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Abstract: In the complex battlefield electromagnetic environment, multiple jamming signals can enter
the radar receiver simultaneously due to the development of jammers and modulation technology.
The received compound jamming signals aggravate the difficulty of recognition and subsequent
counter-countermeasure. In the face of strong overlapping signals and unseen jamming signal
combinations, the performance of existing recognition methods usually seriously degrades. In this
paper, an end-to-end multi-label classification framework combining a complex-valued convolutional
neural network (CV-CNN) and jamming class representations is proposed to automatically recognize
the jamming signal components of compound jamming signals. A basic multi-label CV-CNN (ML-
CV-CNN) is first designed to directly process time–domain complex signals and fully retain jamming
signal information. Then, the jamming class representations are generated using prototype clustering
implemented by learning vector quantization, and they are fused with the ML-CV-CNN using class
decoupling implemented by the attention mechanism to construct a multi-label class representation
CV-CNN (ML-CR-CV-CNN), which can better learn the class-related features required for recognition.
Finally, an adaptive threshold calibration is adopted to obtain optimal recognition results by multi-
threshold discrimination. Simulation results verify that the proposed method has superior recognition
performance, which is reflected in the strong robustness to the varying jamming-to-noise ratio (JNR)
and power ratio, faster convergence speed with high JNRs, and better generalization for unseen
jamming signal combinations.

Keywords: radar jamming signal recognition; compound jamming signal; multi-label classification;
complex-valued convolutional neural network; jamming class representation fusion

1. Introduction

In modern warfare, with increasing jamming sources and advanced modulation
technology, the battle space is filled with a variety of dynamic electromagnetic jamming
signals, which are manifested as ubiquitous in space, dense, and overlapping in the time and
frequency spectrum. Automatic recognition of jamming types is important for reasonably
deploying anti-jamming resources and ensuring anti-jamming performance. Relying on the
development of the capability and number of jammers, the generation of jamming signals
is more convenient, and the jamming strategy is more flexible. In order to make better use
of jamming resources and achieve better jamming effects, the compound jamming signals
with overlapping multiple jamming signals are generated by modulation technology or
multi-jammer collaboration to interfere with radar systems. For the purpose of providing
sufficient a priori information for anti-jamming, it is necessary to find an appropriate
method that can effectively recognize not only single jamming signals and compound
jamming signals, but also the specific components in compound jamming signals.

Generally, jamming recognition is mainly carried out in two aspects. At the data
processing level, jamming signals are recognized by the likelihood detection and goodness-
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of-fit detection according to amplitude fluctuation characteristics [1,2]. The approach is
based on probability statistical models and usually requires a lot of prior knowledge. More-
over, model mismatches caused by missing parameters can lead to serious degradation of
recognition performance. At the signal processing level, jamming signals are recognized
by feature extraction and classifiers [3,4]. When there are many types of jamming signals,
the separable feature parameters are difficult to extract with expert knowledge, and the
computational complexity is also high. Recently, inspired by the powerful advantages of
deep learning in feature extraction, deep neural networks (DNN) with various frameworks
have been validated in a variety of radar signal recognition tasks, including SAR image
recognition [5,6], automatic modulation recognition [7–9], high-resolution range profile
recognition [10], and waveform recognition [11,12]. In terms of jamming signal recogni-
tion, most methods usually require data preprocessing. The one-dimensional radar echo
data are converted into two-dimensional images that are more suitable for the input of
DNNs [13–15]. In addition, one-dimensional jamming data are also attempted to be pro-
cessed directly by DNNs. In [16], a complex-valued convolutional neural network (CNN)
using raw jamming signals is constructed for fast recognition. In [17], two CNN models are
adopted to extract two-dimensional time-frequency image features and one-dimensional
signal features respectively, and then the two features are fused to further improve recogni-
tion performance. However, most studies on the jamming signal recognition task mainly
focus on single jamming signals, and the existing recognition models are not completely
applicable to compound jamming signals.

For compound jamming signal recognition, the traditional idea is to perform signal sep-
aration before recognizing signal components. First, the overlapping signals are separated
into independent signal components by blind separation algorithms such as independent
component analysis and natural gradient independent component analysis, and then the
final classification decision is made using the feature parameters obtained by cumulants
and wavelet transform [18,19]. In order to ensure good separation performance, these
methods require adequate receiving channels and the accurate estimation of the number of
signal sources, which have poor recognition accuracy for single-channel compound signals.
The signal separation required for recognition also brings additional computational costs.
A cumulant-based maximum likelihood classification method omits the signal separation
process and directly uses composite cumulants for classification decisions [20]. Neverthe-
less, it still needs to estimate the number of sources and channels as a priori information
for calculating composite cumulants. And the increasing compound signal components
also lead to the degradation of recognition performance. In addition, some methods based
on DNNs are proposed to recognize compound signals and avoid the signal separation
process. Relying on the distribution differences of signal components in the time-frequency
domain, a deep CNN model is adopted to recognize segmented time-frequency images
obtained by a repeated selective strategy [21]. And a deep object detection network is
used to recognize jamming types and locate position information [22]. However, these
methods cannot deal well with compound signals with strongly overlapping signal compo-
nents in the time-frequency domain when the suppression jamming power is greater than
the power of the other jamming signal components. Some models based on multi-class
classification are also used for compound signal recognition [23,24]. They define each
possible combination as a separate class, which is marked with a single label during the
recognition process. A Siamese-CNN model based on the original echo data [25] and a
jamming recognition model based on power spectrum features [26] realize the recognition
of additive and convolutional compound jamming signals, respectively. For the recognition
models based on multi-class classification, the size of the output node representing classes
increases exponentially with the number of candidate signal components. The feature
extractors in models are required to extract the classifiable features of all combinations to
ensure recognition performance. Unfortunately, the increasing and overlapping candidate
signal components greatly enhance the difficulty of feature extraction, which leads to the
increasing model complexity and declining recognition performance.
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In addition to multi-class classification methods, another potential strategy that can be
used for compound jamming signal recognition is multi-label classification [27,28]. It has
been successfully applied in many fields such as automatic video annotation [29], action
recognition [30], visual object recognition [31], web page categorization [32], audio anno-
tation [33], and image recognition [34,35]. In terms of radar signal recognition, the multi-
instance multi-label learning frameworks based on a CNN and a residual attention-aided
U-net generative adversarial network realize the automatic recognition of the overlapping
low probability of intercept radar signals [36,37]. A CNN-based multi-label framework
using time-frequency images is proposed for compound jamming signal recognition [38]. It
has good recognition accuracy at multiple values of the jamming-to-noise ratio (JNR). How-
ever, the time-frequency preprocessing comes with an additional computational burden.
And the strong overlapping effect of time-frequency images generated by high-power sup-
pression jamming signals is ignored, which can lead to serious degradation of recognition
performance when the power of signal components is unbalanced.

Inspired by the multi-label classification methods and considering the problems men-
tioned above, a multi-label class representation complex-valued convolutional neural net-
work (ML-CR-CV-CNN) with an end-to-end manner is proposed for compound jamming
signal recognition. The main contributions of this paper are summarized as follows:

1. A basic ML-CV-CNN is designed to directly process the raw one-dimensional
time–domain compound jamming signals. The introduction of complex-valued com-
ponents reduces the possible information loss caused by data preprocessing and
enhances the weak feature extraction ability for strong overlapping signals.

2. Using class decoupling implemented by the attention mechanism, the basis ML-CV-
CNN is fused with the jamming class representations generated by learning vector
quantization (LVQ) to construct the ML-CR-CV-CNN, which enhances the class-
related feature learning of compound jamming signals and improves the recognition
performance of unseen combinations in training.

3. Simulation results show that the proposed method can effectively recognize com-
pound jamming signals, especially in the face of high-power suppression jamming
signals with strong overlapping effect. The performance improvement is mainly
manifested in robustness to the variation of the power ratio (PR), model convergence
speed, and generalization to unseen combinations.

The rest of this paper is organized as follows: Section 2 gives the compound jamming
signal model and introduces the basic theory of the recognition model. Section 3 describes
the proposed recognition method in detail. In Section 4, the data description, experiment
configurations, evaluation metrics and experimental results are presented and analyzed.
Finally, the conclusions are summarized in Section 5.

2. Signal Model and Problem Formulation
2.1. Compound Jamming Signal Model

The complex electromagnetic environment contains various types of jamming signals
with different effects. In general, suppression jamming signals with high power can
completely cover real targets to destroy radar detection, and deception jamming signals
can generate false targets to interfere with the determination of real targets. In the practical
application, the compound jamming signals formed by enemy jammers using multiple
jamming technologies can simultaneously greatly enhance the jamming ability. According
to generation mechanisms, the compound jamming signals can be divided into the additive
compound, multiplicative compound, and convolutional compound. In this paper, we
mainly consider the most common scenario in which multiple jammers work together in a
complex electronic countermeasure environment. As shown in Figure 1, many different
types of jamming signals enter the radar receiver simultaneously to generate additive
compound jamming signals.
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Figure 1. Schematic diagram of compound jamming signal generation and typical jamming signals.

In the observation range, assuming that m jammers emit different types of jamming
signals to interfere with the radar system, the radar receiving antenna receives all jamming
signals at the same time. And each type of jamming signal enters with the same probability.
The formed compound jamming signal can be expressed as

S(n) =
m

∑
i=1

αi Ji(n) + ω(n), (1)

where Ji(n) denotes the discrete-time jamming signal generated by the i-th jammer, and
n is the sampling point. αi denotes the amplitude coefficient generated by the signal
propagation. ω(n) represents the additive white Gaussian noise (AWGN) with zero mean.

We assume that the electromagnetic space contains C kinds of candidate jamming
signals, and different types of jamming signals can be mixed randomly. Thus, there are Nc
different combinations of compound jamming signals. The specific value can be calculated
according to the following formula:

Nc =
C

∑
k=1

Ck
C = 2C − 1, (2)

where Ck
C is the calculation of the combinatorial number. For a compound jamming signal

S, there are k kinds of jamming signal components, and k varies in the range of [1, 2, · · · , C].

2.2. Recognition Model for Compound Jamming Signals

The compound jamming signal recognition can be regarded as a multi-label classi-
fication task. The main purpose is to identify the jamming type of each component in
compound signals. Compared with the multi-class classification method, the label corre-
sponding to a compound jamming signal is not a single value, but a vector with a length
equal to the number of candidate jamming signal components. The values in the label
vector are 1 and 0, which represent the presence and absence of a specific type of jamming
signal, respectively.

In the end-to-end multi-label compound jamming signal recognition, it is expected to
estimate the label vector y directly from S, which can be formulated as

y = fmulti−label(S, θ), (3)

where y = {yc|c = 1, 2, · · · , C} and yc ∈ {0, 1}. θ is the model parameter. The detailed
mapping between the input signal and output label of compound jamming signal recogni-
tion models can be seen in Figure 2. It is assumed that the compound jamming signal to be
tested contains three different types of jamming signal components. The trained multi-class
classifier outputs a single label value at a certain node, while the trained multi-label classi-
fier outputs a label vector with an encoding length of C. There are three values marked
as 1 in the label vector, and the value of 1 for the i-th node indicates the existence of the
i-th jamming signal component. Obviously, the multi-label classifier reduces the number of
output nodes from 2C − 1 to C compared to the multi-class classifier.
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Figure 3. Framework of the ML-CR-CV-CNN model. 

3.1. ML-CV-CNN Model Construction and Compound Jamming Signal Feature Extraction 

Figure 2. Mapping between the input signal and output label of compound jamming signal recogni-
tion models based on multi-label classification and multi-class classification. Three different colors
represent three different types of jamming signal components.

3. Proposed ML-CR-CV-CNN for Compound Jamming Signal Recognition

Considering that radar echo signals are one-dimensional complex data, the basic ML-
CV-CNN is designed for the end-to-end recognition of compound jamming signals, where
each component in the model is in a complex-valued form. In order to further improve
model recognition performance and generalization performance, the ML-CR-CV-CNN is
constructed by fusing the jamming class representations into the ML-CV-CNN, which is
equipped with a higher ability to learn class-related features required for recognition.

The overall framework of the ML-CR-CV-CNN is shown in Figure 3. It is mainly
composed of four key modules: compound jamming signal feature extraction, jamming
class representation generation, jamming class representation decoupling and adaptive
threshold calibration. Firstly, for the single jamming signals belonging to different classes,
the jamming class representation generator is constructed to obtain the class representations
according to a single jamming signal recognition model and prototype clustering. Secondly,
through the class representation decoupling module, the features of compound jamming
signals extracted by the compound jamming signal feature extractor are fused with class
representations to realize class decoupling by the attention mechanism. And then the
obtained class-related feature vectors are used to calculate the existence probability of each
jamming class. Finally, an adaptive threshold calibration strategy is adopted to select the
optimal decision threshold for the probability of each class by maximizing the F1 value.
After multi-threshold discrimination, the predicted label vectors can be determined, which
are used to recognize the jamming signal components in compound jamming signals.
Detailed descriptions of the main modules are given below.
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3.1. ML-CV-CNN Model Construction and Compound Jamming Signal Feature Extraction

The ML-CR-CV-CNN is constructed by fusing the basic ML-CV-CNN and jamming
class representations, where the basic framework of the ML-CV-CNN for compound
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jamming signals is shown in Figure 4. The overall structure is an end-to-end recognition
model. The input is the one-dimensional time–domain compound jamming signals. After
multiple convolutional layers and fully connected layers, the score vectors s representing
the confidence level of each jamming class can be obtained. According to s, the probability
vectors p indicating the existence of jamming classes can be further calculated by a sigmoid
function. And the final predicted label vectors composed of 1 and 0 are estimated to
recognize the jamming signal components by performing the adaptive calibration strategy
on p.
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The specific composition and parameters of each layer in the ML-CV-CNN are shown
in Table 1. Generally, DNNs mainly use real-valued operation. For radar jamming signals,
simply separating the real and imaginary parts or considering the amplitude and phase
can destroy the original data relationship and lose some information. In order to effectively
utilize the phase information and obtain richer signal feature representations for recognition,
the layers of convolution, max pooling, activation function and dense in the ML-CV-CNN
are implemented by complex-valued operation.

Table 1. Layers of the ML-CV-CNN.

Layer Type Output Shape

Input Reshape 1 × 4000 × 1
Conv1 Convolution (5 × 1 × 32)-ReLU-Maxpooling (2 × 1)-Reshape 32 × 2000 × 1
Conv2 Convolution (7 × 1 × 64)-ReLU-Maxpooling (2 × 1)-Reshape 64 × 1000 × 1
Conv3 Convolution (9 × 1 × 128)-ReLU-Maxpooling (2 × 1)-Dropout (0.5)-Reshape 128 × 500 × 1
Conv4 Convolution (11 × 1 × 256)-ReLU-Maxpooling (2 × 1)-Dropout (0.5)-Reshape 256 × 250 × 1

FC1 Flatten + Linear + Concatenate-Reshape 1 × 512 × 1
FC2 Linear 1 × 4 × 1

Output Threshold calibration 1 × 4

According to the mathematical expression of the complex computation, the complex-
valued convolution operation can be expressed as the following [39,40]:

W ∗ x = (A + iB) ∗ (c + id) = (Ac− Bd) + i(Ad + Bc), (4)

where x = c + id is a complex vector, which represents the input of the convolutional layer.
W = A + iB is a complex filter matrix, which represents the weight. Among them, c, d, A,
and B are all real values. Ac− Bd and Ad + Bc represent the real and imaginary parts of
the output of the complex-valued convolutional layer, respectively. It can be inferred that
a complex-valued convolutional layer can be realized by a high-dimensional real-valued
convolutional layer with two filters. The specific implementation is shown in Figure 5.
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Figure 5. Implementation of a complex-valued convolutional layer.

The operation of a complex-valued dense layer is similar to the complex-valued
convolutional layer. It can be implemented by a high-dimensional real-valued dense
layer with two filters. In addition, a complex-valued activation function and max pooling
operation can be achieved by using the rectified linear unit (ReLU) and max pooling
(MaxPool) for the real and imaginary data independently. They can be defined as the
following [39]:

CReLU(x) = ReLU(<(x)) + i ReLU(=(x))
CMaxPool(x) = MaxPool(<(x)) + i MaxPool(=(x))

, (5)

where C denotes the complex-valued form. <(·) and =(·) are the real and imaginary parts.
The ML-CR-CV-CNN and ML-CV-CNN share the structure of feature extraction. The

compound jamming signal feature extractor fcnn in the ML-CR-CV-CNN can be found in
Figure 4. For the compound jamming signal S that is input into the ML-CR-CV-CNN model
shown in Figure 3, the extracted feature vector f S can be indicated as

f S = fcnn(S). (6)

3.2. Jamming Class Representation Generation

The jamming class representation generator combining a feature extraction network
and prototype clustering is utilized to extract the feature vectors that can represent the
separability of various types of jamming singles. The feature vectors with sufficient separa-
bility are used as jamming class representations, which can help to extract the class-related
information from compound jamming signals. Based on the separable feature vectors
extracted by a classic end-to-end jamming signal recognition model and the prototype
clustering performed by the LVQ algorithm, the jamming class representations can be
determined. The specific implementation is shown in Figure 6.
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As shown in Figure 6, the jamming class representation generator shares the feature
extraction network with the recognition model implemented by a single-label complex-
valued convolutional neural network (SL-CV-CNN). The composition of the convolutional
layer and FC1 layer in the SL-CV-CNN is the same as the ML-CV-CNN, which can be
found in Table 1. And the mapping between the input signal and output label can be
formulated as

ys = fSL−CV−CNN(J, θs), (7)

where J is a single time–domain jamming signal. θs is the learnable parameter. ys ∈ {1, · · · , C}
is a single label value indicating jamming classes.

In the process of obtaining jamming class representations, a dataset where each sample
is the jamming signal with a single class is first used to train the SL-CV-CNN model. The
learned parameters are saved and utilized to assign the jamming signal feature extraction
network f j f . For N single jamming signal samples containing C classes, the sample feature

set
{

f Ji , ysi
}N

i=1 can be obtained, where f Ji and ysi are the feature vector and class label of
the i-th jamming signal sample. f Ji can be denoted as

f Ji = f j f (Ji). (8)

Then, with the aid of class labels, the LVQ algorithm is used to find the proto-
type vectors of the obtained feature vectors as the jamming class representations by
multiple iterations. Using sample mean vectors to initialize a set of prototype vectors
x∗ = {x∗c |c = 1, 2, · · · , C}, one iteration in the LVQ algorithm can be expressed as

ĉ = argminc∈{1,2,··· ,C}dic = argminc∈{1,2,··· ,C}‖ f Ji − x∗c ‖2

x∗c =

{
x∗ĉ + η

(
f Ji − xĉ

)
, i f ĉ = ysi

x∗ĉ − η
(

f Ji − xĉ
)
, otherwise

, (9)

where η is the learning rate. After multiple iterations and updates, the obtained prototype
vectors are regarded as the final jamming representation vectors x = {xc|c = 1, 2, · · · , C},
where xc corresponds to the jamming signals Jc belonging to the class c and has the same
dimension as the compound jamming signal feature vector f S. Algorithm 1 shows the
detailed process of jamming class representation generation.

Algorithm 1: Jamming class representation generation.

1. Require: network model SL-CV-CNN; labeled training samples {Ji, ysi}N
i=1

2. while not done do
3. select samples {Ji, ysi}T

i=1 with a batch size of T;
4. for i = 1, . . . , T do
5. predict jamming signal sample label ŷs = fSL−CV−CNN(J, θs);
6. end for
7. compute the cross entropy loss lossc and update the learned parameter

θs ← θs −∇θs lossc ;
8. end while
9. assign the feature extraction network f j f using the learned parameter θs; perform prototype

clustering on the obtained sample feature set
{

f Ji , ysi
}N

i=1; initialize prototype vectors
x∗ =

{
x∗c = (1/Nc)∑Ji∈Jc

f Ji |c = 1, 2, · · · , C
}

;
10. while not done do
11. randomly select a sample

{
f Ji , ysi

}
and calculate the distance dic = ‖ f Ji − x∗c ‖2; update

x∗c using Equation (9);
12. end while
13. Output: jamming class representations: final prototype vectors x = {xc|c = 1, 2, · · · , C}.
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3.3. Jamming Class Representation Decoupling

The jamming class representation decoupling module mainly uses the jamming class
representation vectors to assist the ML-CR-CV-CNN to learn the class-related features
required for recognition from compound jamming signals. The class decoupling is realized
through the attention mechanism guided by jamming class representations.

After acquiring the jamming class representation vector xc and f S, the attention
mechanism is adopted to guide f S to pay more attention to the features related to the class
c by fusing xc. The class-related features are learned by the following steps.

1. The low-rank bilinear pooling method is used to fuse the compound jamming signal
feature f S and xc, which can be formulated as [34]

f S
c = PT

(
tanh

((
UT f S

)
�
(

VTxc

)))
+ b, (10)

where tanh(·) is the hyperbolic tangent function. U, V, P, and b are the learnable parameters
during training. VT is the transpose of V. � represents the element-wise multiplication.

2. The attention weighting coefficient obtained by an attention function fa(·) can be
calculated as follows:

ac = fa

(
f S
c

)
, (11)

where fa(·) is implemented by a fully connected network. The dimension of ac is the
same as f S, and each value ac,l in ac represents the importance of the location (1, l) in the
compound jamming signal feature vector f S. The SoftMax function can normalize ac,l to an
interval of 0–1, which is defined as

ac,l =
eac,l

∑L
i=1 eac,i

. (12)

3. The normalized attention coefficient vector ac is used to perform the weighted average
pooling for all locations of f S, and the obtained feature vector fc related to the class c
can be formulated as

fc = ∑
l

ac,l f S
l . (13)

By performing the above steps for all types of jamming signals, the class-related
feature vectors f = { fc|c = 1, 2, · · · , C} can be obtained, wherein the related features of the
jamming signal components that are present are strengthened, while the related features of
the jamming signal components that are not present are weakened.

Based on the obtained class-related feature vectors by the jamming class representation
decoupling module, the confidence score vector s = {sc|c = 1, 2, · · · , C} for the existence
of jamming classes can be predicted by the function fs(·) implemented by a fully connected
network, where the score sc of the class c can be expressed as

sc = fs( fc). (14)

Then, the sigmoid function σ(·) is adopted to convert the predicted score vector to
the probability vector p = {pc|c = 1, 2, · · · , C} with values between 0 and 1, where the
probability pc of the class c can be calculated as

pc = σ(sc) =
1

1 + e−sc
. (15)
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3.4. Adaptive Threshold Calibration

Generally, only the label with the highest probability is selected as the final result for
multi-class classification tasks. However, since the ultimate goal of multi-label classification
tasks is to determine whether the jamming signal class represented by each value in the
probability vector p exists, the decision threshold needs to be selected for every probability
value pc. Compared with selecting a fixed threshold for different classes, selecting different
thresholds adaptively based on the predicted probability of multiple samples can maximize
the performance of the multi-label classifier.

In order to make the classification result not biased towards a high accuracy or a high
recall rate, the threshold that maximizes the F1 value can be selected as the final decision
threshold εc for the class c according to the precision–recall curve. It can be expressed as

εc = argmaxF1 =argmax
2∑N

i=1 yictic

∑N
i=1 yic + ∑N

i=1 tic
, (16)

where yic, tic ∈ {0, 1} represent the predicted label and the true label of the class c of the
i-th sample, respectively. N is the sample size.

Depending on the obtained multiple thresholds ε = {εc|c = 1, 2, · · · , C}, the prob-
ability vector p can be converted into a predicted label vector y = {yc|c = 1, 2, . . . , C}
through a multi-threshold decision function fl(·), where the label yc of the class c can be
formulated as

yc = fl(pc) =

{
1,
0,

i f pc ≥ εc
otherwise

. (17)

4. Experiments and Results

In this section, compound jamming signal recognition experiments are carried out to
verify the superiority of the proposed method. The data description, experiment configura-
tions, and evaluation metrics are given. And the results of several groups of comparative
experiments are analyzed.

4.1. Data Description

The radar transmitting signal is a linear frequency modulation signal, and the basic
signal parameters are shown in Table 2. The simulated jamming signals are single pulse
signals, and the key modulation parameters can be adjusted. In the following simulation
experiments, the number of candidate jamming signal components is set to 4. The jamming
types cover typical suppression jamming generated by noise modulation and deception
jamming generated by the full-pulse repeater and interrupted-sampling repeater, which
are interrupted sampling repeater jamming, noise amplitude modulation jamming, noise
frequency modulation jamming, and dense false target jamming, respectively [22,26]. These
four types of jamming are marked as class1-class4 sequentially.

In Table 2, the JNR of compound jamming signals is defined as

JNR = 10 log10
∑k

i=1 Pi

Pnoise
, (18)

where Pi denotes the power of the i-th jamming signal component. Pnoise denotes the power
of the AWGN.

The PR of different jamming signal components in compound jamming signals is
defined as

PR = 10 log10
Pi
Pj

, (19)

where Pi and Pj represent the power of the i-th and j-th jamming signal components, respectively.
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Table 2. Basic simulation parameters.

Parameter Value

Radar transmitting signal

Pulse width 20 µs
Pulse repetition interval 100 µs

Bandwidth 10 mhz
Sampling frequency 20 mhz

Compound jamming signal

JNR [0, 2.5, 5, 10, 15, 20, 25, 30] db
PR [−15, −10, −5, 0, 5, 10, 15, 20, 25] db

Number of candidate jamming
signal components 4

Number of jamming signal
combinations 15

Jamming signal component

Interrupted sampling
repeater jamming

Sampling duration 1–4 µs
Forwarding times 1–3

Noise amplitude
modulation jamming Bandwidth 20–40 mhz

Noise frequency
modulation jamming

Sweep range −20–20 mhz
Sweep cycle 40–80 µs

Dense false target jamming Number of false targets 3–5
False target delay 1–10 µs

Due to the different recognition tasks of the SL-CV-CNN model for single jamming
signals and the ML-CR-CV-CNN model for compound jamming signals, two different
datasets are required for model training separately.

SL-CV-CNN: Each sample in the dataset contains a single jamming signal class. There
are 150 samples for each class and 600 samples in total.

ML-CR-CV-CNN: Since the number of signal components contained in the received
compound jamming signals is usually unknown, all possible values k = {1, 2, 3, 4} should
be considered during the training phase. The compound jamming signals are composed
of a total of 15 combinations in the case of 4 candidate jamming signal components. Each
sample in the dataset contains k jamming signal components, and the PR defaults to 0.
There are 100 samples for each combination and 1500 samples in total.

4.2. Model Training and Experiment Configurations

For the SL-CV-CNN, the training dataset contains N samples {Ji, ysi}N
i=1, where Ji and

ysi ∈ {1, . . . , C} are the i-th single jamming signal sample and the corresponding class label.
The end-to-end recognition model is trained by the cross entropy loss. And the learned
parameters of the jamming signal feature extraction network f j f in the SL-CV-CNN are
used to assign the parameters of the jamming class representation generator fg.

For the ML-CR-CV-CNN, the training dataset contains M samples {Si, ti}M
i=1, where

Si is the i-th compound jamming signal sample and ti = {tic|c = 1, 2, . . . , C} is the true
label vector of the i-th sample. Each value of 0 or 1 in the vector indicates the absence or
presence of the class c. For the samples with a batch size of T, the training objective using
the binary cross entropy is expressed as

−min
θ

T

∑
i=1

C

∑
c=1

(tic log pic + (1− tic) log(1− pic)), (20)

where pic is the probability value of the class c of the i-th sample, and θ is the learnable
parameter. The ML-CR-CV-CNN is trained by the Adagrad optimization algorithm with
an epoch of 120 and a batch size of 32. The initial learning rate is 0.01, and it drops by 50%
after every 30 epochs.

Since the parameters pre-trained on the single jamming signal dataset have a certain
generalization ability on the compound jamming signal dataset, the parameters of the
jamming class representation generator fg learned by training the SL-CV-CNN model are
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utilized to initialize the compound jamming signal feature extractor fcnn. In the process of
the ML-CR-CV-CNN model training, the parameters of the first three convolutional layers
are fixed, and the other layers are jointly optimized.

4.3. Evaluation Metrics

In the compound jamming signal reorganization, the evaluation metrics are calculated
based on the predicted label vectors of the ML-CR-CV-CNN. Due to the cases of complete
and partial matching between the predicted label vectors and the real label vectors, the
subset accuracy and Hamming loss are used to evaluate the overall recognition performance.
In addition, the partial accuracy and label accuracy are calculated to evaluate the fine-
grained performance.

Each value in the label vector corresponds to the class label of a jamming signal compo-
nent in compound jamming signals. For the case of complete matching, the subset accuracy
(subsetacc) is used to measure the proportion of correctly recognizing all jamming signal
components, and the Hamming loss is used to measure the proportion of misclassifying
jamming signal components. They can be calculated as follows [27]:

subsetacc =
1
N

N

∑
i=1

yi = ti, (21)

Hamming loss =
1

NC

N

∑
i=1

C

∑
c=1

yic 6= tic, (22)

where yi and ti denote the predicted label vector and the true label vector of the i-th sample,
respectively. yic and tic denote the predicted label and the true label of the class c. N
represents the number of testing samples. The subsetacc is recorded as 1 when yi = ti.

In addition to the complete matching of the predicted results, there are also a large
number of cases of partial matching. The partial accuracy (partialacc) and label accuracy
(labelacc) can be adopted to evaluate the proportion of correctly recognizing at least r
jamming signal components and the proportion of correctly recognizing a certain class of
jamming signal components, respectively. They can be calculated as follows [38]:

partialacc =
1
N

N

∑
i=1

(
C

∑
c=1

yic = tic

)
≥ r, (23)

labelacc =
1
N

N

∑
i=1

yic = tic. (24)

4.4. Results and Performance Analysis

The recognition performance of compound jamming signals is affected by many factors
such as JNRs, PRs, the number of candidate jamming signal components, and the selection
of training samples. Considering these factors, corresponding experiments are carried out
to verify the robustness and effectiveness of the proposed method. In this section, the
visualization of jamming class representations is first presented. And then the ML-CV-CNN
and MLAMC [38] models based on multi-label classification and the 1D-CNN [25] model
based on multi-class classification are adopted as baseline methods to further demonstrate
the advantages of the proposed ML-CR-CV-CNN method in terms of model convergence
speed, robustness to varying PRs, and generalization to unseen combinations.

4.4.1. Visualization of Jamming Class Representations

As shown in Figure 6, the output of the jamming class representation generator
is complex feature vectors with a dimension of 256. The real and imaginary data are
serially arranged as 512-dimensional real vectors by the reshaping operation. In order to
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conveniently observe the distribution of high-dimensional feature vectors in the latent
space, the tSNE [41] is used for dimensionality reduction and visualization.

The visualization result is shown in Figure 7. Observing the feature distribution of
single jamming signal samples passing through the jamming signal feature extraction
network in the SL-CV-CNN, the feature vectors belonging to different classes of jamming
signals form four clusters. The clusters of different classes show clear separability, and the
feature vectors in the same cluster show aggregation. As mentioned above, the jamming
class representations are generated by finding the prototype vectors belonging to different
classes using the LVQ algorithm. As shown in Figure 7, there are four prototypes corre-
sponding to the four clusters composed of the feature vectors belonging to different classes.
And the feature distribution of samples belonging to the same class is concentrated near the
corresponding prototype. The prototype vectors with significant separability can be used
as the jamming class representations, which can represent the class-related information of
different classes of jamming signals. In the ML-CR-CV-CNN, the fusion of jamming class
representations is beneficial for extracting the class-related features in compound jamming
signals to improve recognition performance.
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4.4.2. Recognition Model Convergence Speed

In the training process, it is expected to consume the least amount of time to achieve
the fast convergence of models. In addition to model structures, the selection of different
datasets also affects model convergence speed. In this experiment, the datasets with C = 4
and JNR = 15 dB, 25 dB, and 30 dB are selected to verify the convergence performance of
the three recognition models based on multi-label classification.

Figure 8 shows the subset accuracy of various models with varying epochs under dif-
ferent JNRs. As shown in Figure 8a, all three models can reach convergence after 70 epochs
at JNR = 15 dB. Further observing the results with JNR = 25 dB and JNR = 30 dB shown in
Figure 8b,c, it can be seen that the convergence speed of the ML-CV-CNN and ML-CR-CV-
CNN models is stable and similar to that of JNR = 15 dB. However, the MLAMC model is
more sensitive to varying JNRs. And the convergence speed decreases with increasing JNRs.
At JNR = 25 dB and JNR = 30 dB, it needs about 150 and 500 epochs to achieve convergence,
which takes longer than the other two models. Therefore, it can be inferred that it is more
difficult for the MLAMC model to extract the time-frequency features of different jamming
signal components for recognition when suppression jamming signals with high JNRs
generate stronger overlap on time-frequency images. In contrast to the MLAMC model,
the ML-CV-CNN and ML-CR-CV-CNN models using one-dimensional complex-valued
operation are more conducive to extracting the weak features of compound jamming
signals at high JNRs, and the model convergence speed is faster and more independent
of the influence of JNRs. In addition, benefiting from the jamming class representation
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fusion, the ML-CR-CV-CNN model takes less time to achieve the same accuracy and model
convergence compared with the ML-CV-CNN model.
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4.4.3. Recognition Performance Versus Number of Candidate Jamming Signal Components

When the number of candidate jamming signal components C is 1, the compound
jamming signal recognition is equivalent to the single jamming signal recognition, which
usually has good performance. When the value of C is large, the compound jamming
signals with complex components and multiple combinations can lead to a certain degree
of degradation in recognition performance. In this experiment, three datasets with varying
values of C are used to evaluate the robustness of the proposed method to the varying
numbers of candidate jamming signal components. The corresponding specific components
are class1-class2, class1-class3, and class1-class4.

Table 3 shows the subset accuracy with varying values of C for various recognition
models under multiple JNRs. It can be observed that the recognition accuracy decreases
with the increasing values of C. Compared with the other baseline methods, the proposed
ML-CR-CV-CNN model has the slightest performance degradation at C = 4 and exhibits
optimal results, especially at low JNRs. At JNR = 5 dB and 25 dB, the accuracy improves
by 3% and 1% compared to the suboptimal results, respectively. In addition, the three
models based on multi-label classification are significantly better than the 1D-CNN model
in terms of recognition accuracy and robustness to varying JNRs and values of C. The
results demonstrate the absolute superiority of the recognition models based on multi-label
classification in the problem of compound jamming signal recognition with a large number
of candidate jamming signal components.

Table 3. Recognition performance at different numbers of candidate jamming signal components.

JNR (dB)
ML-CR-CV-CNN ML-CV-CNN MLAMC 1D-CNN

C = 2 C = 3 C = 4 C = 2 C = 3 C = 4 C = 2 C = 3 C = 4 C = 2 C = 3 C = 4

5 1 1 0.95 1 1 0.917 1 1 0.92 1 0.983 0.761
10 1 1 0.97 1 1 0.957 1 1 0.96 1 0.933 0.787
15 1 1 0.98 1 1 0.963 1 1 0.967 1 0.995 0.836
25 1 1 0.98 1 1 0.97 1 1 0.967 1 1 0.859

4.4.4. Recognition Performance Versus JNRs

Generally, the change in JNRs can affect not only the convergence performance of
recognition models, but also the recognition performance of compound jamming signals.
In this experiment, the robustness of the proposed recognition model to varying JNRs is
validated using the compound jamming signal datasets with different JNRs.

Figure 9 shows the subset accuracy with varying JNRs for various recognition models.
It can be found that the overall performance of the ML-CR-CV-CNN model is optimal at all
JNRs. Compared with the 1D-CNN model, the performance is improved by an average
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of more than 15% at all JNRs. Compared with the ML-CV-CNN and MLAMC models,
the subset accuracy of the ML-CR-CV-CNN model has greater improvement in the case
of low JNRs and similar values in the case of high JNRs. Furthermore, observing the
trends of curves, the subset accuracy of all models increases with increasing JNRs. At
JNR > 10 dB, the accuracy of three models based on multi-label classification reaches stable
values of more than 95%. Especially, for the ML-CR-CV-CNN model, it also reaches a
satisfactory 85% at JNR = 0 dB, which is better than other baseline methods. The proposed
method effectively alleviates the performance decline caused by noise at low JNRs, and
has stronger robustness to varying JNRs. Except for the accuracy, the proportion of the
labels being misclassified is measured by the Hamming loss for the three models based on
multi-label classification. The results with varying JNRs are shown in Figure 10. Contrary
to the subset accuracy, the overall trend gradually decreases with increasing JNRs, and the
ML-CR-CV-CNN model has the lowest classification loss.
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The 1D-CNN model based on multi-class classification can only recognize each combi-
nation of jamming signal components as a single class. There is no case where the predicted
result partially matches the true label. However, in practice, the correct recognition of
partial jamming signal components can also bring good gain for the subsequent counter-
measure of compound jamming signals. The output results of the multi-label recognition
models can be used not only to calculate the subset accuracy to evaluate the overall recogni-
tion performance in the case of complete matching, but also to calculate the partial accuracy
and label accuracy to evaluate the fine-grained recognition performance of partial matching
and specific jamming signal classes, respectively.

As seen in Figure 9, the subset accuracy declines significantly at JNR < 10 dB. At
low JNRs, the label accuracy of various recognition models is displayed in Table 4. It
can be found that the recognition performance of class2 and class4 is basically unaffected
by JNRs, and the decline of the subset accuracy is mainly caused by the reduction in
the recognition performance of class1 and class3. Compared with the ML-CV-CNN and
MLAMC models, the ML-CR-CV-CNN model effectively improves the label accuracy of
class1 and class3, and it has the best performance at almost all JNRs for different classes
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of jamming signals. Meanwhile, the subset accuracy is also optimal. Furthermore, for the
ML-CR-CV-CNN model with optimal performance, the partial accuracy at different JNRs
is shown in Figure 11. Partialacc1, Partialacc2, Partialacc3, and Partialacc4 represent the
proportion of at least 1–4 jamming signal components that are accurately recognized. For
all JNRs, both Partialacc1 and Partialacc2 with the value of 1 indicate that at least two
components in compound jamming signals can be correctly recognized. When JNR > 5 dB,
the minimum number of correctly recognized components increases to 3.

Table 4. Label accuracy of the multi-label recognition models at low JNRs.

JNR (dB)
ML-CR-CV-CNN ML-CV-CNN MLAMC

class1 class2 class3 class4 class1 class2 class3 class4 class1 class2 class3 class4

0 0.92 1 0.91 1 0.873 1 0.893 1 0.877 1 0.9137 1
2.5 0.93 1 0.97 1 0.93 1 0.953 1 0.9137 1 0.947 0.997
5 0.96 1 0.99 1 0.943 1 0.973 1 0.937 1 0.9837 1

10 0.97 1 1 1 0.96 1 0.997 1 0.96 1 0.997 1
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4.4.5. Recognition Performance Versus PRs

All the above experiments are carried out under the setting of PR = 0 dB. The power
of each component in compound jamming signals is equal. Usually, in order to effectively
achieve the jamming effect, the power of suppression jamming signals is higher than the
deception jamming signals according to the generation mechanism. Therefore, considering
the different energy losses caused by unequal propagation distances and transmitting
power of different jammers, the intensities of the jamming signal components in compound
jamming signals received by the radar are usually unequal. And the power imbalance
causes fluctuations in recognition performance. In this experiment, the influence of different
PRs on the overall recognition performance is verified by changing the power of one
jamming signal component. The JNR is fixed at 15 dB, and the power of the noise frequency
modulation jamming signal is adjusted.

Figure 12 shows the subset accuracy with varying PRs for various recognition models.
It can be seen that the three models based on multi-label classification can obtain better
performance at multiple PRs compared with the 1D-CNN model. The accuracy of the ML-
CV-CNN and ML-CR-CV-CNN models is more robust to the variation of PRs than that of
the MLAMC model. When the power of each component in compound jamming signals is
equal (PR = 0 dB), the subset accuracy reaches the maximum. Using the result at PR = 0 dB
as the baseline, the accuracy decreases to varying degrees with decreasing or increasing PRs.
At PR > 0 dB, the degree of decline is much greater than the results at PR < 0 dB. Especially
for the MLAMC model, the accuracy declines rapidly at PR > 10 dB due to the strong
coverage effect on time-frequency images caused by high-power suppression jamming
signals. In contrast, the ML-CV-CNN and ML-CR-CV-CNN models using one-dimensional
complex data show stronger ability in mining strong overlapping signal features when the
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high-power suppression jamming signal exists, and the accuracy is effectively improved at
PR > 10 dB. In addition, benefiting from the fusion of jamming class representations, the
performance of the ML-CR-CV-CNN model is slighter better than that of the ML-CV-CNN
model at PR > 0 dB, and the decline caused by the strong overlapping effect of high-power
suppression jamming signals is further alleviated. At PR = 15 dB, the accuracy of the
ML-CR-CV-CNN model is close to 88%, which is 52% higher than the MLAMC model.
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4.4.6. Recognition Performance of Unseen Jamming Signal Combinations in Training

In the presence of many candidate jamming signal components, the size of the com-
pound jamming signal dataset containing all possible combinations is large. In order to
reduce the difficulty of sample acquisition and improve the training speed, it is expected
that only partial samples in the dataset are used to train recognition models, and good
recognition results can be achieved for all combinations simultaneously. For the jamming
signal combinations that do not appear in training, the correct recognition of jamming
signal components requires that the recognition models have some generalization and
extensibility. In this experiment, three training sets containing partial combinations are
used to evaluate the recognition performance of the trained models against unseen jam-
ming signal combinations. For the three datasets, the JNR and PR are fixed at 15 dB and
0 dB, and the compositions of jamming signal components are k = 1, k = {1, 2}, and
k = {1, 2, 3}. Thus, the corresponding unseen jamming signal combinations to be tested
consist of k = {2, 3, 4}, k = {3, 4}, and k = 4.

The 1D-CNN model based on multi-class classification does not have the ability to
recognize jamming signal combinations that have not been seen in training. Figure 13 shows
the subset accuracy of unseen jamming signal combinations when the ML-CR-CV-CNN,
ML-CV-CNN, and MLAMC models use partial combinations for model training. The black
dashed line represents the average subset accuracy for all unseen combinations containing
different possible values of k. It can be observed that the recognition performance of the
three models has a similar trend with various training sets. With the enrichment of jamming
signal combinations in training sets, the accuracy of unseen combinations increases. When
the training set consists of only single jamming signals (k = 1), the ML-CR-CV-CNN model
has the best recognition result by comparing the three models horizontally. Especially
for the test samples with k = 2 and k = 3, the accuracy is significantly higher than that
of the ML-CV-CNN and MLAMC models. In this case, only 26.7% of jamming signal
combinations participate in model training for the dataset containing all possible jamming
signal combinations. The ML-CR-CV-CNN model still has an average subset accuracy of
74.36% for the testing samples that have not been seen in training, which is 21% higher than
the ML-CV-CNN model and 27% higher than the MLAMC model. The results demonstrate
that the fusion of jamming class representations in the ML-CR-CV-CNN greatly enhances
the generalization and extensibility for unseen jamming signal combinations.
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Figure 13. Recognition performance of unseen jamming signal combinations in training. From left to
right are the ML-CR-CV-CNN, ML-CV-CNN, and MLAMC.

5. Conclusions

In this paper, we propose a novel multi-label classification framework based on the
ML-CR-CV-CNN combining the CV-CNN and jamming class representations to solve
the compound jamming signal recognition problem. In order to reduce the additional
computational cost caused by the preprocessing in existing methods, the ML-CV-CNN
is designed to directly process one-dimensional time–domain complex jamming signals,
which alleviates information loss and enhances the feature extraction ability for strong
overlapping signals. Based on the basic ML-CV-CNN, the jamming class representations
obtained by the LVQ are further fused into the ML-CR-CV-CNN model by class decoupling
to guide compound jamming signals to focus on the class-related features, thereby improv-
ing the extensibility and generalization ability for unseen jamming signal combinations.
Moreover, the adaptive threshold calibration is used to optimize the final recognition results.
Experimental results prove that the proposed method is robust to varying JNRs and PRs.
Especially, when the high-power suppression jamming signal with strong overlapping
effect exists, the recognition performance in the case of high PRs and model convergence
speed in the case of high JNRs are significantly improved. Meanwhile, the applicability
of the proposed recognition method is effectively extended in the face of unseen jamming
signal combinations in training when there are fewer training samples.
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