot Spot Analysis

The output of hot spot analysis is a hot spot map, as shown in Figure 9, which can
highlight areas with anomalous deformation [29]. The red spots indicate the areas with
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clustered high velocity CTs moving towards the sensor, whereas blue spots indicate the
areas with clustered high velocity CTs moving away from the sensor. The green color
indicates that there are no clustered CTs in these areas. The detected anomalous areas
were characterized by intense ground deformation and a significant aggregation degree,
which is similar to the process of manually extracting of anomalous areas based on InSAR
deformation. Compared to a traditional InSAR map, the hot spot map can rapidly extract
useful information from a large amount of CTs.

Figure 9. The hot spot map derived from hot spot analysis using the InSAR displacement rate
map. The red spots correspond to the anomalous areas with high velocity moving towards the
sensor, whereas blue spots correspond to the anomalous areas with high velocity moving away
from the sensor.

In the experiment, the hot spot map with a value of −38,835.9 to 17,832.8 was used as
an input feature combined with the Google Earth image to build the semantic segmentation
model. In order to match the cells of the hot spot map with the raster alignment of the
Google Earth image raster, the output cell size in the kernel density estimation was set to
be consistent with the Google Earth image and the function of the snap raster was set.

4.1.3. Topographic Dataset

The elevation, slope, and aspect derived from DEM were input as feature images
into the semantic segmentation models. The channels of elevation, slope, and aspect have
values of 1837 to 4421, 0 to 90, and 0 to 360, respectively. The topographic dataset contains
more spatial information which can improve the extraction accuracy of the anomalous
deformation areas [41,42]. In the experiment, the topographic dataset was combined
with the optical image and deformation dataset as feature images to build the semantic
segmentation model.

4.1.4. Sample Annotation

The anomalous deformation areas were manually interpreted and outlined based
on the InSAR displacement rate map and the Google Earth image using the ArcGIS soft-
ware. The development of landslides had the following image characteristics. (1) There
are abnormal arc shapes developed on the rear margin of the landslide body, including
“round chair shaped” and “dustpan-shaped” landslide back wall steep ridges [82], which
show differences in texture, color, brightness (Figure 10a,b). (2) Fragmented slope sur-
face, poor vegetation cover, and obvious cracks and scarps indicate the movement signs
(Figure 10a,b) [83,84]. (3) The landslide front edges often show flat terrain of landslide
deposits and were distinguished by differences in slope and aspect (Figure 10c). The
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boundaries of the deformation areas were interpreted initially via the proposed image
characteristics. Then, the boundaries of anomalous deformation areas were verified and
modified accurately based on the field survey results. To ensure sample annotation quality,
three landslide experts conducted cross-validation of the anomalous deformation area
interpretation results. In total, 476 anomalous deformation areas were obtained. Finally, the
label dataset was obtained by converting the deformation area inventory maps into a raster
dataset with the same resolution as the Google Earth image. The binary map is shown in
Figure 11, where the anomalous areas are encoded as one and the non-anomalous areas are
encoded as zero.

Figure 10. Mean displacement of potential landslides and the boundaries of the anomalous deforma-
tion areas were determined by means of field survey. (a1,b1,c1) Boundaries of anomalous deformation
areas determined from InSAR deformation map and Google Earth image. (a2,b2,c2) Photographs of
anomalous deformation areas in the field investigation. Red solid lines in (a1,b1,c1) indicate the
boundaries of anomalous deformation areas. Red arrows indicate the direction of slope movement.
Red dashed line in (a2) indicates the boundary of anomalous deformation areas in (a1). Red dashed
line in (b2) indicates the location of scarp.

4.2. Dataset Processing for Model

Considering the limitation of computer memory conditions, the image size of the
feature images is 50,661 × 35,415 pixels, making it impossible to input these large-size im-
ages for training directly. We thus scanned the image using a sliding window algorithm to
generate training patches, as shown in Figure 12. As the size of the anomalous deformation
areas was concentrated in the 48× 56–256× 256 pixel range, the size of the cropped images
for model was set as 256 × 256 pixels. This process can speed up the training and has little
effect on the results of extracting the boundaries of anomalous areas [43]. In this study, the
same method was used to split the feature and label images with a 20% overlap, and a total
of 42,904 feature images were obtained.
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Figure 11. The binary map of anomalous deformation areas.

Figure 12. Flowchart of cropping feature images through scanning the image using a sliding window.
Orange arrows indicate the steps of cropping feature images. Green arrows indicate the scanning
directions of sliding window.

Different input features often have different dimensional units, which will affect the
results of model training. To eliminate the influence between features, image normalization
is performed to make the input in the same order of magnitude. Each channel of the
feature images was normalized to 0–1 via Min–Max normalization [85]. In particular,
the accuracy of deep learning models can be determined by the quantity and diversity
of data, which can be significantly increased using data augmentation methods. In this
study, data augmentation is employed for the semantic segmentation models to learn
more intrinsic and invariant characteristics related to the boundaries of anomalous areas.
Data augmentation methods including random horizontal and vertical flips and random
rotations were applied randomly to the training dataset (Figure 13).

In this study, we used a small-batch training strategy, which only requires a small
portion of the training dataset in each iteration to avoid local minimization of training
errors and achieve rapid convergence in the parameter optimization process [86]. Finally, in
total, 70% of the feature images (30,032) were randomly selected as training dataset to train
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the models. The remaining 30% of the feature images (12,872) were taken as the testing
dataset to evaluate the performance of the models, and all the networks shared the same
dataset processing for training and testing.

Figure 13. Schematic diagram of the data augmentation. (a) Original image, (b) random rotation
of 90◦, (c) horizontal flip, and (d) vertical flip.

4.3. Experimental Setup

The experiments were implemented in a computer with the configuration of AMD
Ryzen 9 5900X (3.70 GHz) (made in Suzhou, China) and NVIDIA GeForce RTX 3090 (made
in Guangzhou, China), and Pytorch (GPU version) was adopted as the deep learning
framework. The Adam optimizer was used to update and optimize the parameters of
models. The number of training epochs was set as 30 with a batch size of 8, and the
iterative training on the training set can continuously reduce the loss function value to
optimize model parameters [87]. The initial learning rate of training was set to 1 × 10−3.
Binary Cross-Entropy Loss (BCE Loss) was chosen as the loss function for training, which
is defined as follows:

loss = − 1
N

N

∑
i=1

yi× log(p(yi))+(1− y i)× log(1− p(y i)) (7)

where N denotes the number of classification categories, and p represents the probability
that the label category of xi is yi = 1. A threshold of 0.5 was adopted to classify the
probability of the grids belonging to the boundaries of the anomalous areas.

4.4. Experimental Result
4.4.1. Comparison of Different Deformation Indexes

Firstly, the performance of different deformation indexes in two models was evaluated
quantitatively according to the evaluation indexes as mentioned above. The precision,
recall, F1 score, and IoU of the models are shown in Table 1. Model I performs worse than
other models, especially in the terms of recall, F1 score, and IoU, which indicates poor
segmentation of anomalous areas. Comparing model II’s performance based on the Google
Earth image combined with the hot spot map as input features, the precision, recall, F1
score, and IoU are 0.853, 0.779, 0.809, and 0.686, respectively, which indicates that the hot
spot map has a better guiding effect to extract anomalous areas than InSAR deformation
points. The F1 score of model IV reaches 0.812, which is higher than those of the other three
models. Although the precision of model IV is not the highest, the recall and IoU of model
IV are significantly higher, which can reflect the extent of capture of the target pixel [88].
The performance of the U-Net model is better than that of the SegNet model, regardless of
the two different deformation indexes, which means that the U-Net model is more suitable
for obtaining abstract information. The difference in the performance of U-Net and SegNet
model may be attributed to the skip connection of U-Net that incorporates the low-level
and high-level features so that the decoding path has more available spatial information
to improve the segmentation performance [36]. Although InSAR deformation points can
be widely applied to delineate high deformation areas manually by scholars, which is
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consistent with the human understanding of deformation areas, the hot spot map can
specifically reflect the boundaries and locations of anomalous deformation areas and can
more easily be understood by algorithms.

Table 1. The anomalous areas detection results of different models and different input features in
testing dataset.

Num Model Data Precision Recall F1 Score IoU

I SegNet
Google Earth Image (RGB)

+ InSAR Deformation Points 0.879 0.719 0.785 0.652

II Google Earth Image (RGB)
+ Hot Spot Map 0.853 0.779 0.809 0.686

III
U-Net

Google Earth Image (RGB)
+ InSAR Deformation Points 0.843 0.775 0.806 0.676

IV Google Earth Image (RGB)
+ Hot Spot Map 0.829 0.807 0.812 0.689

4.4.2. Topographic Information Addition Identification Model

The topographic information (elevation, slope, and aspect) can be supplementary to
some confusing textures and shapes in optical images, which could help to provide a good
distinction of slope boundaries [89], and as such has been widely applied in landslide se-
mantic segmentation [36,43,89]. The quantitative evaluation results of introducing different
combinations of topographic information into the detection models are shown in Table 2.
It is obvious that adding slope and aspect can significantly improve the segmentation
performance of models. However, elevation may contribute to new confusion, potentially
even leading to the performance of models decreasing compared to before adding elevation.
This effect is also present in other combinations of topographic information which involve
elevation. The optimal combination of topographic information is to only add aspect with
the Google Earth image and hot spot map as input features. Compared with model IV,
model XIII can obviously improve the performance of anomalous area detection, with an
increase in recall, F1 score, and IoU of 2.8%, 1%, and 1.6%, respectively.

Table 2. The anomalous areas identification results of different combinations of topographic informa-
tion addition identification models in testing dataset.

Num Model Data Precision Recall F1 Score IoU

V

SegNet

Google Earth Image (RGB)
+ Hot Spot Map

+ Slope
0.797 0.836 0.811 0.688

VI
Google Earth Image (RGB)

+ Hot Spot Map
+ Aspect

0.816 0.833 0.819 0.7

VII
Google Earth Image (RGB)

+ Hot Spot Map
+ Elevation

0.847 0.758 0.794 0.666

VIII
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Aspect

0.806 0.839 0.817 0.696

IX
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Elevation

0.82 0.814 0.811 0.689
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Table 2. Cont.

Num Model Data Precision Recall F1 Score IoU

X
Google Earth Image (RGB)

+ Hot Spot Map
+ Aspect + Elevation

0.828 0.797 0.806 0.682

XI
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Aspect + Elevation

0.846 0.78 0.806 0.682

XII

U-Net

Google Earth Image (RGB)
+ Hot Spot Map

+ Slope
0.828 0.812 0.814 0.693

XIII
Google Earth Image (RGB)

+ Hot Spot Map
+ Aspect

0.822 0.835 0.823 0.705

XIV
Google Earth Image (RGB)

+ Hot Spot Map
+ Elevation

0.773 0.823 0.792 0.662

XV
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Aspect

0.81 0.836 0.818 0.697

XVI
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Elevation

0.858 0.765 0.803 0.678

XVII
Google Earth Image (RGB)

+ Hot Spot Map
+ Aspect + Elevation

0.849 0.786 0.811 0.688

XVIII
Google Earth Image (RGB)

+ Hot Spot Map
+ Slope + Aspect + Elevation

0.811 0.836 0.818 0.698

The U-Net and SegNet model have different predictive abilities, in that the former
has a fast convergence speed and can achieve good predictive results based on a small
sample set [69,90]. SegNet can obtain good predictive results when the number of samples
is huge, and SegNet deeply depends on the accuracy of the labels [72,87]. However, the
anomalous deformation areas were manually interpreted and outlined based on the InSAR
displacement rate map and Google Earth image, which means that the dataset annotation
result may be slightly different between different researchers, meaning that the U-Net
model is more suitable for extracting the boundaries of anomalous areas.

Adding topographic information can provide the spatial characteristics of slopes,
which is helpful to identify the boundaries of anomalous deformation areas based on the
topographic characteristics [36,91]. Aspect has good consistency in small areas of topog-
raphy and can be considered as an effective feature to identify anomalous deformation
areas [92]. Figure 14 shows some identification results of different models based on the test
set. It is obvious that topographic information can constrain the boundaries of anomalous
deformation areas and is more similar to the actual labels (Figure 14c). Although the identi-
fied results of different models are still incomplete, adding topographic information can
expand the identified areas and leads to the process being more like manual interpretation.
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Figure 14. Identification results of different models on the testing dataset (a–d). The four images
in each row represent the original image, annotated label, identification result of model IV, and
identification result of model XIII, respectively. Red lines in (a1,b1,c1,d1) indicate the boundaries of
anomalous deformation areas.

5. Discussion
5.1. Effects of the Data for Model

In this study, the data used to establish semantic segmentation models includes differ-
ent deformation indexes and different combinations of topographic information. In terms
of the deformation indexes, the hot spot map is more suitable for the semantic segmenta-
tion model in identifying anomalous deformation areas. The hot spot map can highlight
the location of anomalous deformation areas, which is similar to delineating anomalous
deformation areas manually. In terms of the different combinations of topographic informa-
tion, aspect and slope may play an important role in distinguishing slope boundaries, but
elevation may lead to new confusion. In a previous work, slope, aspect, and elevation were
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combined as topographic information input into a semantic segmentation model [43,89],
which is unnecessary and leads to complex data processing and training. The basis of
delineating the boundaries of anomalous deformation areas is similar to slope unit division,
which involves maximizing the homogeneity within each extracting boundary and maxi-
mizing the heterogeneity between inside and outside the anomalous area’s deformation
boundaries [93,94]. The terrain aspect, defined as the projected direction of a line normal
to the slope on the horizontal plane, can be used to identify the direction of the steepest
descent at a location on the ground surface [92]. The terrain aspect for the actual natural
slopes can be considered similar and homogeneous. Inputting slope may lead to the neglect
of some micro-topographic features and a more complex feature analysis process [92]. It is
advised to introduce aspect as topographic information to extract anomalous deformation
areas, though more experimental results from high-resolution DEM are needed to support
this opinion.

5.2. Advantages of the Model

Delineating anomalous deformation areas derived from InSAR results is an important
part of mapping potential active landslides over a large scale; the dominant method in
this process is still manual interpretation through human–computer interaction, which
is time- and labor-consuming. In this study, the semantic segmentation deep learning
model combined with Google Earth images, InSAR deformation hot spot map, and to-
pographic information was used to identify the boundaries of anomalous deformation
areas automatically. Compared with existing research about delineating InSAR anoma-
lous deformation areas, the proposed method can more accurately extract the anomalous
deformation areas, owning to its special input features and advanced identification method-
ology. In terms of the input features, InSAR deformation results can be input into the
prediction model in different forms. The widely used InSAR deformation forms include
time series InSAR deformation and differential InSAR deformation [95]. However, directly
using InSAR deformation may ignore the effect of scattered high-deformation areas in-
duced by data-processing errors, which are excluded during visual interpretation. The hot
spot map has similar characteristics to delineating anomalous areas manually, which only
identifies clustering high ground deformation and is helpful for decreasing the effect of
data-processing errors. The hot spot map also contains the information of the deformation
stability threshold, avoiding the influence of widely distributed stable areas. Moreover,
adding topographic information is similar to providing three-dimensional images for re-
search to delineate anomalous deformation areas. The identification result would be more
inclined to provide a good distinction of slope boundaries, which is consistent with other
studies [43,89].

In terms of identification methodology, OBIA technology was used to extract anoma-
lous areas automatically [31], but the implementation process needs professional practical
ability to determine the optimal segmentation scale, select suitable features, and establish
the classification ruleset [96]. This method is a semiautomated interpretation approach
for anomalous deformation areas identification [31]. Too many factors would affect the
extraction accuracy in the process of OBIA, leading to the shortcoming of low robustness
and generalization ability [97]. Existing models are often unable to obtain good extraction
results for different study areas [35]. Unlike the OBIA method, the semantic segmentation
deep learning method is an end-to-end algorithm that can directly input image information
as a supervised signal to classify segmented pixels [98]. It can automatically extract the
most relevant features of the target task depending on loss function, which has the advan-
tages of solid robustness [31,99]. There is no need to select segmentation parameters and
combine multi-dimensional features manually. Although the existing deep learning model
is complex, with the internal decision-making method being opaque, poorly interpretable,
or un-interpretable, appearing like a “black box”, the end-to-end learning approach has
the advantage of making it easier to obtain the global optimal solution [35]. Based on the
semantic segmentation deep learning method, an efficient and high-precision classification
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of remote sensing images can be realized [35]. This method can provide effective, real-time,
and high-precision classification results for potential landslide identification.

5.3. Limitations and Further Directions of the Model

There are some limitations regarding input features and model establishment that
need to be considered in future research. Firstly, an accurate ground deformation result
is the most basic step in the research. The areas with insufficient anomalous deformation
points, induced by spatial and temporal decorrelation [100], would be excluded by the
method, leading to incompletely delineating deformation areas. This may be dealt with by
using long-wavelength SAR acquisitions at high spatial and temporal resolutions, which
have better penetrability and enable the effective monitoring of ground deformation in
complex mountainous areas [101]. In addition, the spatial resolution of the topographic
dataset can affect the details of geomorphological characteristics. Depending on the scale
of the landslides in the study areas, the used spatial resolution of the topographic dataset
can be determined. More precise extraction of small-scale slopes requires combining
higher-resolution topographic information based on unmanned aerial vehicles (UAV) or
other high-precision sensors [43]. Secondly, with the development of advanced semantic
segmentation deep learning models, the extraction result of anomalous deformation areas
will be improved, such as adding an attention module [102] or combining other popular
structures [103]. Moreover, using fixed-window-size samples for modeling makes it harder
to identify landslide hazards of different scales, which limits the identification accuracy to
some extent [47]. So, a multi-window identification model can perform better in regional
potential landslide identification and avoid subjective prejudice of window size relying
on expert experience [47]. Further improvements can be made by developing models for
identifying multiple scales areas using multiple windows. It is expected that more accurate
identification models for delineating anomalous deformation areas could be proposed by
improving the above limitations.

6. Conclusions

This study provides insights for delineating anomalous InSAR deformation areas
automatically through the InSAR technique, hot spot analysis, and a deep learning semantic
segmentation model. Our principal conclusions are as follows:

(1) The hot spot map is similar to delineating anomalous deformation areas manually,
and can more easily be understood by algorithms, leading to a better guiding effect when
extracting anomalous areas than the InSAR deformation map.

(2) The introduction of topographic information can constrain the boundaries of
anomalous deformation areas based on the local landform. Among the different combina-
tions of topographic information, introducing aspect as an input feature contributes to the
optimal semantic segmentation model.

(3) The U-Net model is more suitable for extracting the boundaries of anomalous areas
due to special network structure compared with the SegNet model.

(4) The optimal model was built by combining Google Earth images, the InSAR
deformation hot spot map, and aspect based on the U-Net semantic segmentation deep
learning algorithm, with the precision, recall, F1 score, and IoU being 0.822, 0.835, 0.823,
and 0.705, respectively.

The application of the proposed model enables researchers to reduce the limitations
regarding time and labor costs in the process of using InSAR deformation results. Our
result can provide insights for delineating potential landslides automatically and provide
valuable information for landslide risk mitigation in susceptible areas worldwide.
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