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Abstract: Specific emitter identification (SEI) is a professional technology to recognize different
emitters by measuring the unique features of received signals. It has been widely used in both civilian
and military fields. Recently, many SEI methods based on deep learning have been proposed, most
of which assume that the training set and testing set have the same data distribution. However, in
reality, the testing set is generally used later than the training set and lacks labels. The long time span
may change the signal transmission environment and fingerprint features. These changes result in
considerable differences in data distribution between the training and testing sets, thereby affecting
the recognition and prediction abilities of the model. Therefore, the existing works cannot achieve
satisfactory results for a long time span SEI. To address this challenge and obtain stable fingerprints,
we transform the long time span SEI problem into a domain adaptive problem and propose an
unsupervised domain adaptive method called LTS-SEI. Noteworthily, LTS-SEI uses a multilayer
convolutional feature extractor to learn feature knowledge and confronts a domain discriminator to
generate domain-invariant shallow fingerprints. The classifier of LTS-SEI applies feature matching
to source domain samples and target domain samples to achieve the domain alignment of deep
fingerprints. The classifier further reduces the intraclass diversity of deep features to alleviate the
misclassification problem of edge samples in the target domain. To confirm the effectiveness and
reliability of LTS-SEI, we collect multiple sets of real satellite navigation signals using two antennas
with 13 m- and 40 m-large apertures, respectively, and construct two available datasets. Numerous
experiments demonstrate that LTS–SEI can considerably increase the recognition accuracy of the long
time span SEI and is superior to the other existing methods.

Keywords: specific emitter identification; long time span; unsupervised domain adaptation; source
domain; target domain; satellite navigation signal

1. Introduction

Specific emitter identification (SEI) refers to the process of identifying different emitters
by analyzing the unique features of received radio signals [1]. In recent years, SEI has
been widely used in both civilian and military fields. In cognitive radio systems, SEI can
be used to verify the identity of primary users in a bid to prevent secondary users from
occupying the licensed portion of the spectrum for a long time or to prevent disguisers
from maliciously accessing the available spectrum [2]. In real combat environments, SEI
can be used to identify enemies and friends, recognize interference sources, and provide
battlefield situational awareness information [3]. Therefore, developing an advanced SEI
technology is beneficial for us to further monitor and manage the interested targets.

For space-specific emitters, radio-frequency fingerprints (RFFs) can be extracted from
their downlink signals and transmitted to the ground in a bid to achieve SEI. These RFFs
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originate from the nonlinear distortion of modulated signals caused by the influence of
high-power amplifiers carried by satellite transponders [4]. RFFs are unique and cannot
be replicated due to the inability of the modern manufacturing processes to accurately
match two power amplifiers [5]. RFFs can usually be obtained through three methods.
The first method is to directly extract RFFs from the modulated signal. Refs. [6,7] used
I/Q amplitude and phase imbalance as an example to study the accurate identification
problem of different transmitters. Ref. [8] achieved physical layer hardware authentication
by extracting I/Q constellation impairments. Ref. [9] proposed a novel method for the
blind estimation of carrier frequency offset (CFO) in MPSK receivers, and CFO was used as
an RFF to identify specific emitters. The second method is to obtain RFFs by performing
various transformations on the modulated signal. Ref. [10] considered the SEI problem in
both single-hop and relaying scenarios, as well as three RFF extraction algorithms based on
the Hilbert spectrum were proposed. Ref. [11] studied an SEI method based on the varia-
tional mode decomposition and spectral features (VMD-SF). VMD decomposes the received
signal simultaneously into various temporal and spectral modes. Different spectral features
were extracted and achieved satisfactory results in SEI. Ref. [12] subjected the received
signals to time-varying filtered empirical mode decomposition (tvf-EMD). Thereafter, the
amplitude-frequency aggregation characteristics of the three-dimensional Hilbert spec-
trum projection and the bispectrum diagonal slice of the obtained intrinsic mode functions
were used as the first and second features of SEI, respectively. Ref. [13] proposed a novel
nonlinear dynamics approach based on multi-dimension approximate entropy (MApEn)
for SEI. The RFFs extracted via this method could also achieve satisfactory results when
using the simplest K-nearest neighbors classifier. Ref. [14] developed an SEI algorithm via
joint wavelet packet analysis. The algorithm decomposes the signal via wavelet packet
decomposition and extracts features of singular value center of gravity, instantaneous
frequency distribution, and information demission. A support vector machine based on a
voting mechanism was used to identify different emitters. However, both direct extraction
and domain transformation require a careful design of RFFs and classifiers, which consid-
erably increases the complexity of the task [15]. Additionally, the RFFs extracted using the
above-mentioned two methods are susceptible to noise, which considerably fluctuates the
recognition accuracy [16]. The third method is to use intelligent recognition technology to
automatically extract RFFs from the received signal and complete end-to-end classification.
Deep learning (DL) can compensate for the problems of the first two methods. In recent
years, with the mature application of DL in fields such as computer vision and natural
language processing, SEI methods based on DL have also been proposed one after another.
Many research works showed that DL-based SEI performs considerably better than tradi-
tional methods [17]. Ref. [18] used the same inception-residual neural network structure
for large-scale real-world ACARS and ADS-B signal data. The authors confirmed the ability
of DL to address different types of radio signals. The classification accuracy on the two
datasets exceeded 92% when the signal-to-noise ratio (SNR) was higher than 9 dB. Ref. [19]
proposed a multisampling convolutional neural network (MSCNN) to extract RFFs from
54 ZigBee devices. MSCNN automatically uses multiple down-sampling transformations
for multiscale feature extraction and classification. The classification accuracy is as high
as 97% under the line-of-sight scenario with SNR = 30 dB. Ref. [20] used a convolutional
neural network and compressed the bispectrum of received signals to identify specific
emitters. This method can be used to extract overall feature information hidden in the orig-
inal signals. Ref. [21] developed an efficient SEI method based on complex-valued neural
networks (CVNNs) and network compression. CVNNs are used to enhance the recognition
effect of specific emitters. Network compression ensures satisfactory recognition results
while reducing the model’s complexity. Ref. [22] supposed that the existing methods only
consider the feature of signals or the feature after signal transformation. They ignored the
temporal correlation of each feature and the relationship between the features. Therefore, a
model named time-domain graph tensor attention network (TDGTAN) was proposed for
SEI. This model offers higher accuracy and anti-interference performances for real-world
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datasets. Table 1 discusses the mentioned literature. Additionally, some SEI methods based
on DL are also used to solve more detailed practical problems such as few-shot SEI [23,24],
unsupervised SEI [25,26], semi-supervised SEI [27,28], open-set SEI [29,30], and malicious
attack recognition [31,32].

Table 1. Works Related to RFF Extraction Methods.

RFFs Extraction
Method Work Extracted

RFFs/Models Performance Advantages Disadvantages

Direct Extraction

[6] I/Q Imbalance SNR ≥ 28 dB, Pcc ≈ 100%

Lower sample size;
no complex operations

Need to carefully
design features and
classifiers; require

prior information on
signal parameters

[7] I/Q Imbalance Unknown SNR, Pcc ≈ 100%

[8] I/Q Constellation
Impairments SNR ≥ 15 dB, Pcc ≥ 98%

[9] CFO Only RFFs extraction, no SEI

Domain
Transformation

[10] Hilbert Huang
Transform SNR ≥ 0 dB, Pcc ≥ 80%

Lower sample size;
more domain

transformation RFFs

Need to carefully
design RFFs and
classifiers; high
computational

complexity

[11] VMD-SF SNR ≥ −2 dB, Pcc ≥ 80%

[12] tvf-EMD SNR ≥ 16 dB, Pcc ≥ 85%

[13] MApEn SNR = 15 dB, Pcc ≈ 95.65%

[14] Joint Wavelet Packet
Analysis SNR ≥ 0 dB, Pcc ≥ 83%

Deep Learning

[18] Inception-Residual
Neural Network SNR ≥ 9 dB, Pcc ≥ 92%

Strong RFFs extraction
ability; end-to-end

recognition;
enhanced recognition effect

Large number of
training samples;
label annotations;

longer training time

[19] MSCNN SNR ≥ 30 dB, Pcc ≥ 97%

[20] CNN Achieves a Gain
of about 3 dB

[21] CVNN + Network
Compression At High SNR, Pcc ≈ 100%

[22] TDGTAN Unknown SNR, Pcc ≈ 100%

Note: “Pcc” is the abbreviation for percentage correct classification.

Although SEI methods based on DL have been applied to real-world data, no effective
solutions have been proposed for the long time span SEI problem. To our best knowledge,
the vast majority of SEI works currently use data with the same distribution. Conversely,
they all use data collected from the same batch. However, the more realistic situation
is that the testing set often lags behind the training set in time, and its data distribution
dynamically changes. Therefore, models trained using the training set may poorly perform
on the testing set. Fine-tuning may be an effective method to solve the long time span
SEI problem [33]. It involves freezing some parameters of the pretrained model and
adjusting the deep layers of the network to meet the training and testing requirements
of new data. However, the labels of the actual testing set are often unknown. The above-
mentioned issues pose greater challenges to the practicality of DL-based SEI methods.
Only limited research has been performed in the past on solving the long time span SEI
problem: Ref. [34] developed an adaptive SEI system for the dynamic noise domain. The
authors proposed a preprocessing algorithm called improving synchrosqueezed wavelet
transforms by energy regularization, and an unsupervised neural network noise feature
extracting GAN (NEGAN) (note that “GAN” means generative adversarial network).
NEGAN can obtain clean RFFs from noisy signals and reduce dependence on dataset quality.
However, the proposed signal preprocessing algorithm and NEGAN are relatively complex.
Ref. [35] considered that the actual application environment is more complex than the ideal
training environment and, therefore, developed an unsupervised domain adaptive-based
modulation classification for overlapped signals. Additionally, the authors also transferred
the model trained using the proposed method under an additive white Gaussian noise
channel to a multipath channel. Ref. [36] proposed an SEI method based on deep adversarial
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domain adaptation (DADA) to solve the problem that DL-based SEI methods are limited
by the training scene and have poor generalization ability in the complex scene. DADA
integrates deep neural networks into the domain adaptation problem of transfer learning. It
can effectively enhance the recognition performance of the network for unlabeled samples
under different conditions. Ref. [37] studied a deep multicore metric domain adaptation
algorithm appropriate for underwater target recognition, which introduced the divergence
deviation metric and multicore technology. This algorithm can utilize a large amount
of sample data in the source domain to assist in training classifiers in the target domain.
The robustness or adaptability of the above-mentioned methods was tested by manually
adding noise. However, the actual environment may not match the modeled channel,
particularly the space environment in which the satellite downlink signals are located.
Therefore, the effectiveness of the above-mentioned methods still needs to be tested for
long time span-specific emitter signals collected in real-world scenarios.

Recently, researchers have been deeply interested in the task of cross-modal object
classification in the field of computer vision and have proposed various domain adaptive
algorithms [33,38–45]. Domain adaptation is a subset of transfer learning. It can be used
to migrate a model trained from the source domain to the target domain and enhance
identification performance. Accordingly, we introduce domain adaptation to solve the long
time span SEI problem. We classify the initial collected signals as source domain samples
and the subsequent collected signals of the same type as target domain samples. A certain
time span exists between the source domain samples and target domain samples, which
may be short or long. In this study, we propose a long time span SEI method based on
unsupervised domain adaptation and verify it on real datasets. Specifically, our work and
contributions are as follows:

(1) The mathematical model and solution of the long time span SEI problem are pre-
sented for the first time. In this study, the problem is transformed into a domain
adaptive problem. This idea is confirmed to be feasible through extensive experimen-
tal verification. To our knowledge, this is the first work to solve the long time span
SEI problem.

(2) A novel long time span SEI method, called LTS-SEI, is proposed in this study. The
framework of the LTS-SEI method includes four modules: data preprocessing module,
feature extractor, classifier, and domain discriminator. It can learn features with
domain invariance, interclass separability, and intraclass compactness. These features
are confirmed to be effective in identifying different time span signals.

(3) A large number of satellite navigation signals are collected using a 13 m and a 40 m
large-aperture antenna. We use these signals to construct two real datasets. Dataset
A contains data on 10 navigation satellites and three data subsets. The time span
between each data subset is 15 min, with a total time span of 30 min. Dataset B
contains data on two navigation satellites and 14 data subsets. The time span between
each data subset is in the range of 1–2 months, with a total time span of nearly 2 years.

(4) Through extensive experiments, the proposed LTS-SEI method is confirmed to sat-
isfactorily perform for the long time span SEI problem and outperform the existing
methods. To our knowledge, in addition to our previous work [29], this is also the
first work to study SEI using such real, long time span signals.

2. Problem Formulation and Solution

This section describes the long time span SEI problem and explores ideas for a reason-
able solution to the problem. Owing to several factors such as changes in space environment,
inaccurate antenna pointing, and external interference, the trained model may not achieve
satisfactory results in identifying new data collected at different time periods in the future.
Additionally, new data often lack labels, so the model cannot adopt a supervised learning
mechanism. Overall, our goal is to construct an SEI model with adaptive and predictive
capabilities using limited data.
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The real received space-specific emitter signal x(t) can be represented as

x(t) = [s(t) ∗ h(t) + n(t)] · e−j2π fmt (1)

where s(t) represents the signal containing useful information, h(t) represents the pulse
response of the space channel, and n(t) represents the noise and interference during
transmission. Additionally, fm represents the frequency generated by the mixer to convert
a radiofrequency signal into an intermediate frequency signal.

Inspired by domain adaptive learning, we consider the specific emitter signals col-
lected at different time periods as data from different domains. We assume that the initial
collected signal XS = {x1, x2, x3, . . . , xN} ∈ XS originates from source domain SD and
x = {x(t1), x(t2), x(t3), . . . , x(tL)}, as shown in Figure 1. L represents the length of each
signal vector. XS can obtain its label set YS = {y1, y2, y3, . . . , yN} ∈ YS through the feature
extraction function f (x; θ) and Softmax classification function. θ and N represent the learn-
able parameters of f (x; θ) and the number of categories of specific emitters, respectively.
We assume that the new data XT =

{
x′1, x′2, x′3, . . . , x′n

}
∈ XT collected after time interval

∆T come from the target domain TD and x’ =
{

x(t′1), x(t′2), x(t′3), . . . , x(t′L)
}

. Additionally,
the label set of XT is unknown. The pretrained source domain classification model f (XS; θS)
may not effectively perform to predict YT owing to various factors. This is because SD and
TD have a relative deviation (SD 6= TD), which makes it difficult for f (XS; θS) to transfer the
domain knowledge learned from SD to TD. Therefore, when SD and TD are not aligned, the
hyperplane learned by f (XS; θS) may not be appropriate for TD, which results in confusion
regarding the sample attributes.
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Figure 1. Long time span SEI problem and solution.

As previously mentioned, the labels prediction problem of specific emitter signals
collected at different time periods is transformed into an unsupervised domain adaptation
problem. We expect to align SD and TD(SD = TD or SD ≈ TD) through domain adaptation
to achieve the same feature distribution for XS and XT . If this is achieved, the source
domain hyperplane can correctly predict YT . Owing to the inability of domain alignment in
completely eliminating the domain offset, when some samples of TD are close to the source
domain classification boundary or far from the source domain feature centers, f (XS; θS)
may experience misclassification. This problem can be alleviated using some regularization
techniques to make XS and XT closer to their feature centers. Therefore, we expect that
f (XS; θS) performs unsupervised learning and that the sample features of f (XS; θS) learning
should possess the following properties: (1) Interclass separability, (2) Domain invariance,
(3) Intraclass compactness.

3. Methodology

This section first describes the overall framework of the proposed LTS-SEI method.
The various modules of the framework are then introduced in detail, including network
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structure, module function, and loss. Finally, the optimization problem and optimization
method of the LTS-SEI framework are presented.

3.1. Framework of LTS-SEI

Figure 2 shows the framework of the proposed LTS-SEI method. The framework
mainly comprises four modules: (1) A data-preprocessing module to process source do-
main signals and target domain signals; (2) An extractor to learn the shallow RFFs of source
domain samples and target domain samples; (3) A classifier to learn the deep RFFs and
predict the labels of source domain samples and target domain samples; and (4) A discrimi-
nator to implement adversarial learning and a gradient reversal layer (GRL). In the LTS-SEI
framework, the source domain classification model and the target domain classification
model share the same feature extractor and classifier. By adding reasonable constraints,
LTS-SEI tends to learn features with interclass separation, domain invariance, and intraclass
compactness. Additionally, LTS-SEI adopts an unsupervised learning mechanism. The
target domain samples and source domain samples are used to jointly train the entire
network, and, ultimately, the classifier provides the prediction results of the target domain
sample labels.
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3.2. Data-Preprocessing Module

The data-preprocessing module of LTS-SEI adopts the simplest processing method
for the source domain signal XS and target domain signal XT . We assume that the length
of each signal vector of XS and XT is L. The source domain sample XS and target domain
sample XT can be obtained through the following three steps.

(1) We slice the source domain signal XS and target domain signal XT as follows:

X =


x1 x2 x3 . . . xk

x1+s x2+s x3+s . . . xk+s
x1+2s x2+2s x3+2s . . . xk+2s

...
...

...
...

...
x1+b L−k

s c·s
x2+b L−k

s c·s
x3+b L−k

s c·s
. . . xk+b L−k

s c·s

 (2)

where k represents length of each slice, s represents slice step size, b·c rounding down,
and X represents sample matrix.

(2) We use the following equation to standard-normalize the source domain sample XS
and target domain sample XT .

Xi =
Xi −mean(Xi)

std(Xi)
, i = 0, 1, . . . ,

⌊
L− k

s

⌋
(3)
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where mean(·) and std(·) are used to calculate the mean and standard deviation,
respectively.

(3) We label all source domain samples XS based on label set YS.

3.3. Feature Extractor

Convolutional neural networks (CNNs) have been widely applied in a number of
computer vision tasks, and their use has gradually extended to other fields because of
their advantages of sparse connectivity and weight sharing. Many research works also
confirmed that CNNs have a strong feature extraction ability in solving classic signal-
processing problems such as spectrum sensing, modulation classification, and SEI. In the
LTS-SEI framework, extraction of shallow features of samples also relies on convolutional
modules. We designed different feature extractors for Datasets A and B, respectively, as
shown in Figure 3a,b. For a 1D convolutional layer, f i represents the number of filters, ke
represents the size of the convolutional kernel, ac represents the activation function, and st
represents the convolutional step size. In the final layer of the feature extractor, a 1D global
average pooling layer (GAP-1D) was introduced to reduce channel feature dimensions and
prevent model overfitting. The following is the extraction process of the feature extractor
for the source domain sample feature FS, and the target domain sample feature FT can be
represented as

f f : Xi ∈ R1×k θ f→ Fi ∈ R1× f i (4)

where f f represents the mapping function that the feature extractor needs to learn. θ f
represents the variable parameters of f f . The goal of f f is to map sample Xi to feature Fi
that considerably impacts the recognition effect of specific emitters and is not sensitive to
domain changes, as shown in Figure 2.
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3.4. Classifier

The classifier is used to integrate the shallow RFFs extracted by the feature extractor
into deep features and predict labels. In the LTS-SEI framework, the classifier comprises
several fully connected layers and a Softmax activation layer, as shown in Figure 4. The
number of neurons of the last fully connected layer of the classifier equals the number of
specific emitters. The deep feature fi extracted from this layer can be represented as

fc : Fi ∈ R1× f i θc→ fi ∈ R1×N (5)

where fc represents the mapping function that the classifier needs to learn. θc represents
the variable parameters of fc. Each neuron of the last fully connected layer corresponds
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to a specific emitter, and the Softmax activation layer is used to calculate the classification
probability pi of sample i as

pi =
exp(fi)

∑N
j=1 exp(fj)

(6)

where exp(·) is used to calculate the exponent of the feature vector. The index value that
corresponds to the greatest element of pi is the classifier’s prediction label ŷi for sample i.
ŷi can be described as

ŷi = argmax{pi} (7)

where argmax{·} represents the index that corresponds to the maximum element value.
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The loss function should be reasonably designed at the label output end in a bid
to use the chain rule and backpropagation algorithm to update the parameter θ f of the
feature extractor and the parameter θc of the classifier. More importantly, sample features
should be interclass separated, domain invariant, and intraclass consistent. We designed an
effective deep-feature learning method for the feature extractor and classifier. The method
uses a hybrid metric of Softmax Loss [5,17–19], Center Loss [46], and HOMM3 Loss [40]
to calculate gradient information. It can effectively reduce the distance of samples from
the same specific emitters and also expand the distance of samples from different specific
emitters in the feature space. Additionally, it can learn stable deep RFFs from specific
emitter signals at different time periods.

(1) Softmax Loss: Softmax Loss is often used for classification or recognition tasks in
the field of signal processing. This is because its original intention is to enhance the
interclass separation of features in a bid to identify different individuals. Without loss
of generality, we also expect to minimize Softmax Loss to enhance the recognition
performance of source domain samples. Softmax Loss can be expressed as

LSL = − 1
M

M

∑
i=1

N

∑
j=1

yij
S log(pij

S) (8)

where M represents the number of source domain samples, and yS ∈ YS denotes the
true labels of the source domain samples and is represented as a one-hot vector.

(2) Center Loss: Center Loss was first proposed for face recognition. It can map data
with intraclass diversity into feature spaces that are close to each other. Center Loss
has been applied in the fields of image classification and modulation recognition
to learn discriminative features. By continuously optimizing the distance between
features and their clustering centers, similar samples become more compact after
being mapped to the feature space. For the classifier we designed (shown in Figure 4),
the source domain sample features output by the last fully connected layer are used
to calculate the Center loss LCL. Noteworthily, LCL comprises two parts. The first part
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can reduce the distance between sample features and their class centers to enhance
intraclass compactness of features. The second part will control the distance between
different class centers to enhance the interclass separation of features. LCL can be
expressed as

LCL =
1
2
(

K

∑
i=1

∥∥∥fi
S − cyi

∥∥∥2

2
+

N

∑
i,j=1,i 6=j

max(0, σ−
∥∥∥cyi − cyj

∥∥∥2

2
)) (9)

where K represents the number of small batch samples, fi
S represents the feature vector

extracted from the source domain sample Xi by the last fully connected layer, and cyi

represents the class center corresponding to the real label of Xi.‖·‖2
2 is used to calculate

the square Euclidean distance. σ represents a variable parameter that controls the
distance between different class centers. After each iteration, the class centers of the
entire training set need to be updated because all training sample features need to be
recalculated. However, this is cumbersome and impractical because the model uses
only a small batch of samples to participate in training each time. Therefore, we use
the mean of small batch sample features to approximate the global class centers. Batch
class center cyi can be described as

cyi =
1
b

b

∑
i=1

fyi (10)

where fyi and b represent the features and their numbers of the same category as
Xi, respectively. Since cyi does not train with the network parameters, we introduce
γ ∈ [0, 1] to control the learning rate of cyi to prevent singular samples in the training
set from causing considerable fluctuation for class centers in the feature space. The
update method of cyi is designed as follows:

ct+1
yi

= ct
yi
− γ · ∆cyi (11)

∆cyi =

K
∑

j=1
δ(yj = yi)(ct

yi − fj)

1 +
K
∑

k=1
δ(yk = yi)

(12)

where ct+1
yi

represents the class center updated by class yi at time t + 1, ct
yi

represents
the class center updated by class yi at time t, and δ(·) represents the impulse function.
When the condition in the parentheses holds, δ(·) = 1. Otherwise, δ(·) = 0.

(3) HOMM3 Loss: We added a new constraint to the deep-features output by the clas-
sifier to enhance the domain adaptation ability of the model. By optimizing the
feature-matching loss, the source domain and target domain are forced to align in the
deep-feature space. High-order statistics (such as high-order moments and high-order
cumulants) are typically used to describe the intrinsic distribution of signals and are
also commonly used as recognition features of different signals. When a random
signal follows a Gaussian distribution, its statistical characteristics can be understood
through a mathematical expectation (first-order statistic) and an autocorrelation func-
tion (second-order statistic). However, the expression of statistical characteristics
of non-Gaussian distribution signals by low-order statistics is limited, which may
impact the effectiveness of domain matching. We propose to reduce the distance
between the high-order moments of the source domain sample features and target
domain sample features by optimizing the high-order moment matching loss. How-
ever, the calculation of higher-order tensors introduces higher temporal and spatial
complexities. When the number of neurons in the bottleneck layer is m, the dimension
of the p order statistics reaches O(mp). In a bid to reduce complexity and achieve
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fine-grained domain alignment of features, we selected the last fully connected layer
of the classifier as the bottleneck layer and used this layer to calculate third-order
statistics of the features. At this time, the spatial complexity of the feature-matching
loss in the bottleneck layer is O(N3). This order of magnitude is acceptable for the
model to learn domain-invariant features. The third-order moment matching loss
LFM can be described as

LFM =
1

N3

∥∥∥∥∥ 1
KS

KS

∑
i=1

φθS(Xi
S)
⊗3 − 1

KT

KT

∑
i=1

φθT (Xi
T)
⊗3
∥∥∥∥∥

2

2

(13)

where N represents the number of categories of specific emitters, and KS and KT
represent the number of small batch samples in the source domain and target domain,
respectively. φθS(·) and φθT (·) represent the bottleneck layers of the source classifier
and the target classifier, respectively. They all output deep features with 1× N di-
mensions. θS and θT represent the parameters of the bottleneck layers of the source
classifier and target classifier, respectively.XS and XT represent the source domain
samples and target domain samples, respectively. ⊗ represents a vector product oper-
ator. A⊗3 represents the third-order tensor power of vector A and can be expressed as

A⊗3 = A⊗A⊗A (14)

Since the source domain classifier and target domain classifier share network parame-
ters, LFM can be simplified as

LFM =
1

N3

∥∥∥∥∥ 1
K

K

∑
i=1

φθS(Xi
S)
⊗3 − 1

K

K

∑
i=1

φθS(Xi
T)
⊗3
∥∥∥∥∥

2

2

(15)

Additionally, because the bottleneck layer is the last fully connected layer of the
classifier, LFM can be further denoted as

LFM =
1

N3

∥∥∥∥∥ 1
K

K

∑
i=1

(fi
S)
⊗3 − 1

K

K

∑
i=1

(fi
T)
⊗3
∥∥∥∥∥

2

2

(16)

Finally, the hybrid loss LC of the classifier can be represented as

LC = LSL + α · LCL + β · LFM

= − 1
M

M
∑

i=1

N
∑

j=1
yij

S log(pij
S) +

α
2 (

K
∑

i=1

∥∥∥fi
S − cyi

∥∥∥2

2
+

N
∑

i,j=1,i 6=j
max(0, σ−

∥∥∥cyi − cyj

∥∥∥2

2
))

+ β

N3

∥∥∥∥ 1
K

K
∑

i=1
(fi

S)
⊗3 − 1

K

K
∑

i=1
(fi

T)
⊗3
∥∥∥∥2

2

(17)

where α and β denote parameters for the weight of control Center Loss and HOMM3
Loss, respectively.

3.5. Domain Discriminator and Gradient Reversal Layer

In addition to using HOMM3 Loss to promote deep-feature alignment between the
source domain and target domain, the LTS-SEI method also introduces adversarial learning
to achieve shallow feature matching between the source domain and target domain. A
domain discriminator is designed to compete with the feature extractor, as shown in
Figure 2. The domain discriminator of the LTS-SEI comprises several fully connected
layers and a sigmoid activation layer, as shown in Figure 5. Noteworthily, the last fully
connected layer of the domain discriminator only has a neuron. The feature extractor and
domain discriminator of LTS-SEI are similar to the generator and discriminator of a GAN.
Unlike the generator, the goal of the feature extractor is not to synthesize samples but
to generate domain-invariant features. We assume that the domain labels of the source
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domain samples are 0 (true) and those of the target domain samples are 1 (false). When the
domain discriminator is unable to distinguish whether the output of the feature extractor
originates from the source domain or target domain, it is indicated that the feature extractor
and domain discriminator have reached the Nash equilibrium in the process of mutual
game. We assume that the alignment between the source domain and target domain
has been achieved, and the probability of the domain discriminator output being 0 or 1
should be 0.5 each. Therefore, the purpose of the domain discriminator is to minimize the
domain discrimination loss and correctly identify the domain labels of shallow features.
The purpose of the feature extractor is to maximize the domain discrimination loss and
confuse the judgment of the domain discriminator. Here, the domain discrimination loss
LD is defined as

LD = − 1
K

K

∑
i=1

[di · log(pdi
) + (1− di) · log(1− pdi

)] (18)

where K represents the number of small batch samples, di denotes the real domain label
of sample Xi and is represented as a one-hot vector, and pdi

represents the recognition
probability of sample Xi by the domain discriminator.
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The traditional neural network optimization method requires to minimize loss when
updating parameters. We introduce a GRL between the feature extractor and domain dis-
criminator because the purpose of the feature extractor is to maximize LD. GRL maintains
the input unchanged during forward propagation and reverses the gradient by multiply-
ing it by a negative scalar λ during reverse propagation. Based on this idea, the feature
extractor and domain discriminator implement adversarial learning and ensure that the
shallow features output by the feature extractor are domain invariant.

3.6. Optimization Problem of LTS-SEI

Based on the gradient propagation process of the feature extractor, classifier, and
domain discriminator shown in Figure 2, we can use the network parameter (θe, θc, θd) to
represent the overall classification loss LA of the LTS-SEI framework. LA is recorded as

LA(θ f , θc, θd) = LC(θ f , θc)− λ · LD(θ f , θd)
= LSL(θ f , θc) + α · LCL(θ f , θc) + β · LFM(θ f , θc)− λ · LD(θ f , θd)

(19)

where θ f , θc, and θd represent network parameters for the feature extractor, classifier, and
domain discriminator, respectively.

Therefore, the LTS-SEI method seeking the optimal network parameters (θ̂e, θ̂c, θ̂d)
is equivalent to solving the optimization problem of minimum/maximum of the overall
classification loss LA as follows

(θ̂ f , θ̂c) = arg min
θ f ,θc

LA(θ f , θc, θ̂d) (20)
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θ̂d = argmax
θd

LA(θ̂ f , θ̂c, θd) (21)

3.7. Optimization Method of LTS-SEI

The parameters of the feature extractor, classifier, and domain discriminator of LTS-SEI
can be updated through (22), (23), and (24), respectively:

θt+1
f = θt

f − µ(
∂Lt

C
∂θt

f
− λ

∂Lt
D

∂θt
f
) (22)

θt+1
c = θt

c − µ
∂Lt

C
∂θt

c
(23)

θt+1
d = θt

d − µ
∂Lt

D
∂θt

d
(24)

Algorithm 1 provides the optimization and testing process of the LTS-SEI framework.
When obtaining the optimal network parameter (θ̂e, θ̂c, θ̂d), LTS-SEI can learn features
with interclass separability, domain invariance, and intraclass compactness. The multiple
experiments in Section 5 indicate that these features are beneficial to solving the long time
span SEI problem.

Algorithm 1 The optimization and testing process of the LTS-SEI framework

Input: Source domain signal XS, Source domain signal label YS, Target domain signal XT , Source domain label
dS, Target domain label dT .
Output: Optimal network parameter (θ̂e, θ̂c, θ̂d), Target domain sample label YT .
1. Obtain source domain sample XS, target domain sample, XT and source domain sample label YS. (See
data-preprocessing module.)
2. Forward propagation:
(1) From feature extractor to classifier:
Input XS and XT into the feature extractor to obtain shallow features FS and FT . (See Equation (4))
Input FS and FT into the classifier to obtain deep features fS and fT , prediction

label ŷS, and prediction probability pS of XS. (See Equations (5)–(7))
Compute Softmax Loss LSL using ŷS and YS. (See Equation (8))
Compute Center Loss LCL using fS and YS. (See Equation (9))
Compute HOMM3 Loss LFM using fS and fT . (See Equation (16))
Compute the hybrid loss LC of the classifier. (See Equation (17))
(2) From feature extractor to domain discriminator:
Input XS and XT into the feature extractor to obtain shallow features FS and FT . (See Equation (4))
Compute domain discrimination loss using FS, FT , dS and dT . (See Equation (18))
3. Back propagation:
(1) Calculate gradient information ∂LC

∂θc
, ∂LC

∂θ f
, ∂LD

∂θd
and ∂LD

∂θ f
.

(2) Update θc, θ f , and θd through random gradient descent. (See Equations (22)–(24))
4. Repeat Step 2 and 3 until the maximum number of iterations is met.
5. Save the optimal parameter (θ̂ f , θ̂c, θ̂d) after completing the LTS-SEI training.
6. Input XT into the feature extractor (θ̂ f ) and classifier (θ̂c).
7. Output target domain sample label YT .

4. Dataset

This section details real-world data used to validate the effectiveness and reliability of
the LTS-SEI method. We collect many long time span satellite navigation signals using a
13-m and a 40-m large-aperture antenna, respectively. All signals are first processed by the
data-preprocessing module of the LTS-SEI framework. We then construct two available
datasets and name them Datasets A and B. The details of the two datasets are discussed in
the following.
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4.1. Dataset A

Dataset A comprises data on signal samples from 10 navigation satellites. These
signals are observed using an Agilent spectrum analyzer, received using a 13-m antenna
and collected using a signal-acquisition device with a 250 MHz sampling rate at the Xi’an
Aerospace Base Park of National Time Service Center, Chinese Academy of Sciences.
Among the 10 navigation satellites, five are from Japan’s Quasi-Zenith Satellite System
(QZSS) and the other five are from the Indian Regional Navigation Satellite System (NAVIC).
We collected three time navigation signals with a frequency of 1176.45 MHz broadcasted by
10 navigation satellites. The collection interval is 15 min. Figure 6a,b show the spectrums of
navigation signals of a QZSS satellite and a NAVIC satellite after denoising and smoothing
filtering, respectively. Both spectrums were calculated and plotted using 106 data points.
The navigation signals broadcasted by five QZSS satellites at a 1227.60 MHz frequency
were also collected because we use a broadband signal-acquisition system. However, this
did not affect our SEI work, as both signals indicate the same satellite. We constructed three
subsets of data using navigation signals collected three times and labeled them as A1, A2,
and A3.
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4.2. Dataset B

Dataset B comprises data on signal samples from two navigation satellites of the
Global Positioning System (GPS). These signals were observed using an Agilent spectrum
analyzer, received using a 40 m antenna, and collected using a signal-acquisition device
with a 250 MHz sampling rate at the Luonan Haoping Station of National Time Service
Center, Chinese Academy of Sciences. Similar to the signal-processing method in Dataset
A, Figure 6c shows the spectrum of a navigation signal broadcasted by a GPS satellite
at 1575.42 MHz frequency. The spectrum was also calculated and plotted using 10 M
data points. The quality of GPS satellite navigation signals collected using a 40 m large-
aperture antenna was higher. We conducted 2 years of observation on two GPS satellites
and collected multiple long time span signals. Specifically, we constructed 14 data subsets
using these navigation signals and labeled them as B1, B2, . . . . . . , and B14, respectively.
The time span between these data subsets is approximately in the range of 1–2 months, as
shown in Table 2.

Table 2. GPS navigation signal acquisition time.

Data Subset Specific Emitter 1 Specific Emitter 2

B1 8 May 2021 8 May 2021
B2 24 May 2021 22 May 2021
B3 9 June 2021 24 June 2021
B4 10 July 2021 6 July 2021
B5 19 August 2021 16 August 2021
B6 8 September 2021 5 September 2021
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Table 2. Cont.

Data Subset Specific Emitter 1 Specific Emitter 2

B7 14 October 2021 23 October 2021
B8 6 December 2021 3 December 2021
B9 11 February 2022 13 February 2022

B10 8 March 2022 11 March 2022
B11 10 May 2022 14 May 2022
B12 15 June 2022 16 June 2022
B13 7 August 2022 3 August 2022
B14 21 September 2022 28 September 2022

5. Experimental Results and Discussion

This section confirms the recognition performance of the proposed LTS-SEI method
on two real specific emitter datasets. The experimental data, identification model, param-
eter settings, and evaluation criteria are first detailed for a clearer understanding of our
experimental process. Subsequently, we comprehensively analyze the performance of the
LTS-SEI method from different perspectives. Finally, we extend the LTS-SEI method to
small samples and evaluate its effectiveness.

5.1. Experimental Data

The collection time of each specific emitter signal file was 2 s, including 500 M data
points. In a bid to reduce memory and time consumption, we used only a small amount of
data from each signal file to construct a data subset. In Dataset A, each data subset contains
12,000 samples, which means the number of samples of each specific emitter is 1200. For
Dataset B, each data subset also contains 12,000 samples, which means the number of
samples of each specific emitter is 6000. All signal samples have a length of 4000. During
the experiment, each data subset was divided into a training set, a validation set, and a
testing set in a ratio of 0.8:0.1:0.1. Based on the signal-acquisition time, A1 and B1 were
used as source domain samples for Datasets A and B, respectively. Other data subsets were
used as target domain samples.

5.2. Identification Model

The identification models were constructed using TensorFlow. They were all trained
and tested on a workstation equipped with an Intel (R) Core (TM) i9-10900K CPU and
NVIDIA GeForce RTX3090 GPU. Figure 7a,b show the recognition models used for Datasets
A and B, respectively. The feature extractors, classifiers, and domain discriminators of
the two models follow the network structure described in Section 3. The feature extractor
of Model A comprises four 1D convolutional modules. Every 1D convolutional module
includes a 1D convolutional layer and a maxpooling layer. The feature extractor of Model
B comprises 10 1D convolutional layers. They were designed as lightweight as possible to
reduce training parameters and time.

5.3. Parameters Setting

An appropriate parameters setting is crucial for training a superior model. Each
module of the LTS-SEI framework involves multiple hyperparameters, and we must explain
these parameters in detail. Table 3 presents the values of nine hyperparameters that need
to be set during the training process. Additionally, we need to explain the following four
points about the parameters setting:
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Figure 7. Identification models of two datasets: (a) Dataset A and (b) Dataset B.

(1) Learning rate µ: Consistent with traditional models, µ is used to control the learning
rate of the feature extractor, classifier, and domain discriminator. For Dataset A, which
has a short time span, Model A is easy to train. The learning rate of Model A is set
to the commonly used value of 0.01. For Dataset B, which has a long time span, the
learning rate of Model B gradually decreases with the increase in iterations to achieve
fast convergence. µ is defined as

µ =
1

(1 + epoch
E )

(25)

where epoch represents the current number of iterations of the model and E the total
number of iterations of the model.

(2) Reversal Scalar λ:λ is a weight scalar used to control negative gradient. Similar to
(1), we set the reversal scalar of Model A to a constant. For Model B, as µ gradually
decreases, λ is set as an increasing function with respect to number of iterations in a
bid to encourage the feature extractor to continuously learn domain-invariant features.
λ is represented as

λ =
2

1 + e−10· epoch
E

− 1 (26)

(3) Epoch E: After multiple experimental verifications, we determined that for Data
Subsets B3, B6, and B12, Model B can achieve nearly 100% accuracy through only
100 iterations. Therefore, for these three data subsets, the number of iterations of the
model are set to 100. The number of iterations for other data subsets are 300.

(4) Center Loss weight α and HOMM3 Loss weight β: We set the weight factors of the
two loss functions to the same value to quickly determine suitable hyperparameters
α and β. The weight range is [0, 1] and the step size is 0.001. We experimentally
determined that the domain adaptation ability of the model decreases when the two
weight factors are small. The model may overfitting when the two weight factors are
large. Model A can maintain a high recognition accuracy on Dataset A when both
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weight factors are 0.1. Model B can maintain a high recognition accuracy on Dataset B
when both weight factors are 0.01.

Table 3. Parameter setting of LTS-SEI.

Symbol Meaning Model A Model B

α Center Loss weight 0.1 0.01
β HOMM3 Loss weight 0.1 0.01
l Initial learning rate 0.0007 0.001
µ Learning rate 0.01 Equation (25)
λ Reversal Scalar 0.01 Equation (26)
E Epoch 100 100/300
B Batch Size 64 64
γ Center learning rate 0.5 0.5
σ Marginal factor 100 100

5.4. Evaluation Criteria

We adopted four evaluation criteria, namely accuracy, precision, recall, and F1-score
in a bid to accurately analyze and fairly compare the effectiveness of the LTS-SEI method
in addressing the long time span SEI problem. For each individual category, these criteria
can be separately calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(27)

precision =
TP

TP + FP
(28)

recall =
TP

TP + FN
(29)

F1score =
2× precision× recall

precision + recall
(30)

where TP represents the number of samples with both real and predicted categories being
positive, TN the number of samples with both real and predicted categories being negative,
FP the number of samples with the real category being negative and the predicted category
being positive, and FN the number of samples with the real category being positive and
the predicted category being negative. For the multiclassification task in this study, we
can obtain multiclassification evaluation criteria using the averages of accuracy, precision,
recall, and F1-score:

acc =
1
N

N

∑
i=1

accuracyi (31)

pre =
1
N

N

∑
i=1

precisioni (32)

rec =
1
N

N

∑
i=1

recalli (33)

f 1 =
1
N

N

∑
i=1

F1scorei (34)

5.5. Performance Comparison with Domain Adaptation Methods

In this study, the long time span SEI problem is considered a domain adaptation
problem. Therefore, LTS-SEI is compared with the existing domain adaptation meth-
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ods, including maximum mean discrepancy (MMD) [33], central moment discrepancy
(CMD) [39], higher-order moment matching (HOMM) [40], unsupervised domain adapta-
tion by backpropagation (UDAB) [41], deep adaptation networks (DANs) [43], and joint
domain alignment (JDA) [44]. The performance upper limit of all methods is the effect
when the distributions of the source domain data and target domain data are the same.
Additionally, shallow RFFs and deep RFFs are used to confirm the domain alignment
effectiveness of these methods.

Shallow layer: Shallow RFFs refer to features output by the GAP-1D of the feature
extractor. Table 4 presents the average recognition accuracy of the original I/Q signal
(no domain adaptation), other domain adaptive methods, the proposed LTS-SEI, and the
performance upper limit. Other domain adaptive methods are used for a shallow feature
alignment. Evidently, all domain adaptive methods have improvements for A1->A2 and
A1->A3. We suppose that although there is a 15-min time span between A1, A2, and A3,
they are all signals collected from the same batch, which results in considerable similarity
of data distribution. Model A still has a satisfactory predictive ability for data subsets
with shorter time spans. Even without using domain adaptive methods, the original I/Q
signal can achieve 85% average accuracy. Both UDAB and the proposed LTS-SEI method
can reach the upper limit of prediction accuracy. Except for B3, the original I/Q signal
and existing domain adaptive methods suffer from poor predictions for B2, B4, and B5.
This may be due to changes in space environment or fingerprint features caused by a
long time span, resulting in considerable differences in data distribution between B1 and
other data subsets. Therefore, Model B loses its predictive and recognition capabilities for
Data Subsets B2, B4, and B5. Despite a one-month time span between B1 and B3, LTS-SEI
achieves the average accuracy similar to the performance upper limit. For B2, B4, and B5,
the advantage of LTS-SEI is more obvious, with an average accuracy of exceeding 96%.
Therefore, the existing methods that only align shallow features in the feature space cannot
achieve satisfactory recognition results.

Table 4. Performance comparison between various methods (shallow layer).

Method
Average Recognition Accuracy

A1->A2 A1->A3 B1->B2 B1->B3 B1->B4 B1->B5

I/Q 0.8958 0.8592 0.5200 0.8650 0.4792 0.4692
MMD 0.9108 0.8933 0.5400 0.8458 0.4692 0.5008
DAN 0.9367 0.8883 0.5456 0.8708 0.4667 0.4883
JDA 0.9425 0.8867 0.5233 0.8542 0.4975 0.4933

CMD 0.9833 0.9417 0.5308 0.8467 0.4625 0.4700
HOMM 0.9842 0.9492 0.5367 0.8433 0.4842 0.4967
UDAB 0.9975 0.9925 0.5550 0.9425 0.5208 0.5283

LTS-SEI 0.9995 0.9971 0.9867 0.9942 0.9650 0.9642
Upper Limit 0.9996 0.9992 0.9987 0.9983 0.9992 0.9929

Note: “A1->A2” indicates that the model trained using Source Domain Data A1 predicts the labels of Target
Domain Data A2. There is a time interval between A1 and A2.

Deep layer: Deep RFFs refer to output features of the last fully connected layer of the
classifier. Table 5 presents the average recognition accuracy of various methods. Compared
with the original I/Q signal, center loss (center) can enhance the prediction performance
of new data. This indicates that enhancing intraclass consistency can result in correct
identification of edge samples in the target domain. HOMM adopts the third-order moment
matching loss to train the model described in this study. Compared with the first-order
moment matching MMD and CMD, and the second-order moment matching of JDA,
HOMM can effectively identify specific emitters in A2, A3, and B6. Therefore, higher-order
moments can deeply describe the feature distribution of signals and simplify domain
alignment. Additionally, based on the recognition results of A1->A2 and A1->A3, it can
be seen that compared with the shallow feature alignment, the existing domain adaptive
methods deliver better recognition performances for A2 and A3 when aligning deep
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features. This may be because deep features play a decisive role in predicting the labels
of specific emitters. However, it is difficult for the existing methods to learn domain-
invariant deep features of the long time span-specific emitter signals in Dataset B. Although
there may be considerable differences in data distribution between B7, B8, B9 and B1,
the proposed LTS-SEI method still enjoys a considerable improvement in identifying two
specific emitters.

Table 5. Performance comparison between various methods (deep layer).

Method
Average Recognition Accuracy

A1->A2 A1->A3 B1->B6 B1->B7 B1->B8 B1->B9

I/Q 0.8958 0.8592 0.9450 0.4842 0.5758 0.6817
Center 0.9550 0.9150 0.9533 0.4800 0.5750 0.6808
MMD 0.9542 0.9342 0.9467 0.5008 0.5742 0.6883
DAN 0.9758 0.9258 0.9517 0.4875 0.5850 0.6617
JDA 0.9517 0.9425 0.9483 0.4917 0.5850 0.6483

CMD 0.9283 0.8925 0.9575 0.4625 0.5633 0.6500
HOMM 0.9875 0.9575 0.9617 0.4850 0.6242 0.7150
LTS-SEI 0.9995 0.9971 0.9892 0.9567 0.9458 0.9850

Upper Limit 0.9996 0.9992 0.9962 0.9983 0.9983 0.9975

Shallow layer and deep layer: Additionally, we trained the model to simultaneously
align shallow RFFs and deep RFFs simultaneously. Unfortunately, this idea did not achieve
better results. For A2 and A3, the existing methods suffered overfitting when the model
simultaneously learned domain-invariant shallow features and deep features (see Table 6).
Compared with the two feature learning methods previously mentioned, the average
recognition accuracy of HOMM on A2 and A3 decreased by 3.09% and 3.42%, 2.5% and
3.33%, respectively. The collection time interval between B14 and B1 is close to one and a
half years. The recognition accuracy of the original I/Q signal and existing methods on
B14 is near 50%, which means that the model lost its predictive ability. Therefore, even
if a high-gain antenna can receive high-quality signals, it is likely to cause considerable
deviation in data distribution between the training set and testing set when the time span
is long. This may be the result of the simultaneous effect of external environment and
internal RFF changes. The same concept applies to other datasets. However, the proposed
LTS-SEI method can still extract stable or slowly changing shallow features and deep
features, which demonstrates the effectiveness of LTS-SEI in addressing the long time span
SEI problem. We suppose that, the satisfactory recognition or prediction performance of
LTS-SEI is inseparable from the decent signal quality of Datasets A and B.

5.6. Feature Visualization

To intuitively understand the recognition features learned by LTS-SEI, Figure 8 shows
the 2D scatter maps of features extracted by different methods for A1->A2, A1->A3, B1->B2,
and B1->B3. The first column shows the 2D features of the target domain samples output
by the model directly trained using the source domain samples. For A1->A2 and A1->A3,
it is evident that some features of Specific Emitters G, H, and J are confused. This indicates
that even if the time span between signals is small, the trained model is likely to reduce its
predictive ability for new data. For B1->B2 and B1->B3, which have longer time spans, the
trained model completely confuses the two specific emitters. The second column displays
the 2D features of target domain samples output using the existing domain adaptation
methods. The confusion between specific emitters G, H, and J in A1->A2 and A1->A3 was
alleviated through domain adaptation. However, the two specific emitters in B1->B2 are still
unrecognized, and some samples in B1->B3 are confused. The third column presents the
2D features of the target domain samples output by the proposed LTS-SEI method. Clearly,
LTS-SEI effectively separates the features of different specific emitter samples. Thanks to
the mutual cooperation between its different components, LTS-SEI can extract RFFs with
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interclass separation, intraclass compactness, and domain invariance. Undoubtedly, these
RFFs are crucial in identifying the long time span-specific emitter signals.

Table 6. Performance comparison between various methods (shallow layer and deep layer).

Method
Average Recognition Accuracy

A1->A2 A1->A3 B1->B10 B1->B11 B1->B12 B1->B13 B1->B14

I/Q 0.8958 0.8592 0.5083 0.4917 0.7308 0.5367 0.5150
MMD 0.9358 0.8467 0.5108 0.5200 0.7567 0.5558 0.5167
DAN 0.9117 0.8742 0.5550 0.4958 0.7892 0.5658 0.5233
JDA 0.9133 0.8425 0.5393 0.5092 0.7850 0.5283 0.5067

CMD 0.9058 0.8842 0.5358 0.5025 0.7208 0.5433 0.4858
HOMM 0.9533 0.9242 0.5383 0.5208 0.7417 0.5500 0.5025
LTS-SEI 0.9995 0.9971 0.9733 0.9392 0.9942 0.9533 0.9633

Upper Limit 0.9996 0.9992 0.9992 0.9979 0.9967 0.9933 0.9971
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5.7. Specific Emitter Identification Results

Based on the 2D feature scatter maps described in Section 5.6, we present the corre-
sponding confusion matrix in Figure 9. Similar to the abovementioned analysis, specific
emitter J in A1->A2 and A1->A3 is easily identified as G. A small sample of specific emitter
H is recognized as J. Specific emitters G, H, and J all come from the same navigation satellite
system and the signal formats they transmit are exactly the same, which increases the
difficulty of identifying similar individuals. For B1->B2, 57% of the samples from Specific
Emitter A are identified as from B, which indicates that A and B are completely inseparable.
Although the situation of B1->B3 is relatively optimistic, nearly one-third of the samples
from Specific Emitter B are classified as from A. The existing domain adaptive methods suf-
fer limited ability to solve the sample confusion problem. They still cannot provide reliable
identification results for some long time span datasets, such as B1->B2 (with a considerable
difference between the source domain and target domain). However, even if long time
span presents considerable challenges, LTS-SEI can still identify different specific emitters
with considerable accuracy. We can see that the classification accuracy of all specific emitter
samples is nearly 100%, as shown in the third column of Figure 9. This predictive ability is
crucial for practical applications when the labels of new data are not known.
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5.8. Training Accuracy and Loss of LTS-SEI

Figures 10 and 11 show the training accuracy curves and loss curves on A1->A2,
A1->A3, B1->B2, B1->B6, B1->B9, and B1->B14, respectively, to more effectively understand
the samples training process of LTS-SEI. From Figure 10, it can be seen that the classification
accuracy of source domain samples and target domain samples increases with increase of
iterations. For A2 and A3, which have a shorter time span, improvement in their classifica-
tion accuracy is almost synchronous with A1. For Dataset B, which has a long time span,
when the data distribution of the source domain samples and the target domain samples is
similar (B1->B6), their training accuracy quickly converges. The source domain samples
with available labels train faster than the target domain samples without labels when there
is a considerable difference between the source domain and target domain (B1->B2, B1->B9,
and B1->B14). The improvement in target domain samples classification accuracy cannot
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be achieved without the joint efforts of various components of the LTS-SEI framework,
including the confrontation between the feature extractor and domain discriminator, the
alignment of deep features, and the correct recognition of edge samples. From Figure 11,
it can be seen that the training loss of the source domain samples continuously decreases
with the increasing of iterations and eventually converges to approximately 0. The adver-
sarial loss between the feature extractor and domain discriminator can ultimately achieve
the Nash equilibrium, which aligns the shallow and deep features of the source domain
samples and target domain samples in the feature space. The training accuracy curves and
training loss curves indicate that LTS-SEI has the ability to learn RFFs of target domain
samples that remain unchanged over an extended time span.
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5.9. Ablation Experiment

An ablation experiment is used to explore the impact of various components of the
LTS-SEI framework on the recognition performance of long time span-specific emitter
signals. Although some experimental data are duplicated from Section 5.5, we must present
them again to evaluate the contribution of every component of the LTS-SEI framework to
the recognition performance. Tables 7–10 present six ablation studies: (1) Original I/Q,
(2) Shallow confrontation, (3) Deep alignment, (4) LTS-SEI (no Center Loss), (5) LTS-SEI
(no HOMM3 Loss), and (6) LTS-SEI. Evidently, the proposed LTS-SEI method achieves
the optimum results in terms of accuracy, precision, recall, and F1-score on multiple
datasets. Shallow confrontation can enhance the recognition effect of specific emitters to a
certain extent. On A1->A2 and A1->A3, deep alignment seems to have overfitting after
incorporating Center Loss, which results in its recognition accuracy being lower than the
previously mentioned deep layer HOMM domain adaptive method. When the Center Loss
or HOMM3 Loss of LTS-SEI does not participate in model training, the accuracy, precision,
recall, and F1-score on most datasets will decrease. For example, incorporating Center Loss
can increase the accuracy of the model by up to 2.09%, and incorporating HOMM3 Loss by
41.41%. Additionally, by comparing shallow confrontation and deep alignment, we can
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observe that with adversarial learning, it is easier to obtain domain-invariant RFFs for real
data with dynamic changes. However, better results cannot be achieved solely through
shallow confrontation and deep alignment. Only when different components of LTS-SEI
work together to learn domain-invariant shallow and deep fingerprints can the accuracy of
the long time span SEI be considerably increased.
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5.10. Expansion to Small Training Samples

We introduced sample proportion to adjust the number of training samples in a bid
to further explore the identification performance of the proposed LTS-SEI method when
extended to a small number of training samples. Noteworthily, the sample proportion is
defined as the ratio of the number of samples in the training set to those in the validation
set. The samples of B1 are assumed to come from the source domain. The samples of B2,
B5, B7, B9, B12, and B14 come from the target domain. The number of training samples
in the source domain and target domain increases with increasing sample proportion. It
is obvious that the greater the sample proportion, the better the recognition performance
of LTS-SEI on all data subsets, as shown in Figure 12. Due to the same navigation signal
formats transmitted by the two GPS satellites, LTS-SEI confuses different samples when the
number of training samples is small. However, the predictive ability of LTS-SEI for new
data from B2, B5, B7, and B14 considerably deteriorates when the sample proportion is less
than 1.25. The recognition accuracy of LTS-SEI on all data subsets approaches saturation
when the sample proportion is 3.5.
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Table 7. Ablation experiment (accuracy).

Dataset
Component

Original I/Q Shallow
Confrontation

Deep
Alignment

LTS-SEI (No
Center Loss)

LTS-SEI (No
HOMM3 Loss) LTS-SEI

A1->A2 0.8958 0.9975 0.9375 0.9975 0.9992 0.9995
A1->A3 0.8592 0.9925 0.8667 0.9946 0.9942 0.9971
B1->B2 0.5200 0.5550 0.5708 0.9658 0.5742 0.9867
B1->B3 0.8650 0.9425 0.8392 0.9992 0.9217 0.9942
B1->B9 0.6817 0.6942 0.6800 0.9800 0.6958 0.9850

B1->B14 0.5150 0.4950 0.4908 0.9425 0.5492 0.9633

Table 8. Ablation experiment (Precision).

Datas Set
Component

Original I/Q Shallow
Confrontation

Deep
Alignment

LTS-SEI (No
Center Loss)

LTS-SEI (No
HOMM3 Loss) LTS-SEI

A1->A2 0.9410 0.9976 0.9450 0.9975 0.9992 0.9995
A1->A3 0.8905 0.9931 0.8961 0.9946 0.9942 0.9971
B1->B2 0.5190 0.5546 0.5710 0.9658 0.5757 0.9867
B1->B3 0.8909 0.9446 0.8732 0.9992 0.9277 0.9942
B1->B9 0.7097 0.7069 0.6969 0.9806 0.6976 0.9851

B1->B14 0.5167 0.4956 0.4898 0.9441 0.5491 0.9633

Table 9. Ablation experiment (recall).

Dataset
Component

Original I/Q Shallow
Confrontation

Deep
Alignment

LTS-SEI (No
Center Loss)

LTS-SEI (No
HOMM3 Loss) LTS-SEI

A1->A2 0.8958 0.9975 0.9375 0.9975 0.9992 0.9995
A1->A3 0.8592 0.9925 0.8667 0.9946 0.9942 0.9971
B1->B2 0.5200 0.5550 0.5708 0.9658 0.5742 0.9867
B1->B3 0.8650 0.9425 0.8392 0.9992 0.9217 0.9942
B1->B9 0.6817 0.6942 0.6800 0.9800 0.6958 0.9850

B1->B14 0.5150 0.4950 0.4808 0.9425 0.5492 0.9633

Table 10. Ablation experiment (F1-score).

Dataset
Component

Original I/Q Shallow
Confrontation

Deep
Alignment

LTS-SEI (No
Center Loss)

LTS-SEI (No
HOMM3 Loss) LTS-SEI

A1->A2 0.8703 0.9975 0.9370 0.9975 0.9992 0.9995
A1->A3 0.8490 0.9925 0.8495 0.9946 0.9942 0.9971
B1->B2 0.5190 0.5538 0.5660 0.9658 0.5686 0.9867
B1->B3 0.8634 0.9425 0.8362 0.9992 0.9215 0.9942
B1->B9 0.6742 0.6909 0.6752 0.9800 0.6957 0.9850

B1->B14 0.5148 0.4950 0.4898 0.9424 0.5491 0.9633
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6. Conclusions

This study proposed an unsupervised method called LTS-SEI, which is the first work
to address the long time span SEI problem. Domain adaptation was introduced into
SEI to learn stable RFFs that are less affected by time changes. On the one hand, LTS-
SEI implements adversarial learning at the shallow layer and aligns features at the deep
layer of the model, which enables it to learn domain-invariant RFFs. On the other hand,
LTS-SEI enhances intraclass consistency of deep features, which effectively increases the
accuracy of SEI. The idea proved feasible in solving the long time span SEI problem. We
demonstrated the effectiveness of LTS-SEI from different perspectives using real received
satellite navigation signals. When the existing methods suffer difficulty in identifying long
time span signals, LTS-SEI can still recognize specific emitter signals with time intervals
approaching 2 years. This indicates that LTS-SEI has practical ability to predict the identity
of specific emitters. However, the following three topics on long time span SEI need
further research:

(1) In this study, we used 13-m and 40-m large-aperture antennas to receive space signals,
which enhanced the quality of the signals. However, new methods need to be studied
when addressing low SNR-specific emitter signals with long time spans.

(2) The experimental data in this study are of high-orbit satellite signals, with the sam-
pling rate of the acquisition equipment being 250 MHz. Sufficient data samples ensure
effective training of deep models. However, we must develop small samples for long
time span SEI methods when the number of training samples is small.

(3) In practice, the model’s predictive ability must be based on real training data without
labels. Therefore, we must design new unsupervised learning algorithms to further
enhance the practicality of long time span SEI.
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