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Abstract: Net primary production (NPP) serves as a crucial indicator of the ecosystem’s capacity to
capture atmospheric CO2. Gaining insights into the dynamics of NPP and its driving mechanisms
is pivotal for optimizing ecosystem carbon sink resource management. Since the implementation
of the Grain-for-Green Program (GFGP) in 1999, the Yellow River Basin (YRB) has been one of
the most significant areas for ecological restoration in China. However, our knowledge regarding
the interannual variability (IAV) of NPP and the underlying driving forces in this region remains
incomplete. In this study, we utilized a light use efficiency model to assess the spatiotemporal
dynamics, IAV, and driving factors of NPP in the YRB during the period from 1999 to 2018. Our
findings revealed that the average annual NPP in the YRB approximated 189.81 Tg C. Over the
study duration, NPP significantly increased in 79.63% of the basin with an overall increasing rate of
6.76 g C m−2 yr−1. The most prominent increase was observed in the key GFGP implementation area,
predominantly in the semi-humid region. Notably, the middle altitude region (1–1.5 km), semi-humid
region, and grassland emerged as the primary contributors to the basin’s total vegetation carbon
sequestration. However, it is worth emphasizing that there was substantial IAV in the temporal
trends of NPP, with the semi-humid region being the most influential contributor (62.66%) to the
overall NPP IAV in the YRB. Further analysis of the driving mechanisms unveiled precipitation as
the primary driver of NPP IAV in the YRB with a contribution of 62.9%, followed by temperature
(23.07%) and radiation (14.03%). Overall, this study deepened our understanding of the IAV and
driving mechanisms of NPP in the YRB under ecological restoration, and provided scientific support
for optimizing the management of regional carbon sequestration resources.

Keywords: NPP; carbon sink; CASA; Grain-for-Green program; climate change

1. Introduction

The quantity of tree biomass per unit area of land constitutes the primary inventory
data needed to understand the flow of materials and water through forest ecosystems [1,2].
Net primary production (NPP) is the net amount of carbon absorbed from the atmosphere
via photosynthesis, and it is an important component of the carbon balance of all terrestrial
ecosystems [3–6]. NPP is crucial for ecosystem services, agriculture, and forestry [7–9], as
well as global carbon cycling, which in turn affects water cycling and climate. NPP can in-
tuitively reflect the production capacity of surface vegetation under natural environmental
conditions, and is often used as an important factor for determining carbon sources/sinks
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and regional ecological carrying capacity [10]. Therefore, chronosequence assessment of
NPP and its driving forces would help to predict the vegetation development and dynamics
of the species [11–14].

Although many studies have evaluated the magnitudes and dynamics of regional and
even global NPP based on various approaches [15–19], large uncertainties and conflicts
still exist among different estimates. Taking the Multi-scale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) [20] as an example, estimates of the NPP in China using
13 terrestrial biosphere models (TBMs) forced by the same drivers in this project exhibit
substantial inconsistency in their magnitudes, spatiotemporal patterns, and dynamics [21].
The largest NPP in China estimated using the SiB model (4.4 Pg C) is almost twice of that
(2.3 Pg C) simulated by the ISAM model [21]. Light use efficiency models, such as the
Carnegie–Ames–Stanford approach (CASA) [22], utilize remote-sensing-based vegetation
indices and climate–hydrological data to simulate vegetation productivity. Compared to
process-oriented models, their principles are relatively straightforward and involve fewer
parameters; therefore, light use efficiency models do not require complex model parame-
ter calibration [23]. The input data for these models are easily obtainable, making them
well suited to large-scale applications [24]. Previous applications have indicated that the
simulation results from light use efficiency models align reasonably well with real-world
conditions [23–27]. In addition, most studies have mainly focused on the trends of NPP, and
our attention on the climate-driven NPP interannual variability (IAV) is still limited. The
IAV of NPP reflects the annual variation in plant net photosynthesis, which is a key indicator
that affects the variation of the atmospheric CO2 concentration [28–30] and ecosystem sup-
ply function [31,32]. Although the IAV of terrestrial carbon sequestration flux has attracted
increasing interest, debates still exist when involving the regional contributions and driving
mechanisms [21,33–35]. Understanding the IAV of land NPP is crucial for estimating the
future evolution of atmospheric CO2 as carbon–climate feedbacks emerge [28–30,36]. At a
global scale, tropical [33,34,37,38] and semiarid ecosystems [33,39,40] play an important
role in influencing the IAV of the global land carbon sink. The major climate factors driving
the annual land carbon sink changes also exhibit different patterns between regional and
global scales [21,41–43]. Therefore, the primary climate factors driving NPP IAV may differ
at different scales. Deciphering the regional contributions and the driving forces of the
NPP IAV can help us identify the IAV hot spots of the ecosystem carbon sink function and
provide effective regulatory measures under the urgent need of carbon neutrality.

The Yellow River is the second longest river in China and the Yellow River Basin (YRB)
is one of the most sensitive areas to climate change due to severe water scarcity and intense
human activities in China [6,44–47]. In recent decades, under the combined influence
of climate change and human activities, frequent dry riverbeds and sharp decreases in
surface runoff have occurred in the downstream area of the YRB [48]. This has led to a
growing conflict between water supply and demand, significant changes in the ecological
environment, and to a large extent, affected biodiversity and ecological balance [49–52].
However, in recent decades, a series of ecological projects (e.g., the Grain-for-Green Pro-
gram is one of the most successful programs) has substantially improved the ecosystem
situation in the YRB and Loess Plateau [6,53]. In this context, the academic community has
shown increasing interest in the vegetation status and functionality, especially the carbon
sequestration function, of the YRB [54]. Many studies have been conducted to investigate
the spatiotemporal variations and driving forces of NPP in the YRB [55–57]. However,
compared to changes in NPP, its IAV may be even more crucial, as it reflects the stability and
resilience of the regional vegetation carbon sequestration function [21,35]. This index can
better assess the long-term value and carbon sequestration benefits of ecological restoration
projects. However, our understanding of the spatiotemporal characteristics of NPP IAV
in the YRB and its climate-driven mechanisms is still limited. Under the urgent need
of ecological protection and carbon neutrality in the YRB, detecting the spatiotemporal
dynamics of the NPP IAV in the YRB and its responses to climate change can provide
scientific references for evaluating the ecological benefits of ecological restoration programs
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and deepening our understanding of the resistance of artificially restored ecosystems to
climate disturbances.

This study utilized a light use efficiency model (i.e., CASA), vegetation index, and
climate–hydrological data to estimate the spatiotemporal dynamics of NPP and its IAV in
the YRB from 1999 to 2018 and evaluated the accuracy of the model by using multiple data
sources. We quantified the regional contributions to the holistic NPP IAV of the YRB and
identified the IAV hotspots. We extended our study by deciphering the driving mechanisms
of NPP IAV in different regions. The goal of this research is to provide scientific support
for optimizing future ecological restoration measures and the management of regional
terrestrial carbon sink resources.

2. Materials and Methods
2.1. Study Area

The YRB is located in North China (96◦E~119◦E, 32◦N~42◦N) and covers an area of
79.5 million hectares (Figure 1). Most parts of the YRB are located in the Tibetan Plateau,
arid, semi-arid, and semi-humid regions. The annual precipitation varies from 110 mm
to 912 mm and the annual mean temperature is between −19 ◦C and 15 ◦C [58]. The
YRB is characterized by a temperate continental monsoon climate. The distribution of
precipitation shows large spatial variations with a decreasing gradient from south to
north. High-temperature regions are mainly located in the east of the basin and the low-
temperature regions are mainly located in the western part of the basin (mostly in the
Tibetan Plateau). The elevation in the YRB ranges from −1 m to 6142 m with an increasing
gradient from the east to west. The YRB is one of the most sensitive areas to climate
change in China due to severe water scarcity and intense human activities. During the last
century, many large-scale ecological restoration measures have be implemented in the YRB
to control soil erosion and ecological degradation [53]. The Grain-for-Green Program is
one of the most successful ecological restoration projects in China and has significantly
increased the vegetation coverage in this region [59,60].
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Figure 1. Location of the study area in China, climate and terrain conditions, and revegetation area
map of the Yellow River Basin (YRB). (a) shows the location of the YRB in China. (b) maps the
annual total rainfall and elevation of the YRB with (c) illustrating the annual mean temperature
and revegetation area in the YRB after 1999. I to V in (c) indicate the Tibetan Plateau, arid region,
semi-arid region, semi-humid region, and humid region, respectively.
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2.2. Data Sources

In this study, we utilized several spatiotemporal datasets, including meteorological
and hydrological data (monthly precipitation, monthly average temperature, monthly
actual evapotranspiration, and monthly potential evapotranspiration), monthly total solar
radiation, a Normalized Difference Vegetation Index (NDVI), a Digital Elevation Model
(DEM), and a vegetation type map. The monthly precipitation and monthly average temper-
ature with a spatial resolution of 1 km × 1 km were collected from an open meteorological
database [58]. The monthly total solar radiation, monthly actual evapotranspiration (ET),
and potential evapotranspiration (PET) with a spatial resolution of 4 km × 4 km were ex-
tracted from the TerraClimate dataset [61]. The high-spatial-resolution (1 km× 1 km) NDVI
data with a 10-day time frequency were collected from the Satellite Pour l’Observation de
la Terre (SPOT) VEGETATION Collection 3 (SPOT/VGT-C3 NDVI) dataset [62–64]. We
generated the monthly NDVI using the monthly maximum compositing method. The DEM
data with a 1 km × 1 km spatial resolution were extracted from the Global Land One-km
Base Elevation Project [65]. The vegetation type map and land use and land cover maps
with a spatial resolution of 1 km× 1 km from 2000 to 2018 were collected from the Resource
and Environment Data Cloud Platform (REDCP, www.resdc.cn, accessed on 21 May 2020).
The climate zone boundary was provided by Li et al. [21]. Data used to calculate NPP in
this study are listed in Table 1.

Table 1. Data used to calculate NPP in this study.

Data Spatial Resolution Time Span Resources

Precipitation
1 km × 1 km 1999~2018 Peng et al. [58]

Temperature
Actual Evapotranspiration

4 km × 4 km 1999~2018 TerraClimate [61]Potential
Evapotranspiration

Solar Radiation
NDVI 1 km × 1 km 1999~2018 Baret et al. [62]

Vegetation Type 1 km × 1 km /

Land Use and Land Cover 1 km × 1 km 2000~2018 www.resdc.cn, accessed
on 21 May 2020

2.3. NPP Estimation

This study used the light use efficiency model, i.e., the Carnegie–Ames–Stanford
approach (CASA) [22], to estimate the NPP of the YRB. The specific technical process is as
follows:

The vegetation NPP can be represented using two factors: absorbed photosynthetically
active radiation (APAR) and actual light use efficiency (ε):

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

In Equation (1), APAR(x, t) represents the photosynthetically active radiation absorbed
by pixel x in month t (unit: MJ m−2), and ε(x, t) represents the actual light use efficiency of
pixel x in month t (unit: g C MJ−1).

Potter et al. [22] indicated that vegetation has maximum light use efficiency under
ideal conditions, but in reality, the maximum light use efficiency is mainly affected by
temperature and water availability, which can be calculated using Equation (2):

ε(x, t) = f1(x, t)× f2(x, t)×W(x, t)× εmax (2)

where f 1(x, t) and f 2(x, t) represent the low-temperature and high-temperature stress on
light use efficiency (unitless), W(x, t) is the water stress coefficient (unitless) reflecting
the impact of water conditions, and εmax is the maximum light use efficiency under ideal

www.resdc.cn
www.resdc.cn


Remote Sens. 2023, 15, 5212 5 of 19

conditions (unit: g C MJ−1). The formulas of f 1, f 2, and W can be obtained from Zhu
et al. [66].

Combining Equations (1) and (2), Equation (3) can be obtained:

NPP(x, t) = APAR(x, t)× f1(x, t)× f2(x, t)×W(x, t)× εmax (3)

For a given pixel, when the NPP, APAR, f 1, f 2, and W are known, εmax on that pixel
can be calculated using Equation (3). Then, the calculated εmax values of numerous pixels
are classified by vegetation type, and the maximum light use efficiency of each vegetation
type is simulated based on the principle of minimum error.

For a certain vegetation type, the error between its observed NPP and simulated NPP
can be expressed by a function:

EE(x) = ∑
j
i=1(mi − nix)

2, x ∈ [l, u] (4)

In the equation, i represents the number of samples for a certain vegetation type. j
is the maximum number of samples for a certain vegetation type. m is the observed NPP
data. n is the product of the APAR, temperature, and water stress factors, which means
APAR × f 1 × f 2 ×W. x is the maximum light use efficiency for a certain vegetation type. l
and u are the minimum and maximum values of the maximum light use efficiency for each
vegetation type. Then, we obtained Equation (5):

EE(x) = ∑
j
i=1ni

2x2 − 2∑
j
i=1minix + ∑

j
i=1m2

i , x ∈ [l, u] (5)

which is a quadratic equation with an upward-facing parabola. There must be a minimum
value in the interval [l, u], and the corresponding x is the simulated maximum light use
efficiency εmax for a certain vegetation type.

Estimating the fraction of absorbed photosynthetically active radiation (APAR) by
vegetation in the photosynthetically active radiation (PAR, 0.4~0.7 µm) is achieved based
on the reflection characteristics of the vegetation in the red and near-infrared bands in the
remote sensing data. The absorbed PAR by vegetation depends on the total solar radiation
and the characteristics of the plant itself, and can be calculated using Equation (6):

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (6)

In the equation, SOL(x, t) represents the total solar radiation (MJ·m−2) at pixel x in
month t; FPAR(x, t) is the fraction of absorbed PAR by the vegetation layer (unitless); and the
constant 0.5 represents the proportion of photosynthetically active radiation (wavelength
of 0.38~0.71 µm) that the vegetation can utilize out of the total solar radiation.

Within a certain range, there is a linear relationship between the FPAR and NDVI,
which can be determined based on the maximum and minimum NDVI values and the
corresponding FPAR maximum and minimum values for a certain vegetation type:

FPARNDVI(x, t) =
(NDVI(x, t)−NDVIi,min)

(NDVIi,max −NDVIi,min)
× (FPARmax − FPARmin) + FPARmin (7)

In the equation, NDVI i,max and NDVI i,min correspond to the maximum and minimum
NDVI values for the ith vegetation type.

Further research has shown that there is also a good linear relationship between FPAR
and the Ratio Vegetation Index (SR), which can be expressed as follows:

FPARSR(x, t) =
(SR(x, t)− SRi,min)

(SRi,max − SRi,min)
× (FPARmax − FPARmin) + FPARmin (8)
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In the equation, FPARmin and FPARmax are independent of the vegetation type, and are
0.001 and 0.95; the SR is determined by Equation (9), where SRi,max and SRi,min correspond
to the maximum and minimum NDVIi,max and NDVIi,min for the ith vegetation type.

SR(x, t) =
1 + NDVI(x, t)
1−NDVI(x, t)

(9)

Comparing the estimated results of FPAR-NDVI and FPAR-SR, it was found that
the FPAR estimated using the NDVI is higher than the observed value, while the FPAR
estimated using the SR is lower than the observed value, but the error is smaller than that of
the direct estimation using the NDVI. Taking this into account, based on the flux observation
and remote sensing monitoring data, this study optimized the model parameters and finally
combined Equations (7) and (8), taking their average value as the estimated value of FPAR:

FPAR(x, t) = α× FPARNDVI + (1− α)× FPARSR (10)

In the equation, FPARNDVI is the estimated value by Equation (7), FPARSR is the
estimated value by Equation (8), and α is the adjustment coefficient between the estimated
value and the observed value.

2.4. Model Accuracy Validation

We assessed the accuracy of our results using MODIS NPP data, in situ observations,
and simulations of 14 terrestrial biosphere models (TBMs). The MOD17A3 product has
undergone validation for NPP studies at both regional and global scales [16,67]. Nu-
merous scholars regard these data as the standard for assessing the reliability of their
results [21,68,69]. We conducted pixel-scale correlation analysis between our estimates
and the MODIS NPP product. We also evaluated the performance of our estimates by
comparing them with in situ observations [70]. In addition, we further compared our
results with simulations of these TBMs. We only evaluated the overall magnitude and
temporal trend consistencies of the NPP in the YRB between our result and the TBMs
simulations due to the coarser spatial resolutions of the process-oriented models. The
CLM5.0 simulations (1999~2018) originate from Friedlingstein et al. [71], while other TBM
simulations (1999~2010) are derived from the MsTMIP [20]. We used four criteria to evalu-
ate the quality of our estimates, including the coefficient of determination (R2), Pearson
correlation coefficient (r), root mean square error (RMSE), and percent bias (PB).

r =
∑n

i=1
(
Yi,CASA −YCASA

)(
Yi,com −Ycom

)√
∑n

i=1
(
Yi,CASA −YCASA

)2
√

∑n
i=1
(
Yi,com −Ycom

)2
(11)

R2 = 1− ∑n
i=1(Yi,com −Yi,CASA)

2

∑n
i=1
(
Yi,com −YCASA

)2 (12)

RMSE =

√
1
n ∑n

i=1(Yi,CASA −Yi,com)
2 (13)

PB =
1
n ∑n

i=1

(
Yi,CASA −Yi,com

Yi,com
× 100%

)
(14)

where Yi,CASA and Yi,com are the CASA-based NPP and comparative data, respectively.
YCASA and Ycom are the mean values of the CASA-based NPP and comparative data,
respectively.

2.5. Spatiotemporal Variation Analysis

Univariate linear regression analysis can simulate the change trend of each grid, and
comprehensively characterize the regional pattern evolution of a certain time series using
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the spatial change characteristics of individual pixels at different periods. The advantage of
this method is that it can eliminate the influence of abnormal factors on the trend analysis
of NPP and truly reflect the evolutionary trend of NPP over a long time series. In this study,
the annual total NPP was analyzed for its spatial evolution trend using the univariate
regression trend analysis method on a per-pixel basis. The NPP of the YRB was regressed
against time for each pixel. The slope of the regression equation for each pixel reflects the
trend of NPP evolution, and a positive slope indicates an overall upward trend, while a
negative slope indicates a downward trend. The magnitude of the slope reflects the degree
of increase or decrease in the pixel, and the larger the absolute value of the slope, the more
drastic the change. The slope was estimated as:

Slope =
n×∑n

i=1 (i× NPPi)− (∑n
i=1 i)(∑n

i=1 NPPi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (15)

where Slope represents the slope of the linear fitting equation, i represents the current year, n
represents the study period, and NPPi represents the NPP for the ith year. The significance
of the trend was tested using the Mann–Kendall (MK) detection method [72,73].

2.6. Quantification of Regional Contributions to NPP IAV

This study used a pixel-based partitioning contribution calculation method developed
by Ahlstrom et al. [33] to evaluate the contribution of different regions to the overall IAV of
NPP. The equation is shown as:

f j =
∑N

t=1
xjt|Xt|

Xt

∑N
t=1|Xt|

(16)

where xjt represents the IAV of the NPP for pixel j in year t, Xt represents that of the entire
study area, and fj represents the contribution rate of pixel j to the study area. Pixels with
larger absolute contribution rates contribute more to the whole study area, while pixels
with smaller absolute contribution rates have less influence on the IAV of the study area.
Positive values indicate that the pixel has a positive promotion effect, while negative values
indicate that the pixel has a negative inhibitory contribution for the entire study area. When
we calculate according to different partitions, the sum of the contribution rates of all pixels
in each partition indicates the total contribution rate of that partition to the study area.

2.7. Attribution Analysis

In order to assess the correlation between climate change factors and NPP, we used the
Pearson correlation coefficient to evaluate the correlation between the time series of NPP
and its influencing factors. Additionally, we used the Lindeman–Merenda–Gold (LMG)
model [74] to quantitatively evaluate the relative importance of different drivers.

LMG(xk) =
1
p! ∑S⊆{x1,...,xp}\{xk}n(S)!(p− n(S)− 1)!seqR2({xk}|S) (17)

where xk is the explanatory variable and S means a set of variables.

seqR2({xk}|Sk(r)) = R2({xk} ∪ Sk(r))− R2(Sk(r)) (18)

where r represents the order of the regressors (r1, . . ., rp), Sk(r) denotes the set of regressors
entered into the model before regressor xk in the order r. This evaluation method can
effectively avoid the order effects of regression variables and accurately provide relative
importance measures of each factor. Vegetation growth is influenced by multiple factors,
among which precipitation, temperature, and radiation are crucial. To further clarify the
dominant influencing factors in different regions of the YRB, this study used the IAV time
series of annual mean temperature, precipitation, and radiation as independent variables,
and the IAV time series of annual mean NPP as the dependent variable. The LMG method
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was used to quantitatively evaluate the relative contributions of each factor to the NPP
IAV. The relative contributions of the three factors were normalized, and then the RGB
combination was used to obtain the spatial distribution pattern of the relative contributions
of the three factors to visually depict the spatial patterns of the dominant factors in different
regions. R software (V4.3.1) and Python software (V3.9.13) were used in this study.

3. Results
3.1. Model Performance

Our simulation showed a significant positive correlation with the MODIS NPP, with
an R2 of 0.76 (p < 0.001) and RMSE (root mean square error) of only 65.57 g C m−2. The PB
(percentage bias) between the NPP simulated using the CASA model and the MODIS NPP
was only 8.31% (Figure 2a), indicating good consistency between our simulation results
and mainstream satellite retrievals in terms of the spatial pattern.
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We further compared our results with 220 in situ annual NPP measurements over
the YRB published in an open access database and found that our results were in good
consistence with the measurements (R2 = 0.75, p < 0.001) (Figure 2b). The RMSE and PB
between the estimated and observed NPP were 72.77 g C m−2 and 15.72%, respectively.
Although the MODIS NPP also kept consistent with the observations (R2 = 0.51, p < 0.001),
our estimates showed a better performance than the MODIS NPP when compared with the
in situ observations in terms of the PB and RMSE (Figure 2b).

We further compared our results with the simulations of 14 TBMs (Figure 3). The com-
parison revealed significant differences in magnitudes among different TBM simulations.
Between 1999 and 2010, the annual mean NPP of the YRB simulated by these TBMs ranged
from approximately 40 gC m−2 (VEGAS2.1) to 450 gC m−2 (GTEC), with the maximum
value being about 11 times the minimum simulation. During this period, our estimate
fell within the middle of the distribution of these model simulations. The mean NPP we
simulated (233.63 gC m−2 yr−1) closely aligned with the ensemble mean of these models
(222.26 gC m−2 yr−1), with an RMSE of only 18.82 gC m−2 yr−1 and a PB of only 5.09%.
Additionally, our estimate shows high consistence in the temporal trend (r = 0.61, p < 0.05)
with the ensemble mean of these TBMs. Furthermore, when compared to the simulation
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of CLM5.0 over a longer time span (1999—2018), it was found that the CLM5.0 estimates
were lower than those of most (11 out of 14) of the TBMs, as well as lower than our results.
However, we observed a good consistency in the temporal trends between our estimates
and CLM5.0 simulations (r = 0.69, p < 0.01). Overall, the above results indicated that our
results based on the CASA can reasonably reflect the spatiotemporal patterns of the NPP in
the YRB.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

ranged from approximately 40 gC m−2 (VEGAS2.1) to 450 gC m−2 (GTEC), with the maxi-
mum value being about 11 times the minimum simulation. During this period, our esti-
mate fell within the middle of the distribution of these model simulations. The mean NPP 
we simulated (233.63 gC m−2 yr−1) closely aligned with the ensemble mean of these models 
(222.26 gC m−2 yr−1), with an RMSE of only 18.82 gC m−2 yr−1 and a PB of only 5.09%. Ad-
ditionally, our estimate shows high consistence in the temporal trend (r = 0.61, p < 0.05) 
with the ensemble mean of these TBMs. Furthermore, when compared to the simulation 
of CLM5.0 over a longer time span (1999—2018), it was found that the CLM5.0 estimates 
were lower than those of most (11 out of 14) of the TBMs, as well as lower than our results. 
However, we observed a good consistency in the temporal trends between our estimates 
and CLM5.0 simulations (r = 0.69, p < 0.01). Overall, the above results indicated that our 
results based on the CASA can reasonably reflect the spatiotemporal patterns of the NPP 
in the YRB. 

 
Figure 3. Comparison of the estimated NPP with simulations of different terrestrial biosphere mod-
els (TBMs). The red statistical values represent a comparison between our results and the ensemble 
mean of all TBMs from 1999 to 2010. The blue number represents the correlation coefficient between 
our results and the CLM5.0 simulations. 

3.2. Spatial Pattern of NPP 
The spatial distribution of the average annual NPP in the YRB from 1999 to 2018 is 

shown in Figure 4a. The high NPP values are concentrated in the southern part of the 
basin, the Qinling Mountains, and the northeastern part of the Tibetan Plateau, while the 
low values are distributed in the upstream Tibetan Plateau and the northern part of the 
Loess Plateau in the middle reaches. Cell grids with an annual NPP between 200 and 400 
g C m−2 yr−1 account for the largest proportion of the vegetation area in the basin (47.43%), 
followed by areas with an annual NPP below 200 g C m−2 yr−1 (38.62%) and areas with an 
NPP between 400 and 600 g C m−2 yr−1 (12.51%). The multi-year average NPP in the YRB 
was about 257.02 g C m−2 yr−1, with an annual total primary production of 189.81 Tg C. 

According to the distribution of the NPP at different altitudes (Figure 4b), areas with 
altitudes below 1 km and between 2 and 4 km have a higher annual mean NPP (>300 g C 
m−2 yr−1) among all altitude gradients. Areas with an altitude above 4 km show the lowest 
annual mean NPP (132.55 g C m−2 yr−1). In terms of the annual total NPP, regions between 
1 and 1.5 km (the major implementation areas of the GFGP) account for the largest pro-
portion (33.8%) among all altitude gradients, followed by the regions between 1.5 and 2 
km (14.52%). 

Figure 3. Comparison of the estimated NPP with simulations of different terrestrial biosphere models
(TBMs). The red statistical values represent a comparison between our results and the ensemble mean
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results and the CLM5.0 simulations.

3.2. Spatial Pattern of NPP

The spatial distribution of the average annual NPP in the YRB from 1999 to 2018 is
shown in Figure 4a. The high NPP values are concentrated in the southern part of the basin,
the Qinling Mountains, and the northeastern part of the Tibetan Plateau, while the low
values are distributed in the upstream Tibetan Plateau and the northern part of the Loess
Plateau in the middle reaches. Cell grids with an annual NPP between 200 and 400 g C
m−2 yr−1 account for the largest proportion of the vegetation area in the basin (47.43%),
followed by areas with an annual NPP below 200 g C m−2 yr−1 (38.62%) and areas with an
NPP between 400 and 600 g C m−2 yr−1 (12.51%). The multi-year average NPP in the YRB
was about 257.02 g C m−2 yr−1, with an annual total primary production of 189.81 Tg C.

According to the distribution of the NPP at different altitudes (Figure 4b), areas with
altitudes below 1 km and between 2 and 4 km have a higher annual mean NPP (>300 g
C m−2 yr−1) among all altitude gradients. Areas with an altitude above 4 km show the
lowest annual mean NPP (132.55 g C m−2 yr−1). In terms of the annual total NPP, regions
between 1 and 1.5 km (the major implementation areas of the GFGP) account for the largest
proportion (33.8%) among all altitude gradients, followed by the regions between 1.5 and
2 km (14.52%).

From the perspective of climate zones (Figure 4c), the semi-humid region accounts
for the largest area proportion (45.07%) of the YRB. The annual mean NPP in the humid
region is the largest (482.83 g C m−2 yr−1). However, this region only covers a very small
area (0.23%) of the YRB, and its contribution to the total NPP of the basin is quite small
(0.82 Tg C yr−1, or 0.43%). Although the annual mean NPP of the semi-humid region
(325.17 g C m−2 yr−1) is only 67.4% of that of the humid region, its contribution to the total
NPP of the basin is the largest (57.03%), and the annual mean NPP in the arid region is the
lowest (133.62 g C m−2 yr−1). In terms of the total NPP, the Tibet Plateau and the semi-arid
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region also show non-negligible contributions to the YRB with rates of 24.30% and 14.80%,
respectively. The above results highlight the important role of the semi-humid region in
controlling the vegetation carbon sink capacity of the YRB.
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Figure 4. The spatial distribution of annual mean NPP (a) and its mean values across different
altitudes (b), climate zones (c), and vegetation types (d). Pie charts in the right corner of (b–d)
illustrated the proportion of the total NPP of different categories.

In terms of vegetation types (Figure 4d), woodland shows the largest annual mean
NPP (348.57 g C m−2 yr−1), followed by cropland (292.40 g C m−2 yr−1) and grassland
(224.95 g C m−2 yr−1). Grassland accounts for the largest contribution (44.23%) to the total
NPP in the YRB, followed by cropland (31.12%) and woodland (19.31%).

3.3. Spatiotemporal Dynamics of NPP

Figure 5a illustrates the spatial pattern of annual NPP change rates in the YRB. The
NPP change rates in the study area range from −24 to 35 g C m−2 yr−1 and the whole
study area shows an increasing trend in NPP with a rate of 6.76 g C m−2 yr−1. Regions
with the largest increasing rates (>12 g C m−2 yr−1) are concentrated around the Qinling
Mountains and the central Loess Plateau. Most parts (79.63%) of the YRB shows significantly
(p < 0.05) increasing trends in NPP (Figure 5b), especially the Qilian Mountains and the
key implementation areas of the GFGP. Areas where the NPP significantly decrease are
mostly urban areas, including the Guanzhong Plain urban agglomeration and cities (e.g.,
Luoyang) downstream of the YRB.
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Figure 5c shows the temporal variations of the NPP in the whole YRB and different
segmentations. The NPP in the upstream, midstream, and downstream basins of the YRB
all show fluctuating upward trends. The largest increasing rate (8.4 g C m−2 yr−1, p < 0.01)
occurs in the midstream basin, followed by the downstream basin (3.81 g C m−2 yr−1,
p < 0.01) and upstream basin (2.34 g C m−2 yr−1, p < 0.05).

Figure 5d reveals the NPP IAV in the whole YRB and different segmentations. The
NPP IAV in the downstream basin is relatively stable compared with other segmentations.
It is clear that the NPP IAV in the midstream basin showed the largest contribution (62.36%)
to that of the whole YRB, followed by the upstream basin (36.25%). It is worth noting
that in 2011, the whole YRB, midstream basin, and upstream basin all showed the largest
negative IAV during the study period with magnitudes of −25.34 Tg C, −14.75 Tg C, and
−9.94 Tg C, respectively. This large negative variation may be attributed to the extreme
drought event during this year [75].

3.4. Regional Contributions to the Holistic NPP IAV

Figure 6a shows the spatial pattern of the cell-scale contributions of the NPP IAV to the
holistic NPP IAV of the YRB. Most regions of the basin (96%) showed a positive contribution
to the basin holistic NPP IAV. Only a few regions, for instance, the urban agglomeration in
the south and southeast of the midstream basin, showed negative impacts on the holistic
NPP IAV of the YRB. As for different climate regions (Figure 6b), the contribution rate of the
semi-humid region was the highest (62.66%), followed by the semi-arid region (18.19%) and
the Tibetan Plateau (15.74%). We further analyzed the contribution rate per unit area and
found that the contributions of the semi-humid (1.31 × 10−4% km−2) and humid regions
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(1.30 × 10−4% km−2) were very close, both being substantially higher than those of other
climate regions. Overall, the semi-humid area dominated the NPP IAV of the YRB.
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Figure 6. Regional contribution to the basin holistic NPP IAV. (a) maps the spatial pattern of the cell
scale contribution, and (b–e) show the contributions of different climate regions, altitudes, vegetation
types, and ecological restoration segmentations, respectively.

In terms of the contributions of different altitudes (Figure 6c), areas with altitudes
between 1 and 1.5 km contributed the largest (43.07%) to the basin holistic NPP IAV,
followed by areas with altitudes between 1.5 and 2 km (17.77%) and 0.5 and 1 km (12.24%).
In terms of the contribution rate per unit area, the areas between 0.5 and 3 km shared
similar contributions rates (around 1.1 × 10−4% km−2).

We further evaluated the contribution rates of different vegetation types to the NPP
IAV in the YRB (Figure 6d). The results showed that the contribution rate of grassland
was the largest, reaching 45.69%, followed by cropland and woodland, which were 31.21%
and 45.69%, respectively. However, woodland showed the largest contribution rate per
unit area (1.26 × 10−4% km−2), followed by cropland (1.08 × 10−4% km−2) and grassland
(0.85 × 10−4% km−2). Figure 6e shows the contribution rates of the area under the GFGP
and the other area. The GFGP area contributes to 19.57% of the holistic NPP IAV in
the YRB and its contribution rate per unit area (1.25 × 10−4% km−2) is larger than that
(0.89 × 10−4% km−2) of the other area.

3.5. Attribution of the NPP IAV

We quantified the relative contributions of the key drivers (radiation, precipitation,
and temperature) of the NPP IAV based on the LMG method (Figure 7a). It can be found
that the NPP IAV in most parts of the YRB was influenced by multiple factors. Specifically,
the southern upstream and southeastern midstream regions were mainly affected by both
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temperature and radiation, while the central and northern upstream and northeastern mid-
stream regions were mainly affected by precipitation and radiation. The central upstream
region was mainly affected by precipitation and temperature. The areas affected only by
precipitation were mainly concentrated in the midstream region, while areas dominated by
temperature were concentrated in the upstream region, and the southern midstream region
was primarily affected by radiation.
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and temperature, respectively.

By extracting the dominant factors of each grid cell (Figure 7b), we found that water
availability was the most important factor for NPP variability in the entire basin, with
a relative contribution rate of 51.31%, followed by temperature (27.73%) and radiation
(20.96%) (Figure 7d). Precipitation dominated the NPP IAV in 62.90% of the YRB, followed
by temperature (23.07%) and radiation (14.03%) (Figure 7b). As for the upstream, mid-
stream, and downstream basins, precipitation was the dominant factor for the NPP IAV in
these regions, showing relative contributions that ranged from 43.31% to 56.69% (Figure 7d)
and dominant areas of 66.31%, 59.81%, and 47.22%, respectively. Temperature was the
second important factor in the upstream and downstream region, showing dominant areas
of 28.96% and 38.55%, respectively. Radiation was the second important factor affecting
the NPP IAV in the midstream region, dominating an area of 25.15%, especially in the
Guanzhong Plain (Figure 7b).

As for different climate zones, precipitation is the dominant factor in the semi-humid,
semi-arid, and arid zones, showing relative contributions of 51%, 80%, and 75%, respec-
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tively. In other words, water availability controls the NPP IAV in water-limited regions.
In the humid zone, radiation shows the largest relative contribution (73%), which means
energy controls the NPP IAV in regions without water and heat limitation. In the Tibetan
Plateau region of the YRB, temperature and precipitation are both important drivers of the
NPP IAV, sharing a similar relative contribution (about 40%).

4. Discussion
4.1. Spatiotemporal Changes of NPP in the YRB

This study simulated the spatiotemporal patterns of the NPP in the YRB using the
CASA model. We found that the spatial distribution of the NPP in the basin exhibited a
gradually decreasing pattern from south to north, which was consistent with the spatial
pattern of rainfall. These results confirm the previous findings on the spatial distribution of
vegetation growth and carbon sinks in the YRB [21,59,60]. Comparison of our simulation
results with the MODIS NPP and in situ measurements at different spatiotemporal scales
also confirmed the spatial distribution pattern of the NPP in the basin (Figure 2).

We further analyzed the temporal evolution of the NPP and found a significant
increasing trend in NPP for more than 98% of the basin area after 1999. The vegetation in
the middle stream of the YRB showed the fast recovery rate, with an NPP growth rate of
8.4 g C m−2 yr−1 (p < 0.001). Our results confirmed the vegetation carbon sink effect of the
ecological restoration project in the YRB.

In addition, we systematically analyzed the IAV of the NPP and found that the
largest positive IAV occurred in 2004 for the overall basin and the middle stream. The
extreme precipitation in 2003, the largest since 1965 [76], may have contributed to the high
positive IAV in 2004 via the lagged effects of vegetation response to water availability [77].
The abundant precipitation in 2003 may have stimulated the growth and productivity of
vegetation in the following year. Meanwhile, the overall basin, upstream, and middle
stream all exhibited the largest negative IAV in 2011, possibly due to the extreme drought
that occurred in this year [75].

Furthermore, through analysis of the regional contributions of different vegetation
types in the YRB, we found that grasslands contribute the most to the NPP IAV due to
their extensive coverage, while forests exhibit the highest per-unit-area contribution rate.
Figure 6e also demonstrates the significant impact of the GFGP on NPP IAV. It is worth
noting that previous studies indicated that the forest net carbon gain (NPP) increases
rapidly in youth, peaks in middle age, and then decreases in old age [78,79]. Forest aging
may lead to a future decline in the NPP [80]. Therefore, selecting the right forest species for
maximal carbon stock and progressive forestation may be an appropriate way to reduce
CO2 and compensate for the carbon sink decline in existing forests [81].

4.2. Regional Contribution of NPP IAV

Our results showed that most of the areas in the YRB positively contributed to the
basin’s holistic NPP IAV. The semi-humid region showed the largest contribution (62.66%).
Our results differ from previous global-scale studies [33,37,38], which indicated that semi-
arid areas or tropical regions controlled the vegetation productivity worldwide. However,
our findings are consistent with a previous study, which also identified the semi-humid area
as a major contributor to the NPP IAV in China [21]. For the YRB, the GFGP was mainly
implemented in the semi-humid region, which is a key reason for the rapid recovery of
vegetation in this region over the past two decades [6,49,53]. Our results further highlight
the important role of this region on the NPP IAV in the YRB.

4.3. Response of NPP IAV to the Key Drivers

Our study found that in most areas of the YRB (including the western upstream and
eastern midstream regions), especially in the Loess Plateau region, the NPP IAV was mainly
affected by precipitation. This is because that these regions are located in the arid, semi-arid,
and semi-humid regions, which are characterized by an uneven spatiotemporal distribution
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of precipitation and high evapotranspiration, leading to increased sensitivity of the NPP
IAV to water availability [44,47]. The southern upstream region of the basin is located in the
Tibetan Plateau, where radiation is strong and there is a clear division between the wet and
dry seasons. However, the temperature in this region is low throughout the year, and water
is limited; hence, the NPP IAV is mainly influenced by temperature and precipitation [43,82].
The southern midstream region of the basin has sufficient water and heat conditions; thus,
it is mainly controlled by energy [21]. Other influencing factors include the soil and above-
ground biomass. Soil provides essential nutrients and moisture for plant growth [83]. Soil
properties such as texture, pH, and organic matter content directly affect plant growth and
root expansion [84]. Additionally, aboveground biomass, including trees, herbs, and other
vegetation, influences vegetation competitiveness, growth, and diversity by intercepting
sunlight, reducing water evaporation, and providing a habitat [85]. In summary, changes in
soil quality and aboveground biomass can also significantly impact vegetation productivity,
thereby exerting a widespread influence on ecosystems and agricultural yields.

4.4. Uncertainties and Limitations

Despite the effective evaluation of the simulation results, there are still some uncertain-
ties in this study. First, uncertainties may come from the satellite observations and model
estimations of the NPP IAV, which are crucial when trying to accurately estimate changes
in vegetation production and the impacts of different factors. Reducing the uncertainties
of satellite observations and model estimations should be the focus of further research.
Second, our study did not fully consider the impact of extreme weather events on the
NPP IAV. For example, heavy precipitation, high temperature, non-extreme precipitation,
and low-temperature events may show considerable impacts on the IAV of vegetation
production [21,86–88].

5. Conclusions

This study, employing the CASA model, conducted a comprehensive assessment of
the NPP in the YRB for the period spanning from 1999 to 2018. Our findings demonstrated a
remarkable consistency with the spatial patterns observed in the MODIS NPP, and notably,
our estimates exhibited a better performance when compared with in situ observations.
The average annual total NPP in the YRB was 189.81 Tg C yr−1 during the study period.
The NPP in the YRB exhibited distinct spatial patterns with elevated NPP concentrated in
the southern region of the basin, the Qinling Mountains, and the northeastern part of the
Tibetan Plateau. In contrast, lower values were predominantly situated in the northern part
of the Loess Plateau. Key contributors to the basin’s overall carbon sink were areas with
altitudes ranging from 1 to 1.5 km, the semi-humid region, and grasslands. Remarkably,
approximately 79.63% of the YRB displayed statistically significant (p < 0.05) increasing
trends in NPP, with particular prominence observed in the Qilian Mountains and the
primary implementation areas of the GFGP. The NPP exhibited fluctuating upward trends
in the upstream, midstream, and downstream basins, with the midstream basin registering
the most substantial increasing rate of 8.4 g C m−2 yr−1 (p < 0.01). This region also made
the most significant contribution (62.36%) to the NPP IAV of the entire YRB. Spatially, 96%
of the YRB exhibited a positive contribution to the holistic NPP IAV, with the semi-humid
region exhibiting the largest contribution (62.66%). These results underscore the crucial
role of the semi-humid region in governing both the magnitude and IAV of NPP in the
YRB. In addition, we identified varying drivers influencing the NPP IAV across the YRB.
Precipitation emerged as the dominant factor, exerting a positive influence on 62.90% of
the entire basin, especially in the water-limited regions. In summary, this study provides a
framework for detecting interannual variation in NPP and understanding the multifaceted
impacts of future climate fluctuations on the persistence of vegetation production in the
YRB.
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