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Abstract: Increased spatial resolution has been shown to be an important factor in enabling machine
learning to map burn extent and severity with extremely high accuracy. Unfortunately, the acquisition
of drone imagery is a labor-intensive endeavor, making the capture of drone imagery impractical
for large catastrophic fires, which account for the majority of the area burned each year in the
western US. To overcome this difficulty, satellites, such as PlanetScope, are now available which
can produce imagery with remarkably high spatial resolution (approximately three meters). In
addition to having higher spatial resolution, PlanetScope imagery contains up to eight bands in
the visible and near-infrared spectra. This study examines the efficacy of each of the eight bands
observed in PlanetScope imagery using a variety of feature selection methods, then uses these bands
to map the burn extent and biomass consumption of three wildland fires. Several classifications are
produced and compared based on the available bands, resulting in highly accurate maps with slight
improvements as additional bands are utilized. The near-infrared band proved contribute most to
increased mapping accuracy, while the green 1 and yellow bands contributed the least.

Keywords: support vector machine (SVM); PlanetScope; satellite imagery; Iterative Dichotomiser 3
(ID3); principal component analysis; burn extent; burn severity; biomass consumption

1. Introduction

A century of fire suppression in the western US compounded by the effects of climate
change, high winds, and population growth has resulted in a departure from historic fire
return intervals [1,2]. This has resulted in a significant increase in large catastrophic fires
since 2000 [3]. Nineteen of the twenty worst fire seasons in the US have been experienced in
this century, with some fire seasons resulting in more than four million hectares burned and
suppression costs exceeding four billion dollars annually. Interestingly, there has actually
been a reduction in the quantity of fires during the same period [4,5].

These large catastrophic fires result in increased post-fire erosion, degraded wildlife
habitat, and loss of timber resources. This loss results in negative impacts on ecosystem
resilience as well as increased risk to communities in the wildland–urban interface. Wild-
land fires claim more lives in the US than any other natural disaster, with an average loss of
18 wildland firefighters per year [6,7]. The 2018 Camp Fire in northern California resulted
in 85 fatalities and uninsured losses in excess of ten billion dollars. The Camp Fire leads
the list of the top ten fires most destructive to human development, nine of which have
occurred since 2000 [8].

Effective management of wildland fires is essential for maintaining resilient wildlands.
Actionable knowledge of the relationship between fire fuels, fire behavior, and the effects of
fire on ecosystems as well as human development can enable wildland managers to deploy
innovative methods for mitigating the adverse impacts of wildland fire [9]. The knowledge
extracted from remotely sensed data enables land managers to better understand the impact
wildfire has had on the landscape, providing an opportunity for better management actions
which result in improved ecosystem resiliency.
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This project explores the mapping of burn extent and severity from very high-resolution
PlanetScope imagery [10], investigating the feasibility of mapping biomass consumption,
which is a measure of wildland fire burn severity. The analysis explores the utility of the
individual bands when used by the SVM for mapping burn extent and severity, showing an
evaluation of the effects that increased spectral resolution and extent have on mapping burn
severity. Additionally, this analysis explores the effect spatial resolution has on the accuracy
of burn severity mapping when evaluating the very high resolution of the PlanetScope
imagery as opposed to hyperspatial drone imagery, which has previously been used for
mapping burn severity with an SVM.

1.1. Background

Local land managers are overwhelmed by the severity of wildland fires and lack the
resources to make informed decisions in a timely manner. Regulations within the United
States require fire recovery teams to acquire post-fire data within 14 days of containment,
including generating burn severity maps [11]. Currently, fire managers and burn mitigation
teams in the US have predominantly used Landsat imagery, which contains 8 bands of 30 m
spatial resolution [12] (p. 9). Alternately, the Sentinel-2 satellites have comparable bands
to Landsat 9 with a spatial resolution of 10 m [13]. Assuming that there are no clouds or
smoke obstructing the view of the fire, Landsat imagery can only be collected for a site once
every eight days (the Landsat 8 and 9 satellites are in offset orbits), making it difficult to
acquire data within the narrow timeline required for completing the burn recovery plans.

1.1.1. Burn Severity and Extent

The term “wildland fire severity” can refer to many different effects observed through
a fire cycle, from how intensely an active fire is burning to the response of the ecosystem to
the fire over the subsequent years. This study investigates the direct or immediate effects
of a fire, such as biomass consumption, as observed in the days and weeks after the fire
is contained [14]. Therefore, this study defines burn severity as a binary identification
of burned areas which experienced low biomass consumption as evidenced by partially
charred organic material (black ash) as opposed to burned areas which experienced high
biomass consumption as evidenced by more completely burned organic material (white
ash), which is indicative of high temperatures and long fire residence time [13,15,16].

Identification of burned area extent within an image can be achieved by exploiting
the spectral separability between burned organic material (black ash and white ash) and
unburned vegetation [17,18]. Classifying burn severity can be achieved by separating
pixels with black ash (low fuel consumption) from white ash (more complete fuel con-
sumption), relying on the distinct spectral signatures between the two types of ash [16]. In
forested biomes, low-severity fires can also be identified by looking for patches of unburned
vegetation within the extent of the fire.

The most common metric used for mapping wildland burn severity from medium
resolution satellites such as Landsat and Sentinel-2 is the normalized burn ratio (NBR),
which is the normalized difference between the near-infrared (NIR) and shortwave infrared
(SWIR) bands [15,19]. While NBR is effectively used for burn severity mapping, differenced
NBR (dNBR), which is calculated as the pre-fire NBR (NBRpre) minus the post-fire NBR
(NBRpost) [9], has been found to correlate better to burn severity than NBRpost alone [20].
Due to the unpredictability of unplanned wildland fire ignitions, satellite imagery is a good
dataset from which to calculate dNBR due to its ability to generate continuous imagery
coverage before a fire has occurred, from which preburn imagery corresponding to a study
area containing an unplanned wildland fire can be extracted.

The normalized difference vegetation index (NDVI) is another commonly used veg-
etation health metric [21], measuring the photosynthetic capacity of the vegetation [22].
NDVI has also been used to map wildland fires [20,23,24]. NDVI is the normalized dif-
ference between the NIR and red bands [15,21,22,25], and is also used with a temporally
differenced variant, differenced NDVI (dNDVI), which is the NDVI immediately after the
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fire minus the NDVI calculated from imagery acquired one year after the fire, capitalizing
on the post-fire greenup that is evidenced in the year following the fire [23]. Mapping burn
severity with the bi-temporal context afforded by dNDVI results in increased correlation
to burn severity [14]. Unfortunately, dNDVI cannot be calculated until one year after the
fire, precluding the use of that metric in developing post-fire recovery plans which guide
management actions in the days, weeks, and months after the fire [14].

1.1.2. Support Vector Machine

The support vector machine (SVM) is a pixel-based classifier that can be used to label
or classify pixels based on an image pixel’s band values. The data used to train the SVM
consists of manually labeled regions of pixels that have the same class label, such as would
be encountered when labeling post-fire effect classes such as “burned” or “unburned”.
When training the classifier, the SVM creates a hyperplane inside the multi-dimensional
band decision space, dividing the decision space between training classes based on their
pixel band values. When classifying the image, pixels are classified based upon which side
of the hyperplane a pixel lands when placed in the decision space based on the pixel’s
band values. Support vector machines in their simplest form can only perform binary
classifications, identifying which side of a hyperplane an unclassified tuple lies on within
the decision space. In order to classify more than two classes, it is necessary to use either a
one-vs.-rest or one-vs.-all approach. Most typically, a one-vs.-rest approach is utilized, as it
is more efficient than the one-vs.-all approach [26].

SVMs have been used previously in research efforts to determine the burn extents of
fires; however, hyperspatial drone imagery was used instead of high-resolution satellite
imagery. Hamilton [27] found that when using hyperspatial drone imagery with a spatial
resolution of five centimeters, the SVM classified burn extent with 96 percent accuracy.
Zammit [28] also utilized an SVM to perform pixel-based burned area mapping from the
green, red, and near-infrared (NIR) bands using 10 m resolution imagery acquired with
the SPOT 5 satellite. Likewise, Petropoulos [29] used an SVM to map burn extent from the
visible and near-infrared ASTER bands with 15 m resolution. Both Zammit and Petropoulos
obtained accuracy slightly lower than that observed by Hamilton.

1.1.3. Feature Engineering

The deployment of newer satellite sensors has resulted in the availability of imagery
with higher spatial resolution as well as spectral resolution and extent. This increase in
potential inputs to machine learning classifiers has resulted in an increased need for feature
engineering for the identification of optimal imagery bands as well as the synthesis of
additional features which will best increase classifier accuracy [30].

Principal component analysis (PCA) is a feature engineering method commonly uti-
lized with remotely sensed data [31], including in wildland fire-related efforts [32]. PCA
searches for a set of orthogonal vectors (eigenvectors) that best represent data in the original
decision space. This original data is projected into space with reduced dimensionality,
allowing for the essence of the original attributes to be represented by values (eigenvalues)
of a smaller set of eigenvectors, the principal components which contain the best repre-
sentation of the original data within this reduced set of eigenvectors [26]. These principal
components are then able to be used as inputs for machine learning classifiers, allowing for
a reduced number of input features than the original image.

Hamilton [33] utilized an Iterative Dichotomiser 3 (ID3) [34] to build a decision tree
and report the information gain of each attribute from the red, green, and blue bands in
the color image as well as texture, which is a measure of spatial context. Information gain
facilitated the identification of the most effective texture metric for machine learning-based
mapping of the burn extent and severity, where severity was evidenced by the existence
of white versus black ash. By reporting on information gain, it was possible to observe
the strength of an attribute’s ability to accurately split the training data. Information
gain was calculated based on user-designated labels based on the information content of
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the training data in relation to a given attribute [26]. In order to train the ID3, training
regions were designated for black ash, white ash, and unburned vegetation in imagery
from multiple wildland fires. Once the decision tree was constructed, the attributes with
the most information gain were represented in nodes closer to the head, while features
with less information gain appeared closer to the leaves.

2. Materials and Methods
2.1. Study Areas

This experiment focused on three study areas, each targeted spatially and temporally
on a wildland fire. The first was the Four Corners fire near Cascade, Idaho (at 44.537,
−116.169) which started on 13 August 2022, was contained on 24 September 2022, and
burned 5556 hectares [35]. The second was the McFarland Fire near Platina, California
(at 40.350, −123.034) which started on 30 July 2021, was contained on 16 September 2021,
and burned 49,636 hectares [36]. The last was the Mesa Fire near Council, Idaho (at 44.709,
−116.348) which started on 26 July 2018, was contained on 25 August 2018, and burned
14,051 hectares [37]. Figure 1 shows the locations of the three study areas relative to
each other.
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2.2. Imagery

Planet Labs Inc., San Francisco, CA, USA, has launched a constellation consisting of
over 200 Dove satellites with the ability to generate up to 200 million square kilometers of
PlanetScope imagery a day with the possibility of daily revisits for any particular spot. The
original Dove satellites with the PS2.SD sensor captured four bands, while the more recent
Super Dove satellites with the PSB.SD sensor capture eight bands, with both satellites
ranging from 430 to 890 nm [38]. Even from an altitude of 475 km, PlanetScope spatial
resolution manages to achieve three meters with a revisit time of one day [39]. All these
characteristics of the Super Dove constellation give it the flexibility to aid researchers in
mapping burn extent within the previously referenced fourteen-day window mandated for
the completion of burn recovery plans, and it is also able to acquire post-fire imagery before
meteorologic conditions such as wind and rain can degrade white ash within the burned
area, making it harder to detect areas with higher biomass consumption from the imagery.
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PlanetScope imagery was acquired for each of the fires through Planet Lab’s Education
and Research Program. For the two more recent fires (McFarland and Four Corners), eight-
band imagery was collected with PlanetScope’s PSB.SD sensors. The Mesa Fire burned
before the SuperDoves with the PSB.SD sensors were deployed, so four-band imagery from
the older Doves with the PS2.SD sensors was used instead. Table 1 contains the image
acquisition dates for each of the fires.

Table 1. The acquisition dates of all Planet Scope imagery used for each fire.

Fires Pre-Fire Acquisition Post-Fire Acquisition Post-Fire Drone
Acquisition

Four Corners 15 July 2022 12 October 2022 6 July 2023
McFarland 27 July 2021 16 September 2021 N/A

Mesa 15 July 2018 3 September 2018 8 September 2018

The latest PlanetScope sensor deployed on Planet Lab’s Super Dove constellation is the
PSB.SD sensor. This sensor uses a butcher block filter, which breaks the frame captured by
the satellite’s 47-megapixel sensor into 8 distinct “stripes”, one for each of the eight bands.
This frame’s stripes are then combined with adjacent frames to create the final eight-band
imagery. Table 2 shows the band names, wavelength, and bandwidth as defined by the full
width at half maximum (FWHM) and their interoperability with Sentinel-2 imagery [38].

Table 2. Interopability between PlanetScope SuperDove and Sentinel-2 bands [14]. Note that Plan-
etScope imagery does not contain the short-wave infrared bands contained in Sentinel-2 imagery.

Band Name Wavelength (FWHM) Interoperable with Sentinel-2

1 Coastal Blue 443 (20) Yes—Sentinel-2 Band 1
2 Blue 490 (50) Yes—Sentinel-2 Band 2
3 Green 1 531 (36) No equivalent with Sentinel-2
4 Green 565 (36) Yes—Sentinel-2 Band 3
5 Yellow 610 (20) No equivalent with Sentinel-2
6 Red 665 (31) Yes—Sentinel-2 Band 4
7 Red Edge 705 (15) Yes—Sentinel-2 Band 5
8 NIR 865 (40) Yes—Sentinel-2 Band 8a

Prior to the launch of the Dove-R constellation in 2019, Planet Labs deployed the Dove
constellation with PS2 sensors in July 2014. The last Dove satellites were decommissioned in
April 2022. The PS2 sensor consists of a Bayer pattern filter that separates the wavelengths
of light into blue, green, and red channels with a two-stripe filter placed on top. The top
stripe of this second filter blocks out near-infrared (NIR) wavelengths, allowing only blue,
green, and red light to pass through. The bottom stripe of this second filter allows only
the NIR wavelengths to pass through. Similar to the PSB.SD sensors, this creates a striped
effect, where the top half of each frame is red, green, and blue (RGB), and the bottom half is
NIR. Adjacent frames are combined to produce the final four-band image with RGB and
NIR bands (RGB–NIR) [38].

Unmanned aerial system (UAS) imagery was captured over a study area within the
Mesa fire while the team was assisting post-fire management efforts by the US Forest Service
Rocky Mountain Research Station. While the PlanetScope data has a three meter spatial
resolution [40], the UAS is capable of a hyperspatial resolution of just five centimeters
(5 cm) [41]. Hyperspatial imagery over the Mesa Fire was only acquired for a 350 hectare
area of interest within the fire perimeter. This area of interest corresponded to post-fire
fieldwork this team assisted with in the fall of 2018 [13]. Post-fire drone imagery of the
Four Corners fire was also acquired as part of this research effort.

This hyperspatial data was captured using a DJI Phantom 4, which carries a three-band
color camera, capturing the visible spectra in red, green, and blue bands. Its bands have a
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mildly different spectral response than red, green, and blue bands found in a typical color
camera [42], but is still close enough to be used to capture three-band color images for
mapping burn severity [17]. Table 3 shows the comparison of band frequencies between
the sensors on the DJI Phantom 4, the Planet Labs Doves, and PlanetLabs Super Doves.

Table 3. Comparison of band frequencies between the DJI Phantom and PlanetLabs PS2 and
PSB.SD sensors.

Phantom 4 PlanetScope PS2
(Dove)

PlanetScope PSB.SD
(Super Dove)

Band Name Band Frequency Band Frequency Band Frequency
Coastal Blue 1 431–452

Blue 1 434–466 1 455–515 2 465–515
Green 1 3 513–549
Green 2 544–576 2 500–590 4 547–583
Yellow 5 600–620

Red 3 634–666 3 590–670 6 650–680
Red Edge 7 679–713

Near-infrared 4 780–860 8 845–885

2.3. Feature Engineering

PlanetScope imagery for each of the study areas typically consisted of multiple tiles,
which were merged into a single image for an entire burn area for each fire. The tiles were
combined using ArcGIS Pro’s Mosaic to the New Raster tool [43]. Each image was input,
entering the number of bands (eight for the McFarland and Four Corners Fires, four for the
Mesa Fire) and the color type (16-bit unsigned). Once this was done, the data was ready
for analysis.

2.3.1. Band Extraction

To assess the utility of each band as an input for classification, the Extract Bands tool
within ArcGIS Pro, found under Raster Functions, was used. The Mesa Fire was in 2018,
which predates Planet Lab’s deployment of the Super Dove constellation. As a result,
imagery with only the red, green, blue, and NIR (RGB–NIR) bands from the PS2 sensors
on the Dove Constellation was available for the Mesa Fire. To enable consistency with the
Mesa Fire, the RGB–NIR bands for the Four Corners and Mesa Fires were extracted with
the ArcGIS Pro Extract Band [44] tool from the eight-band imagery taken by the PSB.SD
sensor for both fires.

Three-band imagery with red, green, and blue (RGB) bands was then extracted from
the respective four-band RGB–NIR imagery so the experiment could be run with a tradi-
tional three-band RGB image, as would be captured with a typical RGB sensor such as that
found on the DJI Phantom 4.

2.3.2. Dimensionality Reduction

This study enabled the investigation of which of the PlanetScope bands were most
useful to map burn severity. There are a number of metrics, such as normalized burn ratio
(NBR) and normalized difference vegetation index (NDVI), which have successfully been
used to map burn severity, but each of these relies on a subset of the available bands, making
assumptions about which bands are useful. NBR only considers NIR and SWIR while
NDVI only utilizes the red and NIR bands. This effort did not make any such assumptions,
instead considering all the available bands and leveraging the bands which were found to
be most useful for mapping burn severity.

Dimensionality reduction analysis is a method of taking a multidimensional (or multi-
feature) dataset and lowering the number of dimensions while retaining as many of the
meaningful properties contained in the original data as possible. During training, SVM
decision spaces are determined by the input imagery’s band count. For example, eight-
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band imagery corresponds to an eight-dimensional decision space, while three-band RGB
imagery needs a decision space of only three dimensions. However, not all bands are
equally helpful in classification. Hamilton [33] showed that in burn extent and severity
classification using RGB drone imagery, the blue band yields less information gain than
the green and red bands (0.64 vs. 0.79, respectively). This result implies that the bands in
Planet Scope imagery may not all provide the same level of information for assisting with
the classification of burn extent and burn severity. Two different techniques were used by
this study to investigate whether most of the helpful information for classification could be
represented in three dimensions or bands.

The Iterative Dichotomizer 3 (ID3) is an algorithm that builds a decision tree and splits
nodes of the tree based on information gain; that information gain can be used to determine
the importance of features during classification. This algorithm was implemented using
Sci-kit Learn’s decision tree classifier which implements Gini impurity as the evaluation
criterion by default [45]. However, the criterion hyperparameter was set to entropy on the
decision tree classifier to evaluate feature importance based on information gain rather
than minimization of Gini impurity. Using the ArcGIS Sample tool, the team exported
samples containing each of the polygons from the validation dataset, including the band
values for the pixels and the class label [46]. The exported samples were fed through the
Sci-kit Learn model to build a decision tree and output the usefulness of each band based
on its information gain (entropy reduction) while building the tree. The bands resulting in
the best information gain were then extracted using the methods in Section 2.3.1. to create
a raster with the highest density bands.

For the Mesa fire, the most important band found was red, at 43%; followed by NIR, at
35%; blue, at 13%; and green, at 9%. Therefore, the red, NIR, and blue bands were extracted
using the methods in Section 2.3.1. Figure 2 shows a breakdown of the decision tree created
by Sci-kit Learn for the Mesa fire’s training samples.
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After running the Four Corners eight-band input raster through the ID3 model, two
bands, NIR and red, provided roughly 98% of the information gain, while the blue band
was the third most helpful, making up the final 2% of information gain. Thus, the remaining
coastal blue, green, green 1, yellow, and red-edge bands provided no helpful information
in classifying Four Corners according to this classification by the ID3. The decision tree
outlining the decision paths leading to label classifications can be seen in Figure 3. The
tree has been simplified to display the main paths and decision splits, so only the NIR and
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red bands are present since they provide 98% of the advantage in classification. A visual
depiction of the extracted ID3 bands compared to the RGB bands appears in Figure 4.
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Planet Labs Inc.

The ID3 results for McFarland look similar to the other study areas, with the NIR band
being more useful than any other band. The outputs from this ID3 showed the normalized
entropy reduction in the NIR band to be almost 50% alone, with the top three bands of NIR,
yellow, and blue holding 98% of the information (yellow at 31% and blue at 17%). Figure 5
shows the decision tree created for the McFarland fire.
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Principal component analysis (PCA) enabled tests of the amount of information that
could be retained by taking into account all of the hyperspectral bands and reducing that
dimensionality down to three principle components. PCA accomplishes dimensionality
reduction by linearly transforming data into a coordinate system in which most variation
can be described using only a few initial dimensions. The raster was transformed into three
bands using the Principal Components tool in ArcGIS Pro [47]. The Principal Components
tool allows a user to input a raster, specify the number of principal components, and then
transform the input bands to a new attribute space where the axes are rotated with respect
to the original space [31]. Figure 6 shows a comparison between the PCA-transformed
bands and the RGB bands of the McFarland Fire.
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2.4. Creating Training Data

Once the imagery was acquired and mosaicked into a raster and dimensionality
reduction was applied, unique sets of training data were created for each of the Mesa,
McFarland, and Four Corners fires to map the burn extent and burn severity. This process
was performed in ArcGIS Pro using the Training Samples Manager, which facilitates the
digitization of polygons around regions in the image that are denoted as homogeneously
containing one of the classes which will be used to train the support vector machine
(SVM) [48]. These training polygons were then saved as file geodatabase feature classes in
ArcGIS Pro. The training data used to map the burn extent contained burned and unburned
classes. The biomass consumption training dataset contained polygons denoting high
biomass consumption, as evidenced by white ash, and low biomass consumption, which is
noted by the presence of black ash polygons in the black ash class that indicate burned areas
that experienced low burn severity. Polygons in the white ash category contained burned
areas that experienced high burn severity. These classes separately were used to map burn
severity and were combined into a singular “burned” class for mapping burn extent.

Within the unburned class, each fire had unburned vegetation and unburned surface
classes. The vegetation class included canopy and surface vegetation, while the surface
class contained regions of the image that contained bare dirt (dirt, sand, rocks, and roads,
etc.). The rest of the unburned class was partitioned uniquely for each fire. In addition,
Four Corners was classified for water since Lake Cascade and the Payette River take up a
significant map area, and the Mesa fire had a noise class to deal with errant raster pixels on
the edge of the image. Table 4 shows the unburned class partitioning for each of the fires.

Table 4. Unburned subclasses for each fire.

Unburned Vegetation Unburned Surface Misc.

Mesa Yes Yes Yes, black pixel
border

Four Corners Yes Yes No
McFarland Yes Yes No

Partitioning the classes beyond burned and unburned was necessary to obtain accu-
rate results from the SVM. SVMs in their simplest form perform binary classification by
calculating a hyperplane separating pixels into two classes. It would be difficult for an
SVM to identify the hyperplane separating burned and unburned classes due to a wide
range of pixel values. For example, the burned class contains low RGB pixel-valued black
ash and high RGB pixel-valued white ash. Furthermore, the unburned class is composed
of several green, brown, and blue colors whose values vary widely on the RGB scale, but
lie between black ash and white ash in the RGB space [17]. To increase spectral difference
between classes, the burned and unburned classifications were partitioned into two burned
and three or four unburned classes in order to make the individual classes more linearly
separable, allowing the SVM to perform multiclass classification. The SVM was able to
perform multiclass classification using several hyperplanes with increased accuracy due to
the linear separability of the pixel values. After classification, classes were re-generalized
back to burned vs. unburned for burn extent and white vs. black ash for burn severity. An
example of some training polygons is shown in Figure 7.
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2.5. Classification

The support vector machine (SVM) within ArcGIS Pro, found under the Classify tool
within the Image Classification toolset [49] was used to map burn extent and severity
classifications. The SVM can handle any number of bands as inputs, meaning that we can
classify imagery with all available bands, either eight or four, in addition to bands extracted
based on decision tree results or engineered with principal component analysis [50]. The
following band combinations were used as input when training the SVM:

• Eight-band PlanetScope images (McFarland and Four Corners only)
• Four-band RGB–NIR PlanetScope images
• Three-band-extracted RGB images
• Three-band images transformed by PCA
• Three-band-extracted images based on decision tree band entropy

Table 5 shows the source for each of the sets of classification input rasters.

Table 5. How input imagery for the support vector machine was obtained for the Mesa, Four Corners,
and McFarland fires.

Eight-Band Four-Band Three-Band RGB Three-Band
PCA-Transformed

Three-Band Informed
by Band Entropy

Mesa N/A Planet Scope PS2 Extracted PS2 PCA on PS2 Decision Tree on PS2

Four Corners PlanetScope
PSB.SD Extracted PSB.SD Extracted PSB.SD PCA on PSB.SD Decision Tree on PSB.SD

McFarland PlanetScope
PSB.SD Extracted PSB.SD Extracted PSB.SD PCA on PSB.SD Decision Tree on PSB.SD
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The SVM was trained on images with the previously mentioned set of bands for each
of the fires using the training polygons for that specific fire. Once trained on an image, the
SVM classified the image, creating the previously mentioned burned (black and white ash)
and unburned (vegetation and bare dirt along with water for the Four Corners Fire) layers.
To create the burn extent layer for the McFarland and Mesa fires, all burned (white ash and
black ash) and unburned (vegetation, land, noise for Mesa) areas were classified and left
in their separate classes for validation. Once the images were classified, the ArcGIS Pro
Reclassify tool [51] could be used to combine the black and white ash classes into a burned
class and the vegetation and bare earth classes back into an unburned class. Figure 8 shows
an example of a classification produced by the SVM.
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Figure 8. The classification created by the support vector machine for the Mesa Fire. Dark grey
indicates burn, light grey indicates high-severity burn, green indicates vegetation, and pink indicates
unburned surface.

2.6. Validation Data

Validation data was drawn to assess the accuracy of the SVM. Using the Create Feature
tool in ArcGIS Pro, we created a new raster layer that was made up of several polygons.
Each polygon was digitized with 100% certainty of which class it fell under and was labeled
with that class. Figure 9 shows a few different validation polygons and their associated
classes. Drone imagery for the Mesa Fire was acquired during a previous collaborative
effort with the US Forest Service. This hyperspatial drone imagery was used to acquire
more precise validation data, which was especially useful when identifying areas of white
ash [13], allowing the validation of the Mesa Fire to conform to the International Global
Burned Area Satellite Product Validation Protocol [52]. The drone imagery was coregistered
with the PlanetScope satellite imagery, which made drawing validation polygons easier, as
there was no conversion needed.



Remote Sens. 2023, 15, 5196 13 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 26 
 

 

coregistered with the PlanetScope satellite imagery, which made drawing validation pol-
ygons easier, as there was no conversion needed. 

  
(a) (b) 

Figure 9. Demonstrates the difference in spatial resolution between the 5 cm per pixel drone imagery 
(a) and the 3 m per pixel satellite imagery (b) when creating validation polygons for the Mesa fire. 
Imagery © 2023 Planet Labs Inc. 

2.7. Analysis 
Once the team had drawn validation polygons, the appropriate set of validation pol-

ygons was fed into the Tabulate Area tool in ArcGIS Pro [53], along with the classified 
layer of the corresponding imagery. This tool cross-tabulates areas between two datasets 
and creates a table containing numbers indicating where the datasets overlap. An nxn ta-
ble was produced, where n represents the number of partitioned classes for the given fire, 
all representing burned or unburned base classes. This table represents the classification 
of each pixel using the validation shapefiles and classifier predictions, allowing us to iden-
tify where the validation data and predicted data correspond and differ. These were com-
bined into “burned,” which combined black and white ash, and “unburned,” which com-
bined unburned vegetation, unburned surface, and noise. This simplification gave a 
standard binary 2 × 2 confusion matrix. 

Using the confusion matrices, which contain the number of true positives (burned 
that got classified as burned), false positives (unburned that got classified as burned), true 
negatives (unburned that got classified as unburned), and false negatives (burned that got 
classified as unburned), we can calculate accuracy, specificity, and sensitivity based on 
Equations (1)–(3). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (3) 

The burn severity classification was evaluated by considering the portion of the con-
fusion matrix dealing with burn pixels, then evaluating these metrics comparing the high 
biomass (white ash) versus low biomass (black ash) classes. 

  

Figure 9. Demonstrates the difference in spatial resolution between the 5 cm per pixel drone imagery
(a) and the 3 m per pixel satellite imagery (b) when creating validation polygons for the Mesa fire.
Imagery © 2023 Planet Labs Inc.

2.7. Analysis

Once the team had drawn validation polygons, the appropriate set of validation
polygons was fed into the Tabulate Area tool in ArcGIS Pro [53], along with the classified
layer of the corresponding imagery. This tool cross-tabulates areas between two datasets
and creates a table containing numbers indicating where the datasets overlap. An nxn table
was produced, where n represents the number of partitioned classes for the given fire, all
representing burned or unburned base classes. This table represents the classification of
each pixel using the validation shapefiles and classifier predictions, allowing us to identify
where the validation data and predicted data correspond and differ. These were combined
into “burned,” which combined black and white ash, and “unburned,” which combined
unburned vegetation, unburned surface, and noise. This simplification gave a standard
binary 2 × 2 confusion matrix.

Using the confusion matrices, which contain the number of true positives (burned
that got classified as burned), false positives (unburned that got classified as burned), true
negatives (unburned that got classified as unburned), and false negatives (burned that got
classified as unburned), we can calculate accuracy, specificity, and sensitivity based on
Equations (1)–(3).

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(1)

Speci f icity =
True Negatives

True Negatives + False Positives
(2)

Sensitivity =
True Positives

True Positives + False Negatives
(3)

The burn severity classification was evaluated by considering the portion of the
confusion matrix dealing with burn pixels, then evaluating these metrics comparing the
high biomass (white ash) versus low biomass (black ash) classes.
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3. Results
3.1. Burn Extent

For the burn extent, the overall accuracy, sensitivity, and specificity take burned area
as the positive class and the unburned area as the negative class. In this case, sensitivity
represents the SVM’s ability to identify all the pixels labeled burned by the validation data.
Similarly, specificity measures the SVM’s ability to identify areas labeled as unburned by
validation data. Accuracy measures the percentage of correct classifications over all pixels,
burned or unburned.

3.1.1. Mesa

As Table 6 demonstrates, overall, the SVM was fairly accurate at finding burned area,
as demonstrated by the high sensitivity percentage. However, it would often overestimate
and over-label what was burned. This high sensitivity to burned areas leads to unburned
land being labeled as burned, giving a lower specificity percentage. Overall, the RGB–NIR
four-band image, PCA-transformed bands image, and the ID3-informed bands image
created good results when they were run through the SVM. However, when the RGB band
image was run through the SVM, it over-classified the burned area, which led to very high
sensitivity but terrible specificity and an overall fairly low accuracy.

Table 6. Confusion matrix evaluation metrics for the burn extent of each image classified using a
support vector machine for the Mesa fire.

Input Layer Accuracy Sensitivity Specificity

RGB Bands 77.41% 97.86% 57.40%
RGB–NIR Four-Band Planet Scope 86.50% 93.96% 79.19%
PCA-Transformed Bands 88.93% 89.07% 88.79%
ID3-Informed Bands 88.36% 92.57% 84.24%
Average 85.30% 93.37% 77.41%

3.1.2. Four Corners

The SVM classifier resulted in an average accuracy of 92.27% across all five of the
input layers, as can be seen in Table 7. The lowest accuracy was the RGB layer at 68.05%,
which is reasonable, as it had the least information, such as the number of bands, and was
not the result of any band utility analysis. With the extra near-infrared (NIR) band, the
four-band RGB–NIR layer achieved the third highest accuracy of the Four Corners layers,
at 93.46%. One might expect the eight-band layer, adding yellow, coastal blue, red-edge,
and green 1, to improve this accuracy. However, the accuracy dropped to 92.66%. As seen
in the ID3 results, the NIR, red, and blue bands contributed most of the information in
determining appropriate labels. Adding bands such as coastal blue, green 1, red-edge, and
yellow did not provide enough information gain in classification and likely confused the
SVM, as the eight-band layer wasn’t as accurate as the RGB–NIR layer. Additionally, the
two highest accuracy layers are the ID3-informed (NIR, red, and blue) layer, coming in at
94.27%, and the PCA-transformed layer, with an accuracy of 94.93%.

Table 7. Confusion matrix evaluation metrics for the burn extent of each image classified using a
support vector machine for the Four Corners fire.

Input Layer Accuracy Sensitivity Specificity

RGB Bands 86.05% 80.98% 88.50%
RGB–NIR Four-Band Planet Scope 93.46% 98.36% 91.21%
All Eight-Band Planet Scope 92.66% 97.78% 90.39%
PCA-Transformed Bands 94.93% 100.00% 92.49%
ID3-Informed Bands 94.27% 98.40% 92.27%
Average 92.27% 95.10% 90.97%
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The relative ranking of sensitivity scores across layers is the same as the accuracy
results. The RGB layer sits at around 80% sensitivity while the other layers all are close
to 98% or above. This indicates that the NIR band improves the classification of burned
area by around 18%, while utilizing all bands in eight-band imagery is slightly less useful.
Analyzing band information gain with the ID3 algorithm and using the top three bands as
well as performing dimensionality reduction with PCA on all eight-bands is shown to be
the most effective at classifying burned area.

The RGB layer’s specificity is 88.50%, and the remaining layers are only 2–4% greater.
Based on both the 7.5% increase from sensitivity to specificity for RGB and the roughly 6–7%
decrease in all other layers, the team hypothesizes that the multispectral coastal blue, green
1, yellow, and NIR bands identify burned area almost too frequently while RGB bands
alone can fail to identify certain burned pixels. Unlike sensitivity, specificity measures false
positives. The SVM classified several land pixels as burned area likely due to the spectral
similarity of some light dirt and white ash, which is included in the burned class.

3.1.3. McFarland

Table 8 shows each input raster’s accuracy, sensitivity, and specificity. All of the inputs
yielded results with an accuracy of over 80%. However, only the four-band RGB–NIR input
crossed the threshold of 95%. In addition, RGB–NIR four-band imagery had a much higher
sensitivity than any other inputs, though the specificity dropped.

Table 8. Confusion matrix evaluation metrics for the burn extent of each image classified using a
support vector machine for the McFarland fire.

Input Layer Accuracy Sensitivity Specificity

RGB Bands 91.24% 82.83% 96.84%
RGB–NIR Four-Band Planet Scope 96.22% 98.22% 94.94%
All Eight-Band Planet Scope 89.07% 72.06% 99.89%
PCA-Transformed Bands 88.04% 73.79% 97.11%
ID3-Informed Bands 84.49% 71.33% 92.87%
Average 89.81% 79.65% 96.33%

Four-band imagery produced excellent SVM classification results. This may be because
the NIR band was the most information-dense. The other, less information-dense bands,
such as coastal blue and green edge, are more of a distraction, reducing the effect that
the NIR band has on determining burned areas. The specificity of the four-band imagery
dropped because it was over-classifying white ash specifically. The SVM classified white
ash in most of the other inputs as surface, but the four-band imagery did the opposite,
classifying surface (white rocks specifically) as white ash.

3.2. Burn Severity
3.2.1. Mesa

Overall, the SVM classified the Mesa fire well. All four images run through the SVM
had about the same results. It performed relatively well when finding areas of white
ash and would rarely label something as white ash that was not, achieving an average
specificity score of 98.89%. However, much like when finding burn extent, it was often
biased when labeling black ash and labeled more pixels as black ash than were actually
black ash. This aggressiveness leads to a low sensitivity score of 74.15% on average. The
overall accuracy averaged out to approximately 85.88%. As Table 9 demonstrates, there
was very little variance in accuracy between the different images when classified.
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Table 9. Confusion matrix evaluation metrics for the burn severity of each image classified using a
support vector machine for the Mesa fire.

Input Layer Accuracy Sensitivity
(Classified White Ash Well)

Specificity
(Classified Black Ash Well)

RGB Bands 86.18% 72.76% 99.45%
RGB–NIR Four-Band Planet Scope 88.50% 78.29% 99.52%
PCA-Transformed Bands 85.10% 73.72% 98.92%
ID3-Informed Bands 83.75% 71.82% 97.67%
Average 85.88% 74.15% 98.89%

3.2.2. Four Corners

Overall, the SVM was able to classify light versus dark ash with an average accuracy
across layers of 96.45%, as shown in Table 10. This should be expected, given the large
spectral differences between white and black ash, as noted by Hamilton [17]. It may be
surprising as well to see that the RGB layer had the highest accuracy, but this is intuitive, as
RGB represents human visibility and humans can easily detect differences between white
and black color. Further, it seems adding bands does not improve this obvious spectral
separability but rather hinders it, as observed in the lower accuracies of the remaining four
layers. Additionally, black ash pixels were identified correctly as black ash 100% of the time
across all layers, but white ash pixels were sometimes missed. Sensitivities in the RGB and
RGB–NIR layers were the highest, meaning they identified white ash correctly more often
than the other three layers. The overall sensitivity is 91.61% compared to the 100% average
specificity, showing that across all layers, the SVM occasionally misidentified white ash as
black ash, but never misidentified black ash as white ash.

Table 10. Confusion matrix evaluation metrics for the burn severity of each image classified using a
support vector machine for the Four Corners fire.

Input Layer Accuracy Sensitivity
(Classified White Ash Well)

Specificity
(Classified Black Ash Well)

RGB Bands 98.19% 95.08% 100.00%
RGB–NIR Four-Band Planet Scope 97.78% 94.44% 100.00%
All Eight-Band Planet Scope 95.45% 88.73% 100.00%
PCA-Transformed Bands 96.24% 91.57% 100.00%
ID3-Informed Bands 94.59% 88.24% 100.00%
Average 96.45% 91.61% 100.00%

3.2.3. McFarland

When observing the accuracy, specificity, and sensitivity of burn severity (black ash
vs. white ash) assessment of the McFarland fire, these metrics were all at or around 100%.
Based on this, the team determined that, at least for the McFarland fire, the classifier
was nearly perfect for distinguishing black ash from white ash. This was not surprising,
given the massive spectral differences between black ash and white ash, as observed by
Hamilton [17] and the obvious difference between white and black ash. The imagery of the
McFarland fire contains a lot of white rock, which makes classifying white rock (unburned
surface) vs. white ash (high biomass consumption) incredibly difficult. More than 50% of
the white ash validation polygons were classified as surface, though surprisingly, next to
none of the surface was classified as white ash. The differences between white ash and
black ash are distinct enough that they were not confused, because almost everything that
is too light to be black ash was often classified as surface.

In Table 11, the true positive was white ash which was correctly classified as white ash
and the true negative was everything else which was correctly classified as anything except
white ash. The false positive was any other class that got incorrectly classified as white
ash and the false negative was the white ash that got incorrectly classified as anything else.
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This change led to much more comparable results to other fires. It also accounts for the
white ash being classified as surface.

Table 11. Confusion matrix evaluation metrics for the burn severity of each image classified using
a support vector machine for the McFarland fire. These results quantify white ash against all
other classes.

Input Layer Accuracy Sensitivity
(White Ash That Was Correctly Classified) Specificity

RGB Bands 91.99% 66.70% 98.05%
RGB–NIR Four-Band Planet Scope 96.20% 96.36% 96.17%
All Eight-Band Planet Scope 89.07% 43.83% 99.92%
PCA-Transformed Bands 88.06% 47.42% 97.81%
ID3-Informed Bands 84.53% 42.54% 94.60%
Average 89.97% 69.37% 97.31%

The sensitivity values show how much white ash was correctly classified as white ash,
with most of them below 50% accuracy. The only image that really stands out from the
group is the four-band RGB–NIR image. This table has the opposite problem, as it doesn’t
show white ash as well, although Table 12 shows the issue slightly better.

Table 12. Confusion matrix evaluation metrics for the burn severity of each image classified using a
support vector machine for the McFarland fire, ignoring all data that is either incorrectly not identified
as or incorrectly identified as white ash.

Input Layer White Ash Correctly Classified
as White Ash

Amount of Classified White Ash That
Is Actually White Ash

RGB Bands 66.70% 89.14%
RGB–NIR Four-Band Planet Scope 96.36% 85.78%
All Eight-Band Planet Scope 48.83% 99.24%
PCA-Transformed Bands 47.42% 83.85%
ID3-Informed Bands 42.54% 65.37%

The middle column of Table 12 is the same as the sensitivity in Table 11, but the new
column on the right shows how many pixels are incorrectly attributed as white ash. In
all of these scenarios, the only parts being incorrectly classified are white ash as surface
(first column) or surface as white ash (second column). As seen before, the four-band RGB
+ NIR imagery was the best at correctly identifying white ash, though it was an overly
biased classification, classifying a fairly large amount of unburned surface as white ash.
It classified more than any other class. Even with this misclassification of white soil as
white ash, the metrics were not adversely affected due to how much of the white ash was
correctly classified.

The ID3-informed bands still had a number of issues. They were the only input that
misclassified white ash in both directions. Not only did it classify most of the white ash as
surface, but it also classified a fairly large portion of the surface (roughly 20%) as white
ash. Put together, these issues compounded to create the lowest accuracy, sensitivity, and
specificity of any input.

4. Discussion
4.1. Results Analysis
4.1.1. Burn Extent

Across the Mesa, McFarland, and Four Corners fires, excellent average accuracies
were obtained using various input layers, as shown in Table 13. An average accuracy of
89.50% was obtained across the three fires and five layers, with RGB–NIR being accurate
at an average of 92.06% across the three fires. These averages show a significant increase
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from the 84.90% average accuracy for the RGB results, which follows the theory that more
spectral bands lead to higher accuracy in SVM predictions. The eight-band imagery yielded
a classification accuracy of 90.87% for the two fires (McFarland and Four Corners) for
which eight-band imagery was available. While incredibly close to the RGB–NIR imagery’s
precision, the eight-band imagery is slightly less accurate. Further, the PCA-transformed
and ID3-informed imagery yielded even lower accuracies than the RGB–NIR by a larger
margin, at 90.63% and 89.04%, respectively. However, this is not out of the ordinary, as
both PCA and the ID3 are forms of dimensionality reduction, which inherently leads to
some information loss.

Table 13. Average confusion matrix evaluation metrics across all three of the studied fires.

Input Layer Accuracy Sensitivity Specificity

RGB Bands 84.90% 87.22% 80.91%
RGB–NIR Four-Band Planet Scope 92.06% 96.85% 88.45%
All Eight-Band Planet Scope * 90.87% 84.92% 95.14%
PCA-Transformed Bands ** 90.63% 87.62% 92.80%
ID3-Informed Bands ** 89.04% 87.43% 89.79%
Average 89.50% 88.81% 89.42%

* Data for McFarland and Four Corners only; ** Eight bands were used for Four Corners and McFarland, four
bands for Mesa.

The average sensitivity for all sets of input bands between the fires averaged 88.81%.
RGB–NIR was the highest by far, at 96.85%. This shows that the SVM used the NIR band
the most to identify the burned areas in the experiment accurately. Given that RGB imagery
and imagery with or informed by higher bands performed at around 85–87% sensitivity, the
extra coastal blue, green 1, yellow, or red-edge bands likely caused the SVM to misidentify
some burned areas as unburned. The RGB layer demonstrates that without the NIR band
the classification of burned area is no better than when it is confused by extra bands, so the
optimal layer for identifying burned area is RGB–NIR.

The specificity results are opposite to the sensitivity results. The top layer is the eight-
band followed by PCA-transformed and ID3-informed bands. A combination of RGB and
NIR bands is not enough to identify unburned areas in contrast to burned.

Table 14 contains the breakdown of each fire’s accuracy, sensitivity, and specificity
assessments across all input layers relevant to the respective fire. McFarland and Four
Corners had the highest overall accuracies at 89.81% and 92.27%, respectively. Additionally,
McFarland had a specificity higher than its accuracy and lower sensitivity, while Mesa
exhibited the opposite trend with a higher sensitivity and lower specificity with a margin
of about +/− 8% compared to the accuracy. Across all spectral resolutions, the SVM often
misclassified unburned areas as burned because of shadows, leading to low specificity. Mc-
Farland’s low sensitivity can be explained by its misclassification of white ash as unburned
surface. These issues are covered in Section 4.4.

Table 14. Average accuracy metrics for burn extent across all imagery layers used in each fire.

Fire Accuracy Sensitivity Specificity

Four Corners 92.27% 95.10% 90.97%
Mesa 85.30% 93.37% 77.41%
McFarland 89.81% 79.65% 96.33%

4.1.2. Burn Severity

The burn severity experiment results are comparable to that of the burn extent experi-
ment, albeit with more variance. The overall accuracy across all input layers and all three
fires is nearly 91.2%, with sensitivity down to 74.52% and specificity at an extremely high
98.74%, as shown in Table 15. Eight-band imagery, only for McFarland and Four Corners,
classified white ash with a sensitivity of 66.28% but yielded an essentially perfect 99.96%
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specificity. This is similar to the burn extent results where the eight-band imagery scored
lowest in sensitivity but highest in specificity.

Table 15. Average accuracy metrics for burn severity across all imagery layers used in each fire.

Input Layer Accuracy Sensitivity
(Classified White Ash Well)

Specificity
(Classified Black Ash Well)

RGB Bands 92.12% 78.18% 99.17%
RGB–NIR Four-Band PlanetScope 94.16% 89.70% 98.56%
All Eight-Band PlanetScope * 92.26% 66.28% 99.96%
PCA-Transformed Bands ** 89.80% 70.90% 98.91%
ID3-Informed Bands ** 87.62% 67.53% 97.42%
Average 91.20% 74.52% 98.74%

* Only McFarland Fire had this feature; ** McFarland used eight-band, and Mesa used four-band in creating
these features.

In comparing the average results from the three fires, as shown in Table 16, the team
noticed that McFarland’s average accuracy is slightly higher than Mesa’s, with Four Corners
yielding the highest results in any metric. As discussed in Section 3.2.3, the sensitivity of
McFarland’s burn severity results is much worse than any other fire, most likely due to
the prevalence of white rocks across the imagery. Specificity scores are incredibly high for
all three fires, indicating that black ash was easier for the SVM to accurately identify than
white ash.

Table 16. Average accuracy metrics for burn severity across all imagery layers used in each fire,
separated by fire.

Fire Accuracy Sensitivity Specificity

Mesa 85.88% 74.15% 98.89%
McFarland 89.97% 69.37% 97.31%
Four Corners 96.45% 91.61% 100%

Mesa’s lower accuracy appears to be because a large portion of the validation data
for burn severity was acquired using the 1000 acres of 5 cm resolution drone imagery. As
discussed later in the discussion section, this makes it easy to draw validation data over
areas that the 3 m pixels could not pick up. While this does lead to a lower accuracy on
paper, this may be a good thing for the experiment. This result confirms the value of having
higher resolution imagery available for validation of burn products [52]. A future effort
could prove that having a higher resolution image for classification may lead to much
higher accuracy, even when compared to validation data drawn on hyperspatial imagery.

4.2. Problems with Shadows

Shadows proved to be a limiting factor when the SVM classified burned areas. Pixel
RGB values of shadows and dark burned ash are similar, causing the SVM to classify
shadows as unburned. Humans can identify that the area classified as burned outside
of the fire boundary is a shadow, often of mountain ridges. In imagery taken early in
the morning, the sun was lower in the sky, casting shadows throughout the image. The
SVM cannot distinguish between this the same way humans can, so several false positives
were created during classification and hurt specificity [54]. RGB exhibits this specificity
decline due to false positive shadows. However, the addition of multispectral bands such
as near-infrared, coastal blue, green 1, and red-edge increased specificity. This increase
indicates that the additional bands may contain information distinguishing shadow from
burn that is not observable with RGB bands.

Within the burned boundary of Four Corners, many extremely dark sections were un-
able to be conclusively identified as vegetation or dark ash. By observing the topographical
map, these regions were identified as north-facing slopes, increasing the likelihood that
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they were shadows. Additionally, observing pre-fire imagery showed that these regions
were darker than their surroundings before the burn had begun, strongly indicating that
the dark hue was due to shadow. Because of this complication, these regions needed to be
omitted from training and validation data, as they could not be confirmed as vegetation or
dark ash.

4.3. Using Drone Imagery

Most of the validation data for the Mesa Fire, especially for white ash, came from the
drone imagery that was taken over a small portion of the fire. While drone imagery made
the validation area significantly easier, it also created some issues and made the accuracy
of the classified data over the Mesa fire seem lower than it should be. The first issue was
the spatial resolution of drone imagery compared to the satellite imagery the SVM is run
on. The drone imagery has a spatial resolution of five centimeters per pixel, which is about
60 times better than the PlanetScope imagery from Planet Lab’s Dove and Super Dove
satellites, which have a spatial resolution of around 3 m. While the 3 m satellite imagery is
fairly good for identifying burned and unburned areas, it cannot compete when comparing
and validating it with drone imagery. This leads to the accuracy being comparatively
low compared to the Four Corners and McFarland fires, especially when looking at burn
severity and white vs. black ash.

Drone imagery was also used to confirm the presence of white ash and burned area for
the Four Corners fire. The team was not able to gain access to the site until the following
summer; consequently, the team found ground truth observations to be more useful than
drone imagery, especially for detection of what white ash was still present at that time.
Looking at Planet Scope’s three-meter imagery, many areas appear to be a certain class,
whether that be white ash or black ash, but it is hard to be conclusive, as the three-square-
meter spaces were very heterogenous. Getting a closer visual using the same drone imagery
as well as ground truth observations allowed the team to confirm the conclusions that were
drawn from the satellite imagery.

4.4. Issues with White Ash in the McFarland Fire

The team determined that white ash was the main reason behind the decreased
accuracy and sensitivity of assessments of the McFarland fire. For most of the inputs, white
ash was classified as bare earth due to the abundance of white rocks in the McFarland
fire imagery. However, four-band imagery accurately classified almost all the white ash,
although it incorrectly classified some surface as white ash.

4.4.1. Spatial Resolution

The team’s first hypothesis for why this occurred is that the spatial resolution may be
too low. As mentioned in the Materials and Methods section, the PlanetScope Super Dove
imagery has a spatial resolution of 3 m. As discussed in Section 4.3, the hyperspatial drone
imagery was incredibly useful in validating black ash vs. white ash. This was backed up
by both the drone imagery used in the Mesa fire and the ground truth observations made
in the Four Corners fire. This study hypothesizes that hyperspatial resolution is needed
to accurately distinguish white ash from light-colored surfaces. While 3 m satellite data is
incredibly useful, it is not quite as useful as a higher resolution image.

4.4.2. Spectroscopy

The second hypothesis posed by the team is that the spectral difference between
white ash and the white rocks may have been a cause of this incorrect classification. The
imagery provided by the PlanetScope Super Dove satellites ranges from the wavelengths
of 431–885 nm. Based on the conclusions of Hamilton [17], the reflectance of white ash is
even, at roughly 30–40% across that entire range. The white rock showing up in the images
is most likely quartz diorite, as shown by a geological survey of the area [55]. As shown
in [56], the reflectance of a diorite substance with trace amounts of quartz is very similar
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along these same wavelengths, roughly in the 30 percent range. This study supposes that
hyperspectral imagery may be beneficial to accurately distinguish between white ash and
these light-colored rocks.

4.4.3. Temporal Resolution

The third possibility is that white ash is just too volatile to be picked up, even with
PlanetScope’s very impressive temporal resolution. White ash is easily degraded by a num-
ber of meteorological factors, including wind and rain. In the McFarland fire specifically,
this seems like a rather unlikely explanation, due to the imagery being collected within a
week of the fire’s containment, but it is an important note while doing further research or
putting these methods into practice.

4.4.4. Concluding Thoughts on McFarland and White Ash

The best hypothesis for why the white ash on McFarland was so hard to acquire
accurately is addressed in both the Spatial Resolution (Section 4.4.1) and the Spectroscopy
(Section 4.4.2). At 3 m, it is a bit difficult to confidently identify white ash when digitizing
validation polygons. The methodology the team resorted to for identifying white ash in the
McFarland fire supposed that anything that appeared white within the burned area and
showed up as green in the pre-fire imagery should be labeled as white ash. This resulted in
the team members who digitized the white ash polygons not being fully confident while
drawing training and validation polygons. This, compounded with the fact that both the
white stones and white ash appear to have similar metrics of reflectance, is what the team
believes led to the rather low results found for McFarland.

4.5. ID3 Issues in McFarland

One thing the team noticed was the fact that, for the McFarland fire specifically, the
ID3-informed bands performed quite a bit worse than any other input that was used. While
both other fires had their ID3′s return results similar to other inputs (just below 90% for
Mesa and roughly 99% for Four Corners), the McFarland fire took a noticeable dip in
accuracy. With most of the others being about 90% accurate, disregarding the outlier of the
RGB + NIR at 96%, the ID3-informed bands performed at only 84% accuracy. The team is
unsure of the reason for the discrepancy. The ID3 decision tree itself returned similar bands
to other fires, with NIR being the highest, yellow being the second, and blue being third.
Outside of that, the only other band that was used in the tree was the red band, which was
fairly low compared to the other three.

Given the nature of NIR making up over 50% of the information gained according to
the ID3, the team was fully expecting this set of bands to perform the best overall. In the
case of both other fires, the ID3 performed as expected, but for McFarland, the accuracy
and especially the specificity were negatively affected when considering the burn extent.
Both of these seemed to be related to white ash specifically, and it became obvious when
assessing burn severity that the white ash was indeed the issue. For whatever reason, the
white ash problem discussed in Section 4.4. was only compounded with the ID3 data. It
both over-classified a vast majority of white ash as unburned surface and classified about
20% of the unburned surface as white ash. Put together, the issues compounded to affect
both the burn extent and burn severity results.

The team is unsure of what caused these results to occur. Some possibilities include
the fact that this is a form of dimensionality reduction, which inherently cuts out some
data. Alternatively, three bands may not be enough to include all the data, especially when
dealing with such minor differences between white ash and white rocks. According to the
findings of Zhou and Wang [56], the only wavelengths with any substantial amount of
spectral difference between white ash and quartz diorite exist at the extreme lows near the
coastal blue band and extreme highs, which are outside the range of bands available with
PlanetScope imagery. It is possible that, in cutting out the coastal blue band, the only band
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with enough spectral difference to correctly classify white ash against the white rocks may
have been lost.

5. Conclusions

The use of satellite imagery from high spatial resolution satellites such as PlanetScope
allows for the burn extent and severity to be mapped without the intensive endeavor of
capturing drone imagery and creating the mosaics by hand. Using satellite imagery instead
of drone imagery is especially important when dealing with large fires such as the fires
classified in this research. The three fires that were used in this research are the Mesa Fire,
McFarland Fire, and the Four Corners Fire. RGB, RGB–NIR, PCA-transformed and ID3-
informed imagery were used for each fire along with eight-band imagery for the McFarland
and Four Corners fires due to the fires burning after PlantScope SuperDoves were launched.
Feeding these layers through a support vector machine, it was shown that the near-infrared
band is the most useful band in both burn extent and burn severity classification. Additional
bands from the PlanetScope SuperDove imagery such as coastal blue, green 1, and yellow
did not provide much, if any, information gain during classification.

Future Work

While the central goal of this project was to focus on local variables and determine the
best factors for each fire on a local level, there has been work on attempting to train a model
that can classify fires on a global level. In previous work by Hamilton [54], there was an
attempt to classify multiple fires using a single training data set. However, the accuracy
took a significant drop in their attempts. Our current research is determining what works
best on a local scale and training and classifying one fire at a time before attempting to
classify multiple fires at once again. Therefore, future work in this field of research will
require taking what was learned in this project and using it to classify multiple fires in one
training data set.

Spatial resolution is not the only consideration when identifying burned and unburned
land. So far, this project has used drone imagery with extremely high spatial resolution but
low spectral resolution and PlanetScope Dove and Super Dove satellites with high spatial
resolution and medium spectral resolution. Planet Labs does have other platforms that
could help improve spatial resolution. For example, Planet Lab’s new Tanager satellites
scheduled to be launched in 2024 allow for high spectral resolution with over 400 different
bands at 5 nm spacing [57]. The high spectral resolution could help with addressing
problems in the imagery, such as shadows. However, they have incredibly low spatial
resolution, with 30 m per pixel. This high spectral resolution could be used in a future
project comparing the importance of spectral vs. spatial resolution.

Another option for future work is revisiting higher spatial resolution. One way to
do this would be using PlanetLab’s SkySat satellites. These satellites have 50 cm spatial
resolution and take sub-daily images [57]. However, these satellites have a fairly low
spectral resolution and can only take four-band imagery. Using SkySat in future work
could allow for the utilization of very high spatial resolution but low spectral resolution
satellite imagery. Another option when going down the path of high spatial resolution
is Planet Lab’s Pelican satellites. These satellites are scheduled to be launched in early
2023 and will provide 30 cm imagery with seven bands of spectral resolution [58]. These
satellites could add a massive increase in the spatial resolution of satellite imagery while
keeping a seven-band spectral resolution. Exploring more options with various spectral and
spatial resolutions is a future task in this field that will enable identifying the importance
of each type of resolution when mapping wildfires. Conversely, freely available Sentinel-2
imagery with higher spectral resolution and extent could also be evaluated to further assess
the impact of the tradeoff between spectral resolution and extent versus spatial resolution,
as could the Landsat Next satellite when it is launched in 2030, capturing 26 bands at 10 to
20 m spatial resolution with a revisit time of six days [59].
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