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Abstract: In radar electronic countermeasures, as the difference between jamming and targets contin-
ues to decrease, traditional methods that are implemented based on classical features are currently
unable to meet the requirements of jamming detection. Compared with classical features such as tex-
ture, scale, and shape, shadow has better discernability and separability. In this paper, target shadow
is investigated and applied to detect jamming in Synthetic Aperture Radar (SAR) images, and a SAR
false target identification method based on shadow features is proposed. First, a difference image is
generated by change detection, which can extract the shadow region in single-time SAR images. Then,
a three-step differentiation condition is proposed, which can distinguish false targets from real targets.
Simulated experimental results show that the proposed method can effectively extract the shadow
region in SAR images and accurately distinguishreal and false targets. Furthermore, the potential of
shadow in SAR image interpretation and electronic countermeasures is also demonstrated.

Keywords: synthetic aperture radar; false target identification; shadow feature; jamming detection

1. Introduction

As an active observation system that images objects by electronic waves, Synthetic
Aperture Radar (SAR) uses the synthetic aperture principle and pulse compression technol-
ogy for radar target detection [1,2]. SAR has become the primary technology in the field
of electronic countermeasures (ECM) due to its high operational capability and favorable
imaging characteristics of high resolution, all-day, and all-weather [3].

With respect to SAR deceptive jamming technology, by intercepting radar signals and
implementing a modulated retransmitted process, it can generate realistic false targets
and the corresponding backgrounds in SAR images [4]. Accordingly, it weakens the
imaging results and destroys the image features, which seriously restricts the ability of SAR
image interpretation, such as image segmentation, feature extraction, target detection, and
recognition [5,6].

SAR images have a rich set of classical features such as texture, scale, and shape
that describes both the global and local scattering characteristics of targets. From the
perspective of SAR image processing and anti-jamming, it is useful to distinguish false
targets from real ones using these features. Nevertheless, with the development of the
latest jamming technology, it can further generate false targets with higher resolution, finer
details, and even similar scattering characteristics compared to real targets. Consequently,
the differences between the jamming and real scenes have diminished significantly, the
image representation of false targets and real targets evaluated by classical features are
similar, and they cannot be accurately discriminated, which invalidates the effectiveness of
classical features in false target identification.

Several studies have been conducted on the detection of false targets in SAR images.
Feng et al. [7] used cross-track interferometric SAR to detect false targets. Wang et al. [8]
proposed an anti-deceptive jamming method for multistatic SAR to locate the deceptive
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jammer and eliminate false targets. Li et al. [9] detected false targets by multi-angle and
multi-time SAR image registration. Zhao et al. [10] proposed a jamming detection operator
in the SAR image domain to detect false targets. Nicholas et al. [11] introduced a feedback
training method for using a Bayesian convolutional neural network, capable of discrim-
inating between real and false targets in SAR target detection. Although these methods
have achieved varying degrees of effectiveness, there has been a neglect of the nature of the
target backscattering characteristics and insufficient extraction of the distinctive features of
real and false targets.

In view of the above-mentioned facts, it is urgent to explore deeper and more sophis-
ticated features for false target detection. According to the principle of SAR imaging, a
real target at a certain height on the ground will prevent the SAR from receiving echoes
from certain regions, generating a shadow around the real target [12]. Jamming signals
only contribute to additive noise and may not have the geographical conditions to produce
shadows, nor can it generate shadows by adjusting the amplitude around the jamming
area [13], which means that shadows have promising potential in identifying false targets.
As an intrinsic feature that reflects the target geometry, a shadow provides a robust image
representation of the observed target [14]. For example, Gao et al. [15] detect shadow
regions using a dual-threshold Otsu method, which allows fast localization of incomplete
targets. Papson et al. [16] use a hidden Markov model to detect shadow contours and
classify targets. Choi et al. [12] propose a parallel region feature network to efficiently detect
shadows. Zhang et al. [17] use a multi-resolution dense encoder and decoder network to
automatically extract shadows. Despite a large number of previous results [18–21], the use
of shadows for false target recognition tasks has not been investigated.

In summary, this paper focuses on detecting false targets in SAR images and proposes
a false target identification method based on shadows. On one hand, a shadow extraction
method based on a change detection technique is proposed, in which an image transfor-
mation and a histogram-based threshold selection strategy is involved, enabling the fast
extraction of shadow regions. On the other hand, a shadow-based false target detection
method is introduced. It uses a three-stage differentiation condition to robustly identify
false targets by fully considering the geometric relationship (i.e., direction, position, and
width) between targets and shadows.

Compared with the traditional methods, our proposed method adopts the image
inversion methodology and change detection operator to accurately extract shadow regions,
which can overcome the problem of loss of spatial information and distinguish the weak
scattering pixels from shadows. More importantly, the traditional methods identify the
false targets only based on the existence of shadows. Meanwhile in our work, a three-stage
differentiation condition is proposed by adequately considering the geometric relationship;
thus, the identification of false targets is more accurate and effective.

The main contributions of this paper can be summarized as follows:

1. By means of the methodology of change detection, a difference image is generated
by image translation manipulation to efficiently and effectively extract the shadow
region in the SAR image. The involved generation does not require the slaved image,
which enhances its applicability and flexibility.

2. In the process of identifying false targets, a hierarchical discrimination technique is
proposed for detecting false targets. This technique shows better sensitivity than
classical features, even the slight image disturbance, making it more effective in
eliminating background noise and highlighting the potential target within the scene.

3. This work adequately investigates the distribution of classical features on the real and
false targets, and further comparative analysis verifies the effectiveness of shadows
in terms of false target discrimination. In addition, the feasibility of incorporating
shadows into SAR image interpretation and ECM is demonstrated.
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2. Shadow Extraction

Before extracting the shadow, it is necessary to slice the regions of interest (ROI) so
that the outer contours and inner pixels of the targets and jamming can be displayed. Since
the sliced SAR image also contains a small amount of natural clutter in addition to the
target and jamming, the extraction of shadows in regions is closely related to the position,
direction, and shape of the target and clutter.

Generally, the Otsu or CFAR method [22,23] is widely used to detect SAR shadow
regions. However, the shadows of targets are usually blurred, which deteriorates the
detection effect. In traditional methods, they often identify each shadow pixel separately,
resulting in the loss of spatial information contained in neighboring pixels. Moreover, the
extracted shadow region may contain some non-shadow components with weak backscat-
tering (such as road, water, and bare soil). The change detection operator [24] has high
sensitivity to the high-intensity pixels, so it can detect the change information accurately.
Change detection is frequently used to detect changes in the target or scenes across different
periods. This enables the analysis of data discrepancies over various timeframes and loca-
tions. However, comparing distinct images across different periods is usually necessary for
change detection and it poses important challenges when working with single-time images.
To generate the difference image in the case of a single-time image, an image translation
strategy is applied to reasonably generate the reference and test images, thus proposing a
change detection method.

A slice SO containing the suspected shadow region is obtained from the SAR image
with a size of D× L. Thus, shadow regions can be highlighted by inverting SO, which is
devoted to SI

SI = 255− SO. (1)

The purpose of the image inversion is to enhance the white or gray details in the dark
regions of the SAR image. Assume that the region with a width size of ∆D around SI is
set as the isolation region, and its internal region is intercepted as the reference image SR,
whose dimension is (D− 2∆D)× (L− 2∆D). Subsequently, four test images STk (k = 1, 2,
3, 4) can be obtained by translating the reference image in four directions (i.e., upper right,
upper left, bottom right, bottom left). The above process is shown in Figure 1, and the size
of the test image is identical to reference images.
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Figure 1. Generation of the difference image. Figure 1. Generation of the difference image.

The flowchart of the proposed method, shown in Figure 2, can be divided into the
following four parts: difference images generating unit, difference result calculating unit,
shadow detection threshold calculating unit, and shadow regions extracting unit.
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Generally, change detection obtains the different information between the reference
and test images using a specific change detector. In this paper, the Likelihood Ratio Change
Detector (LRCD) [25] is used, which can detect changes with high accuracy and is sensitive
to changed information.

The LRCD η is calculated by

η(i, j) =

p=m
∑

p=−m

q=m
∑

q=−m
ST(i + p, j + q)

p=m
∑

p=−m

q=m
∑
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SR(i + p, j + q)

+
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∑
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Taking a sliding window with a size of M = 2m + 1 to define the surrounding neigh-
borhood of pixel(i, j), the difference image SD can be obtained by normalizing the LRCD

SD = round
(

η(i, j)− ηmin

ηmax − ηmin
× 255

)
, (3)

where round(·) denotes the rounding-off function.
Accordingly, the shadow detection threshold is calculated by analyzing the histogram

of SD, which contains a high-peak region and a low-peak region [25]. The high peak
region represents the invariant part, and the low peak region represents the changing part.
The gray value of the dividing point between the two regions can be regarded as the test
threshold for one of the test images. Assuming that the gray value corresponding to the
peak point is Tmax, the ratio curve of the histogram at two adjacent gray-level values is
computed by

R(i) =

{
N(i)

N(i+1) , N(i) > 0&N(i + 1) > 0
1 , else

, (4)

where N(i) is the number of pixels of each gray value in the range [Tmax, 255].
The dividing point can be selected as the first point satisfying R(i) < 1, which means

that the histogram starts to enter the low peak region from this point. Assume that the total
number of pixels whose values are larger than the dividing point in the SD is NT. For the
inverted image, let NO be the total number of pixels in the value range [T, 255]. The first
value satisfying NO > NT can be considered as the test threshold Tk of test images.

T = 255− 1
4

4

∑
k=1

Tk (5)

Finally, complete all test images to multiple test thresholds and arithmetic averages.
According to the final detection thresholds, the sliced images SOT are binarized, which is
given by

SOT(i, j) =
{

1 , SO(i, j) ≤ T
0 , SO(i, j) > T

. (6)

Moreover, morphological processing and area filtering are performed to finely detect
the shadow regions in the images.
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3. False Target Identification

For some scenes, a SAR image can be divided into three categories: targets, back-
grounds, and shadows. A target with certain height will prevent the region that is behind
the target and along the beam orientation from being illuminated by sufficient radiation.
Therefore, the region cannot generate enough backscatter and will appear as a shadow in
the SAR image, as shown in Figure 3.
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The main issue in traditional false target detection methods is extracting shadow re-
gions from the image and realizing the discrimination by determining whether the shadow
is present or not. However, the geometric relationship between targets and shadows should
be considered properly.

Although shadows result in the loss of scene information at the corresponding loca-
tion, they still have some characteristics that are helpful for SAR interpretation [26]. On
one hand, all shadows in SAR images are in the same direction as their corresponding
targets. That is to say, the targets and shadows have a certain angular relationship with
the beam direction [16]. On the other hand, theoretically, shadows should be close to their
corresponding targets. Due to the imaging mechanism or the structural characteristics of
the target itself, there may be a certain distance between the target and the shadow [27]. In
addition, the widths of targets and shadows are equal, but due to the detection algorithm,
the target may be divided into several small parts or several targets corresponding to a
large shadow region, but these width differences will be within a certain range.

By summarizing the relationship between targets and shadows, the characteristics of
shadow signatures are summarized, and a three-stage discrimination method is proposed,
which is described below.

(1) In a SAR image, shadows are generally located along the beam orientation and
they distribute at the same side as their corresponding targets. Therefore, the beam
orientation is necessary prior information to ascertain the shadow orientation.

The orientation relationship between the target and the shadow is shown in Figure 4.
Assuming that the coordinates of the target and shadow centroid are, respectively, Ct(xt, yt)
and Cs(xs, ys). The LOS (line of sight) is along the positive y-axis. When the radar beam
illuminates the target, the corresponding shadow appears on the other side of the target.
Therefore, it is anticipated that the vector direction −−→

CtCs
that links the centroids of the

shadow and the target will nearly match the beam direction −→
Oy

. Equation (7) states

that the detected shadow is expected to correspond to the real target if the cosine of the
angle between two vectors −−→

CtCs
and −→

Oy
falls within the determined threshold range

(−π/2, π/2), which means µ ≤ 1. As a result, the threshold µ is finally set as 1 in this
paper. According to the aforementioned characteristics [26], the first-stage identification
condition is proposed as:

cos
[

ang
(

⇀
CtCs,

⇀
Oy
)]
≤ µ. (7)
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(2) It is known that the shadow is generally adjacent to its corresponding target. However,
in some cases (such as the adoption of different imaging algorithms), there may be
some spatial distance between the shadow and the target. Shadow pixels are usually
distributed in a certain circle, whose origin point is the centroid of the target, and
the radius is the diameter of the target. Thereinto, the diameter of the target can be
obtained by measuring the diagonal length of the smallest outer rectangle [26]. Thus,
the second-stage identification condition is proposed as

dis(Ct, Cs) =

√
(xt − xs)

2 + (yt − ys)
2 ≤ Lt, (8)

where dis(·) represents the distance, and Lt is the target diameter.

(3) Theoretically, the shadow region should be equal to the width of its corresponding
target. The width is defined as the length of the longest line between the target edges,
whose direction is perpendicular to the radar beam direction. Based on previous
studies [10], it has been observed that the width of the shadow region is usually
greater than the half width of the target. Thus, the third-stage identification condition
is proposed as

Ws ≥
Wt

2
, (9)

where Ws is the width of shadow region, and Wt is the width of target.

According to the above discussion, if no shadow is detected in the sliced image or the
three-stage identification condition is not satisfied, the suspected target is identified as the
false target.

4. Experimental Results
4.1. Data Description

The experimental results reported here in this paper were tested with real and simu-
lated data. The measured real data are acquired from the Sandia Labs’ MiniSAR dataset in
Ku-band with a resolution of 0.5 m× 0.5 m. The imaging scene mainly comprises tanks and
missile launching vehicles on a sandy background. Aiming at the jamming background,
a 2-D convolution jamming pattern [28] is implemented to generate false targets. The
SAR simulation parameters are listed in Table 1. Before the implementation, the Gaussian
filtering and linear normalization is adopted to preprocess the SAR data. Notice that the
preprocessing may reduce the radiometric resolution of SAR images. Nevertheless, it has
no influence on the outcome since the focus of this work is target detection rather than
pixel detection.
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Table 1. Simulation parameters of deceptive jamming.

Parameter Value

Height 5 km
Carrier Frequency 16 GHz
Range Resolution 0.5 m

Bandwidth 265.8 GHz
Speed 30 m/s

Pulse Width 3 µs
Azimuth Resolution 0.5 m

Jamming Pattern 2-D convolution

The final simulated jammed SAR image is presented in Figure 5a. The interested
targets are outlined by blue rectangles, and there are two false targets (i.e., slices 1 and 4) as
a reference. It can be seen that the false targets formed by 2-D convolution jamming are
realistic. Thereinto, the false target (slice 1) is generated based on the template (slice 3),
which is a real vehicle target. Similarly, slice 4 is generated by employing the template
(slice 6).
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which is a real vehicle target. Similarly, slice 4 is generated by employing the template 
(slice 6). 
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(b) 

Figure 5. Simulated jammed SAR image: (a) original image interfered by deceptive jamming and the
image whose interested targets are outlined; (b) slices that contain suspicious targets.

Specifically, false targets are similar to real targets in terms of backscattering intensity,
imaging characteristics, geometry, and orientation. They are highly integrated with the
background environment. In addition, it is difficult to distinguish the real targets from the
false ones by visual interpretation. After morphological processing and area filtering, the
target slices are given in Figure 5b.

4.2. Statistical Analysis Based on Classical Features

In Figure 5, slice 1 and slice 4 contain false targets, while the other slices contain real
targets. To investigate the discrimination performance of classical features, we select slice 4
and slice 6 to perform the statistics analysis and quantitative evaluation.

The selected slices are subjected to target detection, slice masking, morphological
filtering, and calculation of the minimum outer rectangle. The procedures and results are
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shown in Figure 6, and it can be seen that the preprocessing results for the real and false
targets are similar, except for the slight discrepancy in the target boundary.
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(b) false targets.

After the pre-processing operations, the representative classical features of the true
and false targets were analyzed separately. These features mainly include statistical-based
and CFAR-based features, which characterize the target backscattering in terms of texture,
shape, scale, and distribution. The resulting feature values are shown in Table 2. The
main evaluation metrics are: (a) mean: a statistical measure of the average intensity of
the pixel points in the SAR image; (b) standard deviation: a statistical measure of the
uniformity of the intensity distribution of the pixel points in the SAR image; (c) weighted
rank fill ratio: a statistical measure of the ratio of the sum of the intensity values of the
brighter pixel points in the target region to the sum of the intensity values of all pixel points;
(d) mass characteristics: counts the maximum amount of target structure information in the
target region; (e) diameter characteristics: find the shortest diagonal length in the rectangle
containing the target in the image after the filtering process is completed; (f) maximum
CFAR characteristics: count the number of pixels whose intensity exceeds the maximum
intensity; (g) mean CFAR characteristics: count the number of pixels whose intensity is
greater than the mean; (h) CFAR bright characteristics: counts the ratio of the number of
pixels in the target area that exceed the threshold to the total number of pixels.

Table 2. Statistical analysis of the feature distribution of real and false targets.

Types of Features Real Targets False Targets

Texture Features

Mean 64.9469 64.6906
Standard Deviation 26.4676 25.0982

Standard Deviation Characteristic 2.5894 2.6651
Weighted Rank Fill Ratio Characteristics 0.0924 0.0996

Shape Features Mass Characteristics 175 169
Diameter Characteristics 26.0155 24.6383
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Table 2. Cont.

Types of Features Real Targets False Targets

Scale Features

Maximum CFAR Characteristics 248 241
Mean CFAR Characteristics 135.5397 130.4032

CFAR Bright Characteristics (100) 0.8492 0.7339
CFAR Bright Characteristics (150) 0.2937 0.2661
CFAR Bright Characteristics (200) 0.0794 0.0887

By comparing the relevant evaluation, it can be seen that the classical features of
the real and false targets are approximate. It is difficult to quantitatively separate the
differences. Therefore, it can be concluded that the identification of false targets using
traditional features may be ineffective.

4.3. Shadow Detection Results

As an example, Figure 7 presents the histograms of difference images derived from
the reference and the upper right test images for six target slices. It can be seen that the
histograms contain a high-peak region and low-peak region. The corresponding ratio
curves of the histogram are given in Figure 8. It is intuitive that when the difference
images’ pixels fall into a high-peak region, the neighborhood ratio satisfies R(i) > 1, and
the first point R(i) < 1 can be regarded as the dividing point, which is marked in Figure 8.
This observation is consistent with the above theoretical analysis. The detection threshold
corresponding to each slice is given in Table 3.
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Table 3. Detection threshold of the proposed method.

Slice Threshold

Slice 1 47
Slice 2 41.5
Slice 3 42.25
Slice 4 42.75
Slice 5 46.25
Slice 6 45.25
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Applying the proposed shadow detection method, the extracted shadows in each slice
are shown in Figure 9a. For comparisons, the shadow detection results derived from the
CFAR and dual-threshold Otsu methods are also presented in Figure 9b,c. It can be seen that
both CFAR and dual-threshold Otsu methods suffer the deficiencies of missed detections
and false alarms. In comparison, the proposed method is more accurate, reflecting that the
shadow contours are complete and clear-cut.
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4.4. False Target Identification

Based on the preliminary detected shadows, the final identification results using the
distinction conditions are presented in Figure 10. Thereinto, Figure 10a gives the three-stage
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detection results. Concerning targets 2, 3, 5, and 6, the geometry relationship between
the detected shadow and the target itself satisfies the distinction condition; thus, they are
recognized as real targets. In comparison, no shadow is located for target 1, while the
geometry relationship does not satisfy the condition for target 4. As a result, targets 1 and 4
are identified as false targets.
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Figure 10. Identification process of false targets: (a) target slices and their internal shadows; (b) image
of the identification result.

To further demonstrate the superiority, we validate the effectiveness of the proposed
method on other datasets through changing the background and the target templates, such
as bulldozers and trucks. The detection results are shown in Figure 11. It can be seen that
the method proposed in this paper is still effective and accurate. To verify the superiority,
the proposed method is compared with two commonly used methods (the CFAR and
Gray-Level Co-occurrence Matrix (GLCM)), and the quantitative evaluation is given in
Tables 4–6. We can see that the two comparison methods can only detect the target based
on the intensity information, so they lose effectiveness in false target identification.

Table 4. Quantitative detection results with dataset #1.

Method Real Targets False Targets Accuracy

Proposed 4 2 100%
CFAR 6 0 66.7%
GLCM 6 0 66.7%

Table 5. Quantitative detection with dataset #2.

Method Real Targets False Targets Accuracy

Proposed 3 1 100%
CFAR 4 0 75%
GLCM 4 0 75%
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Table 6. Quantitative detection with dataset #3.

Method Real Targets False Targets Accuracy

Proposed 3 2 100%
CFAR 5 0 60%
GLCM 5 0 60%

5. Conclusions

The SAR deceptive jamming technique has been widely applied in the field of radar
electronic countermeasure, and detecting jamming from real targets in SAR images has
a significant meaning in the field of military surveillance and reconnaissance. In this
paper, a SAR image false target identification method is proposed. To this end, a change
detection-based shadow extraction technique and a geometry identification condition is
involved. For the former, an image translation strategy and a histogram curve ratio-based
threshold selection technique is designed to extract the shadow of candidate targets. For
the latter, a three-stage identification method based on a geometric relationship between
targets and shadows is proposed to identify false targets. Quantitative validations and
comparisons of real and simulated data not only prove that the proposed method is capable
of discriminating jamming from real targets, but also demonstrate that the shadow deserves
to be further exploited for target recognition. Future works will focus on how to identify
false targets in scenes with weak backscattering intensity and further utilizing the complex
data information of SAR images on more datasets for additional targets and scenarios.
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