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Abstract: Hyperspectral remote sensing images, with their continuous, narrow, and rich spectra, hold
distinct significance in the precise classification of land cover. Deep convolutional neural networks
(CNNs) and their variants are increasingly utilized for hyperspectral classification, but solving the
conflict between the number of model parameters, performance, and accuracy has become a pressing
challenge. To alleviate this problem, we propose MADANet, a lightweight hyperspectral image
classification network that combines multiscale feature aggregation and a dual attention mechanism.
By employing depthwise separable convolution, multiscale features can be extracted and aggregated
to capture local contextual information effectively. Simultaneously, the dual attention mechanism
harnesses both channel and spatial dimensions to acquire comprehensive global semantic information.
Ultimately, techniques such as global average pooling (GAP) and full connection (FC) are employed to
integrate local contextual information with global semantic knowledge, thereby enabling the accurate
classification of hyperspectral pixels. The results from the experiments conducted on representative
hyperspectral images demonstrate that MADANet not only attains the highest classification accuracy
but also maintains significantly fewer parameters compared to the other methods. Experimental
results show that our proposed framework significantly reduces the number of model parameters
while still achieving the highest classification accuracy. As an example, the model has only 0.16 M
model parameters in the Indian Pines (IP) dataset, but the overall accuracy is as high as 98.34%.
Similarly, the framework achieves an overall accuracy of 99.13%, 99.17%, and 99.08% on the University
of Pavia (PU), Salinas (SA), and WHU Hi LongKou (LongKou) datasets, respectively. This result
exceeds the classification accuracy of existing state-of-the-art frameworks under the same conditions.

Keywords: hyperspectral image classification; multiscale feature aggregation; dual attention mechanism

1. Introduction

Hyperspectral technology, a very important branch of remote sensing technology,
emerged in the 1980s and brought remote sensing technology into a new stage of devel-
opment. Currently, hyperspectral technology is widely used in geological exploration,
precision agriculture, environmental monitoring, oceanography, and other fields [1–5]. In
contrast to natural images, hyperspectral images (HSIs) encompass numerous continuous
spectral bands with high spectral resolution within a single scene, thereby affording a
wealth of spectral and spatial information pertaining to ground objects. However, due to
problems such as dimensional disasters and mixed pixels, hyperspectral image classification
is challenging [6–9].

The rapid development of deep learning has provided powerful algorithms for solving
these tasks [10]. Ever since AlexNet [11] secured victory in the 2012 ImageNet challenge,

Remote Sens. 2023, 15, 5222. https://doi.org/10.3390/rs15215222 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15215222
https://doi.org/10.3390/rs15215222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0005-6546-7693
https://doi.org/10.3390/rs15215222
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15215222?type=check_update&version=1


Remote Sens. 2023, 15, 5222 2 of 17

convolutional neural networks (CNNs) have garnered considerable attention. In subse-
quent years, the field of image classification witnessed the emergence of several classic
CNN models, notably GoogleNet, VGGNet, ResNet, and DenseNet [12–15], and many
researchers have also conducted studies on hyperspectral image classification based on
these models [16–24]. However, to enhance accuracy, most of these models incorporate an
extensive number of hidden layers and training parameters, which limits their suitability
for deployment in resource-constrained mobile and embedded applications, particularly
on satellite and airborne platforms [25]. In recent years, many academic researchers have
shifted their focus to building lightweight and efficient CNN for applications and implemen-
tations in mobile and embedded devices, such as MobileNet [26–28] and ShuffleNet [29,30],
due to limitations in computing power, memory, power consumption, and parameter size.
Compared to existing research, light CNN sacrifices some model accuracy to reduce the
consumption of limited memory and computational resources. Therefore, the challenge of
maintaining high accuracy with fewer parameters has become an urgent issue [31]. Multi-
scale feature extraction provides an effective solution to retain more relevant information
within a limited number of parameters. Numerous experiments have demonstrated that
multiscale features have a significant positive impact on classification performance [32–36].

Attention mechanisms have demonstrated substantial promise in enhancing the per-
formance of CNNs by effectively suppressing redundant information within feature maps
and extracting meaningful features. Consequently, attention mechanisms have been widely
adopted in contemporary deep CNN architectures [37–41]. The SE block [37] is an atten-
tion mechanism that effectively enhances accuracy by modeling the correlation between
feature maps and reinforcing the important feature maps. CBAM [38] improves the SE
block by introducing two different pooling operations, GAP and GMP, and adds a spa-
tial attention module to enhance information interaction in the space. This provides an
effective method for extracting and utilizing spatial and spectral features for hyperspectral
image classification but also presents new challenges in terms of computational resources
and data requirements. The nonlocal (NL) block efficiently captures long-range feature
dependencies by modeling the global context through the self-attention mechanism [39].
The dual attention mechanism proposed by DANet [40] applies the idea of NL to both
the spatial and channel domains, using image pixels and feature maps as query state-
ments to model the context to improve the global feature representation capability of the
network. The superiority of DANet to model context has been demonstrated in several
other works [42,43].

This paper introduces a lightweight hyperspectral image classification method founded
on multiscale feature aggregation and a dual attention mechanism. First, two multiscale
aggregation units (MA units) based on multiscale products were proposed to effectively
combine local spectrum and spatial features at different scales to solve the “adjacent pixel
effect” issue in hyperspectral data. Specifically, the MA units use cross-scale convolu-
tion kernels to extract multiscale features, which are then nonlinearly fused through the
Hadamard product. Second, dual attention units (DA units) were introduced to capture
global dependencies in both spectral and spatial dimensions, aiming to obtain feature
representations with lower intra-class divergence. Finally, the feature maps produced by
the MA units and the DA units are connected to create a multiscale spatial-spectral feature
map, which is then classified using a Softmax classifier.

The principal contributions of this study are delineated as follows:

(1) A lightweight hyperspectral image classification method is proposed based on multi-
scale feature aggregation and a dual attention mechanism, which can achieve good
performance quickly with low computational consumption.

(2) We introduce an applicable unit: the multiscale aggregation unit (MA unit). The MA
unit first captures multiscale spatial context information through multilayer deep
convolution and then performs nonlinear fusion using the Hadamard product to cope
with the “neighboring pixel effect” in hyperspectral images. This unit provides new
perspectives and methods for hyperspectral image feature extraction.
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(3) To assess the generalization and advantages of the proposed method, experiments
were conducted across various scenarios encompassing three agricultural contexts and
one urban setting. The experimental results consistently illustrate that our method
outperforms other state-of-the-art approaches in all tested scenarios.

2. Related Work
2.1. ShuffleNet

ShuffleNet is an efficient CNN model proposed by KuangShi Technology. ShuffleNet
V1 [29] uses a 1 × 1 group convolution to reduce the computational complexity and num-
ber of parameters. To overcome the drawbacks brought about by group convolutions,
ShuffleNet V1 introduced a novel channel shuffle operation to help channel information
exchange. ShuffleNet V2 [30], an evolution of ShuffleNet V1, proficiently mitigates memory
access costs by maintaining a consistent number of input and output channels within
the convolutional layer. Furthermore, during module construction, it employs a channel-
splitting method to curtail the number of convolutional channels, resulting in a concurrent
reduction in both computational complexity and parameter count. Compared with Shuf-
fleNet V1, ShuffleNet V2 is faster and more accurate on the same computational budget.
The structure of the ShuffleNet V2 basic block is shown in Figure 1.
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2.2. Attention Mechanism

In 2019, Jun Fu’s team introduced DANet [40], a dual attention mechanism that
adaptively captures feature dependencies in both spatial and channel dimensions, thereby
enhancing the network’s global feature representation. Position attention provides a
similarity matrix by computing the relationship between each pixel and all other pixels and
then multiplies this similarity matrix by the original matrix to update the pixels at each
location in the original feature map. Channel attention performs a similar transformation to
update each channel. The outputs of these two attention modules are combined to further
enhance the feature representation. These attention modules are shown in Figure 2.
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3. Methodology
3.1. Overall Architecture

Figure 3 depicts a schematic representation of the MADANet method. We take the
Indian Pines dataset as an example to illustrate the process in detail. First, PCA is applied
to reduce the spectral dimensions and suppress the band noise in the original HSI. Second,
this HSI, after dimensionality reduction, is segmented into 3D image cubes centered around
labeled pixels. Third, a convolution operation and a maximum pooling operation, with a
size of 3 × 3, are applied successively to each 3D image cube. Afterward, the 3D cubes are
transported to two parallel branches, namely, the MA and DA branches. To retain more
relevant information at a limited depth, we use hierarchical layers composed of three MA
units in the bottom MA branch. The DA unit in the top DA branch is used to improve
the global feature representation capability of the network. Consequently, we will obtain
discriminative feature maps for multiple classes. Following the aforementioned operations,
these feature maps are then fed into the FFC module to derive the HSI classification result.
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3.2. MA Unit

By design, the MA unit pursues a strong feature extraction ability and is extremely
lightweight. We use two types of feature aggregation units, including the basic unit (shown
in Figure 4a) and the spatial downsampling unit (shown in Figure 4b). Multiple depth
convolutions with different convolution kernel sizes (3 × 3, 5 × 5, 7 × 7) are used in the
residual branch of the basic unit to capture multiscale spatial contextual information, and
these multiscale features are subsequently fused by the Hadamard product. Additionally,
batch normalization (BN) and ReLU activation are introduced to each convolutional layer
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to alleviate the gradient disappearance problem. In the spatial downsampling unit, a
3 × 3 depthwise convolution of step 2 and a 1 × 1 convolution are added to the shortcut
branch to ensure that the output size of the feature maps of both branches is the same. The
output features of the two branches are merged using the Concat operation, followed by
performing the Channel Shuffle operation to help with communicating information.
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3.3. Feature Fusion and Classification

The proposed feature fusion and classification module is shown in Figure 5. The
obtained global and local features are concatenated and then fused by 1 × 1 convolution
and batch normalization. The GAP operation is employed to condense spatial information,
and the FC layer is utilized to reduce the dimensionality of the output channels to align
with the number of surface categories. The Softmax function accepts the output of the
FC layer and generates the classification probabilities, and finally, the predicted class is
obtained by the Argmax function.
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4. Results
4.1. Data Description

To assess the classification performance of MADANet, we utilize four HSI datasets:
the Indian Pines, University of Pavia, Salinas, and WHU-Hi-LongKou datasets [44,45].

Indian Pines dataset: The Indian Pines dataset stands as the inaugural set of hyperspec-
tral image classification test data. It was generated in 1992 by the airborne visible/infrared
imaging spectrometer (AVIRIS) by imaging a section of Indian Pines in Indiana, USA. Sub-
sequently, this dataset was resized to 145 × 145 for the specific purpose of hyperspectral
image classification testing. It encompasses 220 continuous spectral bands, spanning the
electromagnetic spectrum from 0.4 to 2.5 µm. The false color composite image and the
ground truth are shown in Figure 6.
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Figure 6. Indian Pines dataset. (a) False color composite and (b) ground truth.

University of Pavia dataset: The University of Pavia dataset, representing Pavia in
northern Italy, consists of an image with dimensions of 610 × 340 pixels and a spatial
resolution of 1.3 m. Before HSI classification, a conventional preprocessing method was
applied, including the removal of 12 noisy channels. The false color composite image and
the ground truth are shown in Figure 7.
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Salinas dataset: This dataset boasts an impressive 3.7 m spatial resolution and com-
prises 224 spectral bands, covering an area of 512 × 217 pixels. Prior to HSI classification,
standard preprocessing techniques were applied, including the removal of 20 channels
affected by water absorption bands. The images encompass 16 distinct land cover cate-
gories, such as vegetables, bare soil, and vineyards. The false color composite image and
the ground truth are shown in Figure 8.
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WHU-Hi-LongKou dataset: The WHU-Hi-LongKou dataset is a subset of the WHU-Hi
dataset, meticulously captured and compiled by the RSIDEA research team at Wuhan Uni-
versity within the region of Longkou in Hubei Province, China. This dataset is characterized
by a spatial resolution of approximately 0.463 m, incorporating a total of 270 spectral bands
and encompassing an area spanning 550× 400 pixels. The imagery portrays an agricultural
setting featuring six distinct crop types. The false color composite image and the ground
truth are shown in Figure 9.
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4.2. Experimental Design

We used three metrics to compare the classification results with the actual conditions
in order to evaluate the performance of the proposed method. The overall accuracy (OA)
was used to evaluate the proportion of correctly classified pixels to the total test pixels,
providing an overall performance overview. The average accuracy (AA) was used to
calculate the accuracy of each category. In addition, these accuracy values were averaged to
reflect the performance differences between different categories more comprehensively. The
Kappa coefficient was used to determine the consistency between the model’s predictions
and the actual classification results. Furthermore, the evaluation took into account the
computing resources, including the processing time of the Central Processing Unit (CPU),
the computation time used by the Graphics Processing Unit (GPU), and the total number
of model parameters used in the method.

Considering the large differences in sample size between the four datasets, we used a
different proportion of training samples for each dataset. For the Indian Pines dataset, a
partitioning strategy was employed wherein 10% of the labeled samples were designated
for the training subset, an additional 10% were reserved for validation purposes, and the
remaining 80% were utilized for testing. Conversely, for the Salinas and Pavia University
datasets, a distinct distribution scheme was implemented, allocating 5% of the labeled
samples for training, another 5% for validation, and a substantial 90% for the testing phase.
For the WHU-Hi-LongKou dataset, 2% of the labeled samples in each category were used
for training and validation, and the remaining samples were used for testing. In the training
phase of the network, the Adam optimizer was used to update the parameters, where
the initial learning rate was set to 0.0001, the batch size was set to 32, and the number of
training epochs was set to 200.

All algorithms involved in this study were run in PyCharm Professional 2023.2 based
on the PyTorch 1.12.1 deep learning framework. The CPU processor was an 12th Gen
Intel®Core™ i5-12500 CPU @ 3.00 GHz, and an NVIDIA GeForce RTX 2080Ti GPU graphics
card was used.

To validate MADANet’s effectiveness, we compared it with six classification methods:
two benchmark machine learning algorithms (SVM [46] and RF [47]) and four deep-learning
approaches (DFFN [48], HybridSN [49], A2MFE [33], and LANet [50]).
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DFFN is a 2D CNN network that fuses outputs from different hierarchical layers
using a residual structure. HybridSN enhances its ability to focus on relevant features by
incorporating an attention mechanism. A2MFE applies adaptive attention mechanisms at
multiple scales to capture local and global contextual information effectively in hyperspec-
tral images. Lastly, LANet leverages local attributes of hyperspectral images, offering a
unique approach to feature extraction.

These models extract HSI features from diverse angles, representing the latest advance-
ments in HSI classification. To ensure fairness, all methods used the same parameters from
their original works. Deep learning methods shared spatial patch size and dimensions,
while SVM and RF utilized serialized data.

4.3. Experimental Results
4.3.1. Experimental Results on the Indian Pines Dataset

The inaugural experiment was conducted utilizing the Indian Pines dataset. Table 1
shows the overall accuracy (OA), average accuracy (AA), and Kappa coefficient obtained by
the different methods, as well as the classification accuracy of each class. From Table 1, we
can see that compared with the traditional SVM and RF methods, the deep learning methods
show better classification performance. However, both DFFN and LANet considered only
the spectral–spatial features on a single scale, resulting in poor performance. MADANet
combines global features with local features on multiple scales, making it significantly
more effective for small-scale oats and past-mowed grass. In terms of OA, the MADANet
proposed in this paper outperforms the other methods with 98.34% classification accuracy.
In addition, the visualization results of all methods are presented in Figure 10, where the
proposed MADANet shows satisfactory performance. The SVM and RF methods did not
consider spatial information, so these classification maps contained considerable noise.
DFFN, HybridSN, A2MFE, and LANet showed more misclassifications.

Table 1. Comparison of the different methods in terms of class accuracy, OA, AA, and Kappa
coefficient for the Indian Pines dataset.

Class SVM RF DFFN HybridSN A2MFE LANet MADANet

Alfalfa 83.16 77.15 92.76 98.46 97.98 98.37 98.37
Corn-N 66.73 70.24 89.36 96.40 95.32 91.64 96.98
Corn-M 76.25 71.16 93.31 96.64 94.57 93.25 96.32

Corn 80.64 76.69 94.47 95.05 91.34 90.51 95.57
Grass-P 85.89 84.83 97.54 97.63 95.21 95.26 96.59
Grass-T 92.41 89.27 98.11 98.54 94.72 98.17 98.65

Grass-P-M 52.32 39.41 99.06 99.21 92.87 94.38 99.25
Hay-windrowed 59.24 63.17 99.70 98.24 97.31 98.21 98.24

Oats 62.24 60.17 96.02 96.72 96.35 96.93 97.44
Soybean-notill 82.73 74.21 95.85 93.28 92.41 92.74 98.38

Soybean-mintill 84.47 80.41 95.32 94.51 97.51 96.36 99.43
Soybean-clean 66.11 64.04 84.78 99.29 97.45 93.14 97.65

Wheat 89.68 88.26 98.77 98.72 96.89 98.59 99.19
Woods 84.87 86.52 95.36 98.70 95.76 98.71 98.12

Buildings-G-T-D 82.59 81.78 97.23 98.56 98.61 97.47 97.32
Stone-S-T 86.57 84.43 92.03 97.21 96.25 96.44 98.26

OA (%) 84.12 77.88 96.95 97.35 97.78 95.06 98.34
AA (%) 82.76 76.14 95.65 97.92 97.24 96.23 98.12
Kappa 0.8234 0.7606 0.9523 0.9613 0.9632 0.9542 0.9703

The best results for each indicator are highlighted in bold.
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4.3.2. Experimental Results on the University of Pavia Dataset

The second experiment was performed on the University of Pavia dataset. Table 2
and Figure 11 show the classification accuracies and visualization results for all methods,
respectively. The spectral-based SVM and RF classification methods contain significant
noise. However, the classification maps produced by HybridSN and the other deep learning
methods gave good visual results. In addition, we observed that MADANet more accurately
classified linear geo-objects, such as asphalt, metal sheets, and bricks, with 99.04%, 99.42%,
and 99.37% classification accuracy, respectively.

4.3.3. Experimental Results on the Salinas Dataset

The third experiment was performed on the Salinas dataset. The classification accura-
cies and visualization results for all methods are shown in Table 3 and Figure 12, respectively.
MADANet provided better classification results than other methods by capturing and fus-
ing multiscale features with an overall accuracy of 99.17%. In the Salinas dataset, there
are two classes with strong spectral similarity, namely, vineyard untrained and vineyard
trellis. MADANet achieved 99.34% and 98.49% classification accuracy for these two classes,
respectively, which were much higher than the accuracies of the comparison methods,
which indicates that our method can extract discriminative spectral–spatial features.

Table 2. Comparison of the different methods in terms of class accuracy, OA, AA, and Kappa
coefficient for The University of Pavia image.

Class SVM RF DFFN HybridSN A2MFE LANet MADANet

Asphalt 94.96 94.83 95.30 98.90 98.89 94.70 99.04
Meadows 88.14 90.28 91.42 99.21 98.72 98.89 99.32

Gravel 24.62 88.54 96.96 97.27 96.57 97.42 98.24
Trees 92.63 92.86 93.81 93.64 97.32 93.07 100.00

Metal Sheets 91.74 91.79 98.63 99.60 99.71 98.43 99.42
Bare Soil 42.68 67.39 89.25 98.89 97.56 95.56 99.55
Bitumen 23.12 63.56 96.53 85.33 96.76 97.64 97.56

Bricks 77.91 81.27 91.35 98.21 94.66 93.51 99.37
Shadows 66.25 75.79 96.69 95.27 96.45 90.37 100.00

OA (%) 80.43 87.85 94.31 98.06 98.43 95.92 99.13
AA (%) 79.63 86.23 93.88 96.49 97.21 94.14 98.93
Kappa 0.7821 0.8612 0.9472 0.9642 0.9646 0.9456 0.9812

The best results for each indicator are highlighted in bold.
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(a) Ground truth, (b) SVM, (c) RF, (d) DFFN, (e) HybridSN, (f) A2MFE, (g) LANet, and (h) MADANet.

Table 3. Comparison of the different methods in terms of class accuracy, OA, AA, and Kappa
coefficient for the Salinas image.

Class SVM RF DFFN HybridSN A2MFE LANet MADANet

weeds_1 98.47 97.24 98.23 99.30 99.46 98.32 99.64
weeds_2 97.15 98.37 98.43 99.96 97.28 98.64 98.95
Fallow 92.31 87.36 95.32 98.16 97.99 95.09 98.90

Fallow-P 92.27 88.42 95.27 98.05 95.67 98.01 97.58
Fallow-S 96.11 97.13 96.23 98.42 98.85 98.73 99.02
Stubble 92.12 92.22 94.58 98.67 98.31 98.86 98.01
Celery 89.28 89.53 96.17 98.96 95.76 97.04 99.34
Grapes 90.84 90.78 91.13 92.70 97.82 96.49 97.77

Soil 77.56 62.26 97.65 98.53 97.56 93.11 98.23
Corn 96.45 93.65 93.61 95.44 95.23 94.27 95.91

Lettuce_4wk 76.16 79.67 93.78 98.08 97.45 97.19 98.86
Lettuce_5wk 87.02 92.34 91.98 99.33 98.34 98.42 99.23
Lettuce_6wk 85.16 91.36 95.12 99.02 99.21 98.58 100.00
Lettuce_7wk 82.46 85.69 90.97 98.21 98.12 98.07 99.34
Vineyard_U 72.39 68.22 87.71 92.29 94.55 92.46 98.49
Vineyard_T 89.43 88.76 91.59 80.43 93.23 90.11 98.36

OA (%) 87.53 90.45 95.69 97.05 98.56 96.67 99.17
AA (%) 88.92 91.23 96.72 97.52 98.72 97.12 99.12
Kappa 0.8689 0.8916 0.9536 0.9672 0.9735 0.9639 0.9834

The best results for each indicator are highlighted in bold.
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4.3.4. Experimental Results on the WHU-Hi-LongKou Dataset

The fourth experiment was performed on the WHU-Hi-LongKou dataset. The clas-
sification accuracies and visualization results of all methods are shown in Table 4 and
Figure 13, respectively. In Table 4, MADANet achieved an OA of 99.08%, showing a signifi-
cant improvement in classification accuracy compared to SVM, RF, and LANet. A2MFE
and MADANet showed better performance in two categories, roads and houses and mixed
weed, as shown in the two longitudinal striped areas in Figure 13. MADANet achieved a
much higher accuracy in the sesame category than the other models.

Table 4. Comparison of the different methods in terms of class accuracy, OA, AA, and Kappa
coefficient for The WHU-Hi-LongKou dataset.

Class SVM RF DFFN HybridSN A2MFE LANet MADANet

Corn 93.56 92.85 99.74 99.23 99.72 98.47 99.89
Cotton 83.21 82.98 99.09 73.67 98.56 88.46 98.72
Sesame 81.52 81.30 89.25 56.72 92.34 81.13 98.83

Broad-leaf-S 76.39 74.21 98.03 95.64 98.87 96.39 99.56
Narrow-leaf-S 63.33 60.75 75.57 56.49 98.97 85.48 99.26

Rice 91.24 89.72 98.10 92.54 99.37 88.52 99.13
Water 89.76 96.61 95.80 98.91 99.53 99.76 99.64

Roads and houses 75.63 76.82 75.98 82.23 96.69 82.95 96.34
Mixed weed 76.63 72.32 71.56 92.51 94.67 81.53 94.23

OA (%) 91.05 88.72 97.80 96.08 98.46 95.77 99.08
AA (%) 88.79 86.56 92.92 84.85 97.96 89.19 98.72
Kappa 0.8972 0.8725 0.9711 0.9413 0.9832 0.9446 0.9894

The best results for each indicator are highlighted in bold.
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4.3.5. Parameter Analysis

To evaluate the effect of the patch size on the performance of MADANet, we set the
image patch size to 15, 19, 23, 27, 31, and 35. As illustrated in Figure 14, a discernible
upward trend in OA is evident as the patch size increases from 15 to 27. When the patch
size is 27, the OA reaches a peak. Henceforth, the patch size is established at 27 within the
context of this research.
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4.3.6. Ablation Experiments

To ascertain the effectiveness of the proposed DA unit and MA unit, four specific
ablation experiments were designed. As shown in Table 5, the DA unit improved the OA
by 1.97–3.23%, and the MA unit improved the OA by 1.43–2.88% on the four datasets.
After combining the DA unit and the MA unit, the proposed MADANet improved the
OA by 3.45–4.75% compared to the baseline. The results of the ablation experiments
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validate the effectiveness and complementarity of the two proposed modules in the HSI
classification task.

Table 5. Effect of DA unit and MA unit on four HSI datasets.

Datasets DA Unit MA Unit OA (%) AA (%) Kappa

Indian Pines

93.59 94.37 0.9312√
96.74 96.88 0.9577√
95.33 95.50 0.9498√ √
98.34 98.12 0.9703

University of Pavia

95.45 95.12 0.9429√
97.42 96.53 0.9587√
98.31 97.97 0.9724√ √
99.13 98.93 0.9812

Salinas

95.72 96.21 0.9531√
97.77 97.84 0.9706√
97.15 97.16 0.9655√ √
99.17 99.12 0.9834

WHU-Hi-LongKou

95.41 96.67 0.9501√
98.64 98.55 0.9827√
97.45 97.32 0.9745√ √
99.08 98.72 0.9894

X indicates that the module is included; the best results for each indicator are highlighted in bold.

4.3.7. Evaluation of Model Complexity

We conducted a comparative analysis of various methods on the Indian Pines dataset,
with a specific focus on the number of parameters and test time. As indicated in Table 6, the
deep learning-based methods require more test time than SVM and RF. HybridSN, which
involves 3D convolution, has the most parameters and the longest test time. Contextual
aggregation-based LANet also requires more computations and test time. The test times
for the models A2MFE, DFFN, and MADANet are relatively short, but the number of
parameters for A2MFE is more than twice that of the other two models. MADANet is
slightly inferior to DFFN in terms of the number of parameters and test time, but its
classification accuracy is much higher.

Table 6. Test time and parameters of different methods.

Method Test Time—CPU (s) Test Time—GPU (s) Parameters (M)

SVM 1.59 1.44 -
RF 0.24 0.21 -

DFFN 11.05 2.34 0.14
HybridSN 150.18 4.93 12.59

A2MFE 14.23 2.78 0.35
LANet 109.23 4.46 2.05

MADANet 12.02 2.52 0.16

5. Discussion

In this paper, we design a simple and efficient model for the fine classification of
hyperspectral images. The main idea is to find features that are visible in multiple receptive
fields. To achieve this, our model uses Hadamard products to aggregate multiscale features.
The experimental results demonstrate that this design not only enhances the classification
accuracy but also significantly reduces the inference time. Furthermore, ablation experi-
ments show that the DA unit, which combines position attention and channel attention,
complements the MA units.

Pixels should not be sensitive to their positions in classification tasks (for example,
whether maize appears in the upper left or lower right corner, it should be recognized
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as maize). However, relying solely on spectral information for hyperspectral classifica-
tion is quite challenging in hyperspectral tasks due to the presence of “the same object
with different spectrums” and “different objects with the same spectrum” phenomena
in hyperspectral images. Under such circumstances, pixels must remain sensitive to the
spatial location of features to incorporate spatial context information for achieving higher
accuracy in hyperspectral image classification. In our DA unit, we used spectrum attention
to extract spectral information that is more important for category labels. In addition, we
used spatial attention in the DA unit and multiscale attention in the MA unit to extract
pixel-rich contextual features. Specifically, we can extract and merge multiscale features
using our methods, allowing each pixel to obtain rich contextual information from its
neighboring regions. In the meantime, we introduced the Hadamard product in the MA
unit for nonlinear feature fusion, enhancing the model’s ability to represent surface features
and thus enhancing the accuracy of hyperspectral image classification tasks with a certain
number of model parameters.

However, our proposed model also has some shortcomings. For example, the ground
object classes in the remote sensing images are prespecified, and it is likely that those
classes not seen in the training phase will be classified into some known class during
inference. In addition, the classification accuracy of certain ground object classes that are
spectrally similar in noisy images, such as corn, corn-notill, and corn-mintill, needs to be
further improved.

In recent years, pretraining steps and large models have become popular. Now, com-
bining the world knowledge embedded in large models to improve the inference of deep
learning models on unseen classes is the next important research direction. Furthermore,
if a deep learning model can both predict what class a sample belongs to and actively
explain how it made this prediction, it will be easier to determine why the model makes
mistakes, and thus, the robustness and generalization of the deep learning model can be
further improved.

6. Conclusions

In this paper, a lightweight hyperspectral image classification model using multiscale
feature aggregation and a dual attention mechanism is proposed. The MA unit concatenates
multiscale spectral and spatial features through the Hadamard product to address the
hyperspectral neighborhood pixel effect. The DA unit can capture contextual features
to compensate for the lack of a convolutional field of view. Experiments on three crop
scenes and one urban scene show that the method achieves good performance with low
computational consumption, outperforming the comparison methods.
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