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Abstract: The water-filling (WF) algorithm is a widely used design strategy in the radar waveform
design field to maximize the signal-to-interference-plus-noise ratio (SINR). To address the problem of
the poor resolution performance of the waveform caused by the inability to effectively control the
bandwidth, a novel waveform-related optimization model is established in this paper. Specifically,
a corrected SINR expression is first derived to construct the objective function in our optimization
model. Then, equivalent bandwidth and energy constraints are imposed on the waveform to formu-
late the waveform-related non-convex optimization model. Next, the optimal frequency spectrum is
obtained using the Karush–Kuhn–Tucker condition of our non-convex model. Finally, the transmit
waveform in the time domain is synthesized under the constant modulus constraint. Different
experiments based on simulated and real-measured data are constructed to demonstrate the superior
performance of the designed waveform on the SINR and equivalent bandwidth compared to the
linear frequency modulated signal and waveform designed by the WF algorithm. In addition, to
further evaluate the effectiveness of the proposed algorithm in the application of cognitive radar (CR),
a closed-loop radar system design strategy is introduced based on our waveform design method. The
experiments under real-measured data confirm the advantages of CR compared to the traditional
open-loop radar structure.

Keywords: cognitive radar; waveform design; bandwidth constraint; energy constraint; signal-to-
interference-plus-noise ratio; Karush–Kuhn–Tucker condition

1. Introduction

The mathematical essence of waveform optimization is equivalent to solving a non-
convex, high-dimensional, multi-constraint optimization problem using optimization the-
ory. Generally, the optimal design of a cognitive radar (CR) waveform can be summarized
in three steps: (1) determine the optimization criteria and waveform constraints; (2) select
the optimization theory; and (3) evaluate the waveform optimization performance [1].

Practically, the selection of the optimization criteria and constraints generally depends
on the radar task requirements and physical realizability of hardware [2]. In general, the
local power of the interference area [3], weighted integral sidelobe level [4], weighted peak
sidelobe level [5], and signal-to-interference-plus-noise ratio (SINR) [6] were often used
to improve the interference suppression ability of radar systems. From the experimental
results, these optimization criteria attempt to shape the waveform in other dimensions,
like the temporal dimension, Doppler dimension, or spatial dimension [7,8]. The selec-
tion of the optimization theory is usually related to the mathematical characteristics of
the actual waveform optimization model of the radar system. Practically, due to the ex-
istence of the constant modulus (CM) constraint [9], low power-to-average ratio (PAR)
constraint [10], and similarity constraint [11], the established waveform design models
are always hard to solve. Therefore, many researchers have employed the frameworks
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of majorization minimization (MM) [12–14], the alternating direction method of multi-
pliers [15–17], coordinate descent (CD) [18–20], power methods [21,22], and Riemannian
manifold optimization [23,24] to iteratively solve non-convex models.

Optimizing the radar waveform for SINR maximization plays an important role in
improving radar performance, leading to enhanced power efficiency, better detection
probability, target identification, and improved interference mitigation, among other ben-
efits [21,25–32]. Ref. [6] aimed to maximize the SINR and construct a complex quartic
function optimization problem while considering the constraints of the PAR. Simultane-
ously, the authors proposed a method that combines MM with CD to address the ambiguity
function (AF) shaping problem under CM constraints. Refs. [27,28] proposed a waveform
design framework that jointly optimizes the transmit code and receive filters. The optimiza-
tion model aims to improve the output SINR and constrain interference energy on specific
frequency bands. Moreover, the similarity constraint is also taken into account to ensure the
significant characteristics of the waveforms. To address the challenge of slow-moving target
detection in the presence of strong clutter and jamming, [29] investigated the joint design of
the transmit waveform and receive filter in multiple-input-multiple-output radar systems
to improve SINR performance. It introduces a cyclic algorithm to solve the non-convex
problem. Furthermore, the method was extended to effectively address joint design prob-
lems under both CM and similarity constraints. The optimization model for maximizing
SINR can be expressed in various equivalent forms. For instance, [30] transformed the
SINR maximization problem into the task of minimizing the average value of interference
regions on the slow-time AF, To achieve this, the authors introduced a quartic Riemannian
trust region algorithm. Ref. [21] introduced an alternating iterative optimization algorithm
to solve the transmit sequence and receiving filter by minimizing the mean square error
of estimation of the scattering coefficient of current interest, which is also equivalent to
SINR maximization.

From the perspective of waveform synthesis, there are two methods for obtaining the
optimal waveform in maximizing the SINR problem: direct and indirect methods. In the di-
rect method, the waveform-related optimization model is built in the time domain, and the
waveform can be directly designed by solving the optimization problem [6,21,25,26,29–32].
In the indirect (two-step) method, the spectrum of the radar waveform is first designed,
and the waveform vector is subsequently obtained through synthesizing algorithms. As
mentioned above, although the direct method can synthesize the sequence in one step, the
model with both the optimization criteria and modulus constraints causes an increase in
arithmetic complexity. Hence, the indirect method is considered in this paper.

To find the optimal spectrum of the radar waveform, the water-filling (WF) method is
usually employed to maximize the output SINR [33–35] or maximize the mutual informa-
tion (MI) between the target impulse response and the echo [36]. The basic principle of this
algorithm is to concentrate the waveform energy into the frequency band where the target
is located while avoiding distributing waveform energy into the interference band [35]. But
as we will point out in the next part, the existing objective function used to maximize the
SINR is derived based on the Cauchy–Schwartz inequality. It merely represents an upper
bound of the SINR [33] and cannot accurately replace the SINR. In addition, in order to
obtain a large SINR, optimization algorithms may concentrate waveform energy at certain
frequency points, resulting in narrow bandwidths and poor range resolution. Thus, it
is necessary to impose equivalent bandwidth constraints on the waveform optimization
process. It is also worth pointing out that the metric equivalent bandwidth is analogous
to the integrated sidelobe level (ISL) metric in the time domain, as the autocorrelation
function (ACF) is the Fourier transform of the power spectral density (PSD) [37].

In this paper, in order to enhance the performance of target detection and distance
resolution in the radar system, a novel improved WF waveform design model is derived by
introducing joint constraints on the transmit energy and equivalent bandwidth. In addition,
the waveform design method is utilized in a newly proposed closed-loop CR strategy to
validate its effectiveness in CR systems. Meanwhile, the clutter interference and target
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frequency response utilized for experimental verification are based on real-measured data.
The main contributions can be summarized as follows:

(1) Since the optimal function of the original WF method is always the upper bound
of the echo SINR, the objective function for optimal waveform design, which aims to
maximize the SINR, is reconstructed by modifying the expression of the output SINR [33].
The experimental results under real-measured data reflect the fact that the modification
leads to a further enhancement of SINR performance.

(2) The CM sequence with a high equivalent bandwidth property finds widespread
application in various areas such as wireless communications, synthetic aperture radar,
and range compression radar. To enhance the distance resolution of the waveform, we
propose an improvement to the original WF method by combining the equivalent band-
width and energy constraints while designing the waveform’s optimal spectrum. Then,
the non-convex problem posed by the optimization model is addressed by solving the
equations derived from the KKT conditions. Notably, the equivalent bandwidth constraint
is equivalent to the ISL constraint. Accordingly, the designed unimodular sequences also
exhibit favorable correlation properties.

(3) Compared to previous waveform design works, which designed the transmit se-
quence directly in the time domain, we introduce a step-by-step problem-solving procedure.
This procedure involves first optimizing the spectrum of the transmitting waveform and
then synthesizing the CM sequence. By adopting this problem-solving method, we achieve
a reduction in computational complexity and an improvement in algorithm efficiency to
some extent.

(4) To further confirm the effectiveness of the proposed waveform design method,
we utilize the designed sequence in the context of CR. Notably, previous research on CR
tended to focus solely on specific core functional aspects, often disregarding the essential
closed-loop structure. This paper proposes a creative closed-loop radar system strategy,
which encompasses echo generation and processing, waveform design, and environmental
understanding. The strategy allows for the adaptive modification of the transmit waveform
based on the preceding radar echo. In addition, the environment and target data employed
in the experiments are based on real-measured.

The remainder of this paper is organized as follows. In Section 2, the application
background of waveform design is clarified. Specifically, a closed-loop strategy is proposed
to enhance the traditional radar structure. In Section 3, the signal model of waveform
design in signal-dependent interference is clarified, and the problem of designing the
transmit signal spectrum is formulated for the optimization of the SINR, considering the
joint constraints of waveform energy and frequency bandwidth. In Section 4, the solution
method for the aforementioned non-convex optimal problem is developed, and a CM
sequence synthesis iterative algorithm is introduced. In Section 5, a series of experiments
is presented to highlight the superior performance of the proposed method in terms of
the SINR, spectrum bandwidth, and ISL. Meanwhile, the designed waveform using our
method is applied in a proposed closed-loop CR strategy to showcase its performance in
real-world applications.

Notations: Boldface upper case and boldface lower case are used for matrices and
vectors. Rm×n and Cm×n denote m × n-dimensional real and complex matrix spaces,
respectively. xT and xH denote the conjugate and conjugate transpose of a complex vector
x. X H denotes the conjugate transpose of matrix X. |·| denotes the modulus of a complex
scalar or a complex vector. (·)∗ denotes the complex conjugate for scalars and the conjugate
transpose for vectors and matrices.

2. Closed-Loop CR Strategy

Waveform design plays an important role in CR from an application standpoint. Con-
sequently, prior to explaining the proposed waveform method in this paper, we enhance
the signal processing structure of traditional radar and propose a novel implementation
strategy for the CR concept, as outlined in [38]. Figure 1 shows a flowchart that schemat-
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ically represents the perception–action process proposed in [38]. Actually, the cognitive
dynamic system mimics the human brain, reacting to the environment according to the
basic perception–action cycle. The cycle consists of three basic components—executive,
perception, and the environment—which correspond to the waveform transmitter, receiver
signal processing, and radar scene in a radar system, respectively. We have refined the
functions of each module based on the cognitive radar structure proposed in the litera-
ture, and designed corresponding signal processing and waveform design algorithms to
preliminarily implement the closed-loop strategy of cognitive radar. Specifically, Figure 2
illustrates a flow chart comparing the signal processing procedures in a traditional radar
system to those in a CR system. The procedure reveals that the transmission and receive
filters of a traditional radar system operate independently, resulting in an open-loop mode
for the system. Additionally, in the traditional radar signal processing procedure, the
transmit waveform remains fixed and unchanging, preventing the system from utilizing
environmental information from radar echoes as feedback for waveform adjustment.

Figure 1. Schematic representation of the perception–action process in a radar.

To address the limitation of the traditional radar signal processing structure, a CR
employs a dynamic closed-loop feedback structure for signal transmitting and receiving,
allowing the radar system to perceive and comprehend the environment [39]. Building
upon the fundamental principle of cognitive radar (CR), this paper introduces a novel
closed-loop radar signal processing strategy. In terms of functionality, the closed-loop
strategy consists of five parts, including echo generation, echo processing, clutter inversion,
environmental understanding, and waveform design. The proposed method in this paper is
employed in the waveform design module, which plays an important role in the CR system.

In the first stage, the system is initialized by the LFM transmit signal. Afterward, the
echo generation module calculates the radar echo by considering the real-measured clutter
data, target radar cross-section, transmit waveform, and geometric relationship between
the platform, target, and the surrounding environment. Then, the echo is analyzed by the
echo processing module, which aims to obtain information on the target distance from
the platform and the target velocity relative to the platform. The algorithm employed
in this module utilizes traditional radar signal processing methods. For instance, in this
experiment, matched filtering is employed for distance measurements, whereas moving
target detection is utilized for speed measurements.



Remote Sens. 2023, 15, 5187 5 of 22

The above-mentioned two modules are commonly used structures in open-loop radar
systems. This paper proposes a closed-loop strategy, in which the radar echo is utilized
to provide feedback to the transmit module. Specifically, the clutter inversion module
inverts the environmental information from the previous moment. The environmental
understanding model uses the previous clutter spectrum as prior information and predicts
the information in the next moment. Finally, the proposed waveform design method is
employed in the waveform design module, synthesizing the CM sequence. The sequence is
transmitted by the radar front-end instead of the LFM signal, and then the radar system
enters the next cycle.

Figure 2. Closed-loop cognitive strategy for CR.

3. Waveform Design Method Signal Model and Problem Formulation

In the context of CR waveform design for a monostatic radar system, Figure 3 shows
the signal model of waveform design in signal-dependent interference, where xs(t) is
the transmit signal, h(t) is the target impulse response, c(t) represents the clutter, n(t)
represents the noise, and r(t) denotes the receiver filter. We define the spectrum of the
transmit waveform as X( f ). Then, according to the Cauchy–Schwartz inequality, the
maximum value of the output SINR in t0 can be computed as

(SINR)t0
=

∣∣∣∫ ∞
−∞ R( f )H( f )X( f )ej2π f t0 d f

∣∣∣2∫ ∞
−∞ |R( f )|2 A( f )d f

≤
∫ ∞

−∞

|H( f )|2|X( f )|2

A( f )
d f

(1)

where A( f ) = |X( f )|2Pc( f ) + Pn( f ), Pn( f ) is the PSD of additive Gaussian white noise
(AGWN), Pc( f ) is the clutter PSD, and H( f ) and R( f ) denote the Fourier transform of the
target pulse response and the receive filter.
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Figure 3. Signal model of waveform design in signal-dependent interference.

Equation (1) is a classical waveform design metric widely used in many studies [33,35].
However, the derivation process of the SINR expression contains some reasonable ap-
proximations aimed at deriving the analytical solution of the waveform’s optimal energy
spectrum. This causes the metric (1) to be an upper bound for the SINR if and only if
R( f ) takes on a specific form. In practical scenarios, the expression of the SINR should
be the ratio of two integration results, and the expression in Equation (1) is not accurate
enough. Thus, we derive a corrected SINR expression for signal-dependent interference in
the frequency domain below.

According to Pazwal’s theorem [40], the energy of the target echo and interference
(clutter plus noise) can be computed as

Ys( f ) =
∫ ∞

−∞
|H( f )|2|X( f )|2d f ,

and
Yn( f ) =

∫ ∞

−∞
|X( f )|2Pc( f ) + Pn( f )d f .

Thus, the corrected SINR in the frequency domain can be calculated as

SINR =

∫
W |H( f )|2|X( f )|2d f∫

W |X( f )|2Pc( f ) + Pn( f )d f
, (2)

where W is the bandwidth of the transmit waveform.
Although the WF method performs well in terms of the SINR, it may distribute a

large amount of energy to several frequency points with a high target response. This
phenomenon causes some undesirable properties of the waveform, such as low bandwidth,
poor distance resolution, and high ISL. To address this issue, an equivalent bandwidth
constraint, which can also be referred to as a delay resolution constant, is incorporated into
our optimization model. Specifically, Woodward proposed a characteristic radar parameter
in [41], known as the time-delay resolution constant Aτ . This parameter takes into account
the levels of both the main lobe and the sidelobes, providing an indication of the resolution
characteristics. The detailed expression of Aτ can be given as

Aτ =

∫ ∞
−∞ |χ(τ, 0)|2dτ

|χ(0, 0)|2
=

1
Be

(3)

where Be is defined as the equivalent bandwidth, and

χ(τ, ξ) =
∫ ∞

−∞
xs(t)x∗s (t + τ)ej2πξtdt

where χ(τ, ξ) is the ambiguity function (AF) of the transmit signal xs(t), which represents
the ability of the waveform to resolve two targets with a time-delay difference of τ and a
Doppler frequency difference of ξ.
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For two targets with an identical velocity to the radar system, the ACF s(τ) can be
defined as

χ(τ, 0) =
∫ ∞

−∞
xs(t)x∗s (t + τ)dt , s(τ)

Hence, according to Pasval’s theorem, Equation (3) can be rewritten in the frequency
domain as

Aτ =

∫ ∞
−∞ |X( f )|4d f∣∣∣∫ ∞
−∞ |X( f )|2d f

∣∣∣2 (4)

Above all, a waveform design model with energy and bandwidth constraints is
presented in this paper as

max
|X( f )|2

∫
W |H( f )|2|X( f )|2d f∫

W |X( f )|2Pc( f ) + Pn( f )d f

subject to
∫

W
|X( f )|2d f = Ex (5)∫

W |X( f )|4d f
E2

x
≤ α

where Ex and α denote the defined waveform energy and time-delay resolution constant,
respectively. In addition, the time-delay resolution constant constraint is referred to as the
bandwidth constraint in the following section for ease of understanding.

4. Joint Constraints Waveform Spectrum Design Algorithm and Time
Synthesis Method
4.1. Joint Constraints Waveform Spectrum Design Algorithm

Since the optimization problem (5) with integral symbols is difficult to solve, we
transform it into a discrete form in this subsection. Suppose that t = [t1, t2, · · · , tn]

T ∈
Rn×1 is the square of the amplitude value of the target frequency response, which is
the discrete form of |H( f )|2. x = [x1, x2, · · · , xn]

T ∈ Rn×1 is the ESD of the transmit
waveform, which is the discrete form of |X( f )|2. Additionally, c and n refer to the PSD
values of the clutter and noise, which can be denoted as c = [c1, c2, · · · , cn]

T ∈ Rn×1 and
w = [w1, w2, · · · , wn]

T ∈ Rn×1, respectively. Therefore, (5) can be rewritten as

min
x

cTx + w
tTx

subject to 1Tx =
Ex

∆ f
(6)

xTx− αE2
x

∆ f
≤ 0

x ≥ 0

where 1 = [1, 1, · · · 1]T ∈ Rn×1, and ∆ f is the frequency resolution. Since the optimal
model (6) is a nonlinear fractional programming problem, its functions established via
the KKT condition are hard to solve. Therefore, we take the logarithm of the objective
function and convert it into its first-order Taylor expansion at point xk ∈ Rn×1, which is in
close proximity to the optimal solution x̂. The first-order Taylor expansion of f (x) can be
expressed as
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f (x) , ln(cTx)− ln(tTx)

= f (xk) + [O f (xk)]
T(x− xk) + on

= b + a(c− t)Tx + on

where a = 1
cT xk
− 1

tT xk
∈ R and b = ln(cTxk)− ln(tTxk)− a(c− t)Txk ∈ R are constants.

Hence, the objective function of (6) can be reformulated as minimizing (c− t)Tx, thereby
transforming the non-convex problem into a convex problem. It is widely known that if
a strong duality relationship exists between the original problem and the dual problem,
the solution to the Karush–Kuhn–Tucker (KKT) condition is the optimal solution to the
optimal problem, and the Slater condition is used to determine if the strong duality holds.
In cases where the original problem is convex and the Slater condition holds, the strong
duality holds. The optimal solution found to prove the Slater conditions is the vector x,
where each element equals Ex

n∆ f . Then, the optimal solution to the original function can be
acquired by solving the KKT conditions. The functions established by the KKT conditions
are expressed as

n

∑
i=1

x2
i −

E2
xα

∆ f
≤ 0 (7)

xi ≥ 0 i = 1, 2, · · · , n (8)
n

∑
i=1

xi −
Ex

∆ f
= 0 (9)

λ ≥ 0 (10)

λ

(
n

∑
i=1

x2
i −

E2
xα

∆ f

)
= 0 (11)

µixi = 0 i = 1, 2, · · · , n (12)

ci − ti + 2λxi + µi + ν = 0 i = 1, 2, · · · , n (13)

where ν ∈ R, λ ∈ R, µ ∈ Rn×1 are Lagrange multipliers.

Theorem 1. The results of the functions established by the KKT conditions are

xi = 1R+
0
(−ci + ti − ν)

−µi − ci + ti − ν

2λ
i = 1, 2, · · · , N (14)

where

ν, λ ∈
{

ν, λ |
N

∑
i=1

xi −
Ex

∆ f
= 0,

N

∑
i=1

x2
i −

E2
xα

∆ f
= 0

}
(15)

1R+
0

are element-wise operations

1A(x) =

{
1, if x ∈ A
0, otherwise

and R+
0 means the positive value. The proof process is as follows.

Proof of Theorem 1. According to (13), we obtain

xi =
−µi − ci + ti − ν

2λ
(16)

To satisfy (12), there are two kinds of situations:
a. µi = 0. According to (16), to satisfy constraint (8), −ci + ti + ν > 0 must be true.
b. For the case where −ci + ti + ν ≤ 0, xi = 0 must hold to satisfy condition (12).
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Specifically, the method for computing ν, λ, xi is outlined in Algorithm 1, where ∆ is
the search step size of variable ν, j is the iteration time, and e is the iteration error. The
criterion for the convergence of Algorithm 1 is set at an iteration error of e < 1× 10−1.
Furthermore, the computational complexities of both the proposed method and the water-
filling method are analyzed. The computational complexity of the proposed method
is O(NL), whereas the computational complexity of the water-filling method is O(N).
Actually, the foundations of both methods are analytical expressions. However, because of
the difference in the number of constraints, the water-filling method has one parameter
to solve, whereas the proposed method has two. Hence, the proposed method has higher
computational complexity than the water-filling method since it proposes both a high SINR
and a high equivalent bandwidth.

Algorithm 1 Joint Constraints Waveform Spectrum Design

Input: c, t, Ex, ∆ f , α
Output: x, λ, ν, e

1: Initialize: ν0, ∆, j = 0
2: repeat
3: λ(j) = ∆ f

2Ex

[
1T(c− t) + ν(j)

]
4: Compute x(j) using (14)
5: Compute e(j) using (7)
6: ν(j+1) = ν(j) + ∆
7: j = j + 1
8: until convergence

4.2. CM Sequence Synthesizing for Optimal Frequency Spectrum

In the previous subsection, the ESD of the optimal waveform x was obtained. Subse-
quently, a time-synthesizing algorithm should be used to make sure of its CM property in
the time domain [42]. Given that y = [y1, y2, . . . , yn]T ∈ Cn×1 is an n-point unit-amplitude
complex time domain signal, yf = [yf1, yf2, . . . , yfn]

T ∈ Cn×1 is its corresponding Fourier
transform, and its amplitude |yf| should be close to ε =

√
x ∈ Rn×1. This can be easily

obtained by minimizing the following least squares error

J =
n

∑
i=1

∣∣∣εiejφi − yfi

∣∣∣ (17)

where φ = [φ1, φ2, . . . , φn]T ∈ Rn×1 is the phase of y f . The least squares error can be
represented as

J = ‖γ−Wy‖2
2 (18)

where γ =
[
ε1ejφ1 , ε2ejφ2 , · · · , εnejφn

]T ∈ Rn×1. W is an N × N discrete Fourier transform
(DFT) matrix defined as

W =
1√
n


ω1,1 ω2,1 · · · ω1,1

ω1,1 ω2,1 · · · ω1,1

...
... · · ·

...
ωn,1 ωn,2 · · · ωn,n

 (19)

The linear least squares estimator of y is

ŷ = (W HW)−1Wγ = (1/n)Wγ (20)

As γ depends on the phase φi, the problem should be solved iteratively. The process for
obtaining the time synthesis signal is summarized in Algorithm 2, where k is the iteration
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time. The criterion for the convergence of Algorithm 2 is set as the norm of the difference
vector between the results of two consecutive iterations being less than 1 × 10−10.

Algorithm 2 An iterative method for the time synthesis signal

Input: ε
Output: φ

1: Initialize: φ(0), W , k = 0
2: repeat
3: Compute γ(k)

4: Compute ŷ(k) using (20) and normalize
5: Compute ŷf

(k) = Wŷ(k)

6: Compute the phase φ(k) of ŷf
(k)

7: k = k + 1
8: until convergence

5. Experiments and Analysis

In this section, simulation experiments are performed to verify the superior perfor-
mance of the proposed algorithm. Furthermore, real-measured ground clutter data and real
target radar cross-section (RCS) frequency responses are subsequently introduced as clutter
PSD and target ESD to enhance the credibility of the experiments. Specifically, Experiment
1 demonstrates the enhancement of the SINR after correcting the optimization metric;
Experiment 2 shows the effectiveness of the joint constraints waveform design method
and time synthesis algorithm; Experiment 3 proves the outstanding performance of the
designed waveform in terms of the ISL metric; Experiment 4 discusses the relationships
among the transmit energy, bandwidth, and SINR; Experiment 5 verifies the algorithm
using real-measured data; and finally, the proposed waveform design is applied in the
closed-loop strategy in Experiment 6 to test its application in cognitive radar.

Implementation Details: Our proposed method is compared to the WF method
in [33] and the linear frequency-modulated (LFM) signal in the following subsection.
Additionally, we define the target-to-clutter ratio (TCR) as the area under the target power
spectrum to the area under the clutter PSD, and we define the clutter-to-noise ratio (CNR)
as the area under the clutter PSD compared to the noise PSD. In the following experiments,
we set both the TCR and CNR to 0 dB, meaning that the energies of the target, clutter, and
noise are the same [33]. Moreover, all experiments are implemented in MATLAB R2022b
and run on a PC with a 2.30 GHz i7-12700H CPU and 16 GB of RAM.

5.1. Experiment 1: Correct SINR Metric without Bandwidth Constraint

Simulation Scenario: The simulation experiment scenario simulates the detection
of a stationary target from a stationary platform. Regarding the radar parameters, the
bandwidth is 50MHz, and the signal pulse width is 2.5 µs. Regarding the target and
interference model, we assume that the clutter and target consist of several Gaussian
spectra. Specifically, the target frequency response can be expressed as

H( f ) =
Ntarget

∑
i=1

ρtarget,i
1√

2πσtarget,i
exp−

( f − ftarget,i)
2

2σ2
target,i

(21)

where Ntarget is the number of frequency points with a higher target response, and ρtarget,i,
σtarget,i, and ftarget,i are the weight, variance, and center frequency of each target Gaussian
spectrum, respectively. The target frequency response is set to Ntarget = 10 Gaussian
spectrum superimposed, and the parameters for each Gaussian spectrum are shown in
Table 1.
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Table 1. Parameters of each Gaussian spectrum in the target frequency response.

Target Number 1 2 3 4 5 6 7 8 9 10

ftarget,i −0.42 −0.38 −0.25 −0.2 −0.07 0.08 0.15 0.28 0.31 0.39
ρtarget,i 0.3 0.5 0.8 1 1 1 0.2 0.25 0.8 0.9
σtarget,i 1.70 × 106 1.70 × 106 1.70 × 106 8.00 × 105 8.00 × 105 1.70 × 106 1.70 × 106 1.70 × 106 8.00 × 105 8.00 × 105

The interference in the simulation model is composed of ambient clutter and noise.
The clutter PSD can be represented in a similar form, as

Pc( f ) =
Nclutter

∑
i=1

ρclutter,i
1√

2πσclutter,i
exp−

( f − fclutter,i)
2

2σ2
clutter,i

(22)

where Nclutter is the number of frequency points with a higher clutter response, and ρtarget,i,
σclutter,i, and fclutter,i are the weight, variance, and center frequency of each clutter Gaussian
spectrum. The parameters of the clutter spectrum are Ntarget = 2, ftarget,i = −0.25, 0.2,
σtarget,i = 8.3 × 106, 8.3 × 106, and ρtarget,i = 1, 1. The noise is assumed to be additive white
Gaussian noise with a flat PSD, which is N f = 1 watt/Hz.

The SINR performance of the waveform design results without an equivalent band-
width constraint is investigated in this subsection. By comparing the waveforms obtained
using different objective functions (1) and (2), we can assess the outcome of our waveform
design method, as shown in Figure 4a. The Correct Metric represents the result of objective
function (2), whereas the Original Metric represents the result of objective function (1). The
results demonstrate that our proposed metric leads to a more centralized energy distri-
bution. Specifically, the WF waveform has four peaks, whereas the waveform designed
using the corrected metric has only one peak. This is because the SINR expression has
been changed from function (1), which involves the integral of the ratio, to function (2),
which is the ratio of two integrals. This change in expression causes the energy of the
other three peaks in the original waveform to transfer to one point, which has the highest
signal-to-clutter ratio, in the proposed waveform. Moreover, the SINR of the waveform
in the red line spectrum aligns better with our measurement standard and is numerically
higher. This is why the waveform designed using the corrected metric only has one peak.

(a) (b)

Figure 4. Performance of waveform without bandwidth constraints, original WF waveform, and
the LFM signal. (a) Clutter PSD, target ESD, and waveform spectrum design results. (b) SINR
performance varying with the transmit energy.

Then, we compare the SINR performance of waveforms under different metrics. The
waveform energy is set at Ex = 1 × 10−2 to 1 × 102, and the outcome is shown in Figure 4b,
demonstrating that the SINR performance improved compared to the other two kinds of
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waveforms using the corrected metric. However, it can be seen that the low bandwidth is
indeed a disadvantage brought about by correcting the objective function of the water-filling
method. Hence, the bandwidth constraint is introduced in the following experiments.

5.2. Experiment 2: Correct SINR Metric with Bandwidth Constraint

Algorithms 1 and 2 are verified in this subsection. Figure 5a compares the waveform
design results of the proposed method with the original WF method, where Proposed
represents the joint constraints algorithm and Original represents the original method. The
transmitted energy is set to Ex = 1× 10−2, and the equivalent bandwidth is set to Be = 0.25.
Moreover, the equivalent bandwidth of the WF waveform is 0.075.

(a) (b)

Figure 5. Performance of waveform under joint constraints, original WF waveform, and the LFM
signal. (a) Clutter PSD, target ESD, and waveform spectrum design results. (b) SINR performance
varying with the transmit energy.

As illustrated in the previous subsection, the transmit energy Ex varied from 1 × 10−2

to 1 × 102. An interesting phenomenon can be seen in Figure 5b, revealing that the
output SINR of the waveform under joint constraints is lower than that of the original WF
waveform when Ex is low. In particular, around Ex = 1× 10−1 is the critical energy at which
the SINR and equivalent bandwidth of both waveform design methods are approximately
equal. However, when the waveform energy increases, the SINR of the proposed method
surpasses that of the original method. This can be explained by the fact that when the
transmitted energy is low, the bandwidth of the water-filling waveform is smaller than 0.25,
and the energy allocation strategy of the proposed method is affected by the bandwidth
constraint, which causes the loss of the SINR. When the transmit energy increases, the
bandwidth of the water-filling waveform is larger than 0.25, and the proposed method
tends to concentrate the energy at several frequency points with a higher response, resulting
in a higher SINR, just as in Experiment 1.

Furthermore, Figure 6a illustrates the spectra of the time synthesis waveform and
the corresponding optimal waveform, providing evidence for the effectiveness of the time
synthesis algorithm. Figure 6b indicates that the time synthesis waveform possesses the
CM property.
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(a) (b)

Figure 6. ESD, real, and imaginary parts of time synthesis waveform. (a) Spectrum of time synthesis
waveform and optimal spectrum. (b) Real and imaginary parts of time synthesis waveform.

5.3. Experiment 3: ISL Metric of Waveform under Joint Constraints

Assume that

rk =
n

∑
m=k+1

ymy∗m−k = r∗−k, k = 0, · · · , n− 1 (23)

is the correlation function of the transmit sequence y = [y1, y2, . . . , yn]T . Then, the ISL
metric of the waveform can be expressed as

ISL =
n−1

∑
k=1
|rk|2 (24)

The expression of the Merit Factor (MF) can be written as

MF =
n2

2ISL
(25)

The MF metric has been commonly employed to assess the sidelobe levels of waveforms
in prior research [43], as the minimization of the ISL is equivalent to the maximization
of the MF. At the same time, unimodular sequences with high MF values are essential in
radar systems and wireless communication due to their excellent anti-clutter performance.
As previously mentioned, the MF metric is equivalent to the concept of the equivalent
bandwidth [37]. Therefore, in this subsection, we compare the ISL performance, specifically
the MF value, of the sequences designed using the proposed and the original WF methods.

In this experiment, the transmit waveform energy is set to Ex = 1 × 10−2, and the
equivalent bandwidth is set to Be = 0.25. Figure 7 shows a comparison of the correlation
level of the sequences designed using the proposed and original methods. Both of the
sequences are CM and generated using Algorithm 2. It can be seen in Figure 7 that the wave-
form designed under the equivalent constraint exhibits a lower sidelobe level compared to
the original WF waveform. Table 2 shows the MF values of the sequences under different
equivalent bandwidth constraints when the transmit energy is set to Ex = 1 × 10−2. Since
the transmit energy is fixed, the sequence designed using the WF method is the same under
different equivalent bandwidths, whereas the MF value of the sequence designed using
the proposed method increases with the equivalent bandwidth. Moreover, the sequences
designed using the proposed method exhibit significantly higher MF values compared to
those designed using the WF method.
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Figure 7. Correlation levels of the sequences designed using the proposed method and the original
WF method.

Table 2. MF values of the sequence designed using the proposed method (Ex = 1 × 10−2).

Be 0.1 0.25 0.5 0.8 0.9

Proposed 0.10 0.26 0.59 1.40 2.10
WF 0.04 0.04 0.04 0.04 0.04

5.4. Experiment 4: Relationships among the Transmit Energy, Bandwidth, and SINR

The relationships among the transmit signal energy, bandwidth, and SINR are further
investigated, as shown in Figure 8. Figure 8a shows a comparison of the SINR performance
of the waveforms designed under different equivalent bandwidth constraints, and Figure 8b
shows a comparison of the SINR performance of the waveforms designed under different
energy constraints. As shown in Figure 8a, it is evident that the SINRs of the waveforms
designed using the proposed method gradually increase as the equivalent bandwidth
constraints decrease. Figure 8b shows the trends of the SINR performance, which gradually
deteriorates as the equivalent bandwidth increases.

(a) (b)

Figure 8. Relationships among the SINR, equivalent bandwidth, and transmit energy. (a) SINR
performance under different equivalent bandwidth constraints. (b) SINR performance under different
transmit energy constraints.
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5.5. Experiment 5: Application of the Waveform Design Method to a Stationary Platform Using
Real-Measured Data

To enhance the credibility of the experiments, the real-measured environmental data
and target data are utilized to assess the effectiveness of the proposed method on a station-
ary platform. The real-measured clutter data presented in this and the next subsections
were acquired in a region of Hainan, China, and the acquisition conditions are presented in
Table 3. The target is an armored vehicle with pitch and azimuth angles identical to those
of the ground clutter. Since the number of samples for the target RCS is considerably fewer
than the number of PSD values for the clutter within the same bandwidth, we interpolate
each frequency point of the target for a more accurate analysis. It can be seen in Figure 9
that the clutter energy is concentrated in the normalized frequency range of (−0.5,−0.2],
whereas the target frequency response is large at several specific frequency points.

Table 3. Ground clutter acquisition radar parameters.

Parameter Value

Sampling Rate 500 MHz
Bandwidth 400 MHZ

Pulse Repetition Frequency (PRF) 2000 Hz
Pulse Width 10 µs

Height 1.5 km
Pitch Angle 30◦

Azimuth Angle 0◦

Polarization Mode HH
Distance Sampling Interval 0.3 m

(a) (b)

Figure 9. PSD of real-measured clutter. (a) Clutter PSD in different PRTs. (b) Real-measured clutter
PSD and target ESD.

In the following real-measured experiments, the energy of the transmit signal is set to
Ex = 1 × 10−2, and the equivalent bandwidth constraint in the proposed method is set to
Be = 0.1. The optimal waveform spectrum, corresponding time-synthesized sequences, and
their performance are illustrated in Figure 10. Figure 10a shows the optimal spectra of the
proposed method and WF method. It can be seen that the proposed algorithm is designed
to distribute the waveform energy spectrum more evenly compared to traditional methods.
After calculation, the equivalent bandwidths of the proposed method and original method
are 0.1 and 0.02, respectively. Figure 10b demonstrates the superior performance of the
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proposed algorithm compared to the WF method and LFM signal, and Figure 10c shows
the time-synthesized signal results.

(a) (b)

(c)

Figure 10. Results of real-measured data. (a) Proposed and original waveform spectrum design
results. (b) SINR performance varying with the transmit energy. (c) Spectrum of time synthesis
waveform and optimal spectrum.

5.6. Experiment 6: Application of Waveform Design Method in the Closed-Loop CR Strategy

To provide a deeper understanding of the impact of the proposed waveform design
method, this subsection uses the closed-loop CR strategy mentioned above to evaluate its
performance in a CR system application. Regarding the data, another set of real-measured
data is used in this subsection as prior clutter information to test the performance of our
algorithm in the closed-loop cognitive strategy. There are three sets of experiments using
a traditional process with an LFM signal and a cognitive process with different transmit
waveforms. Since the cognitive process is initialized by the LFM transmit signal, the
following cognitive process figures display the corresponding results in the second PRT
instead of the first one. Figure 11 displays the optimal waveform using different waveform
design methods. It can be seen that the target frequency response is high in the low- and
high-frequency bands, whereas the clutter energy spectrum is high in the low-frequency
band. When comparing Figure 11b and Figure 11a, it can be seen that the proposed method
ensures that the optimal energy spectrum focuses on the high-frequency band and aligns
with the target frequency response at some frequency points. Specifically, the equivalent
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bandwidth of the WF method is Be = 63.35 MHz, whereas the equivalent bandwidth of the
proposed method is Be = 79.19 MHz.

(a) (b)

Figure 11. Radar optimal spectrum using different methods. (a) WF method. (b) Proposed method.

The following figures illustrate the clutter suppression and target enhancement achieved
using the proposed method. Figure 12 illustrates the radar echo in one PRT under different
transmit waveforms, which can be considered to be composed of three parts: target echo,
clutter echo, and noise according to Figure 3. More specifically, Figure 13a,b display the
separate echoes of the target and clutter, respectively, when the transmit signal is an LFM
signal and the waveform is designed using the proposed method. The blue line is the echo
of the designed waveform, and the red line is the LFM signal. The results show that after
optimizing the spectrum of the transmit waveform, the target echo is enhanced to twice its
previous level, and the clutter echo is reduced to half its previous level. The enhancement
of the target echo energy and the attenuation of the clutter echo energy demonstrate the
outstanding performance of the designed waveform in improving the output SINR.

(a)
(b)

Figure 12. Cont.
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(c)

Figure 12. Radar echo synthesized by the echo generation module in one PRT under different transmit
waveforms. (a) LFM signal. (b) Waveform designed using the WF method. (c) Waveform designed
using the proposed method.

(a) (b)

Figure 13. Echo within the pulse width under different transmit waveforms. (a) Target echo.
(b) Clutter echo.

Figures 14 and 15 illustrate the output of the echo processing module. In Figure 14,
it can be observed that the sidelobe level of the LFM transmitting waveform is −20 dB,
whereas the sidelobe levels of the waveforms designed using the WF method and the
proposed method are about −30 dB. Meanwhile, the sidelobe of the proposed waveform is
lower than that of the WF waveform. Figure 15 shows the range-Doppler image of the radar
echo. As the transmit waveform changes from the LFM signal to the optimal waveform,
the target becomes more prominent in the clutter, and the detection difficulty decreases.
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(a) (b)

(c)

Figure 14. Matched filter results under different transmit waveforms. (a) LFM signal. (b) Waveform
designed using the WF method. (c) Waveform designed using the proposed method.

(a) (b)

Figure 15. Cont.
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(c)

Figure 15. Range-Doppler results under different transmit waveforms. (a) LFM signal. (b) Waveform
designed using the WF method. (c) Waveform designed using the proposed method.

6. Conclusions

In this paper, we address the issue of the low-distance resolution of the traditional
WF waveform by proposing a novel waveform design model that contains both energy
and equivalent bandwidth constraints. Specifically, we follow two steps to obtain the
optimal transmit waveform in the time domain. First, the KKT conditions are employed
to solve the non-convex problem and optimize the waveform energy spectrum. Then, a
time synthesis method is used to synthesize the unimodular sequence in the time domain.
To demonstrate the effectiveness of our proposed approach, experiments using simulation
and real-measured data are conducted to verify that the proposed method can enhance
the equivalent bandwidth of the WF waveform while maintaining superior SINR perfor-
mance. Finally, to verify the practical application value of the proposed waveform design
method, a closed-loop CR strategy is proposed, and the results of the experiments under
real-measured data illustrate the superior performance of this strategy in comparison to
traditional radars.
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