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Abstract: In this study, the 1991 rock avalanche, in Touzhai, Zhaotong, Yunnan, China, was considered
the study object. The investigation of the landslide accumulation body revealed that the Touzhai
rock avalanche accumulation body has the characteristics of wide gradation and poor sorting. A
combination of field investigations, indoor and outdoor experiments, and numerical simulations were
used to invert the occurrence and spreading range of rock avalanche-debris flow hazards. To invert
and analyze its dynamics and the crushing process, a three-dimensional discrete element modeling
was performed on the real terrain data. Simulation results showed that the movement time of the
numerically simulated Touzhai rock avalanche was approximately 200 s. After 50 s of movement,
the peak velocity reached 32 m/s, and the velocity gradually decayed after the sliding mass rubbed
violently against the valley floor and collided with the mountain. Due to the meandering nature of
the gully, the sliding mass makes its way down the gully and constantly collides with the mountain,
making particles appear to climb, with some particles being blocked by the valley. After 150 s of
movement, the average velocity rate decreased substantially, and the landslide-avalanche debris
reached the mouth of the trench. After 200 s of movement, the average sliding velocity tends to 0
m/s, where the avalanche debris tends to stop and accumulate. When the rock avalanche movement
reaches the mouth of the gully, the avalanche debris spreads to the sides as it is no longer bounded
by the hills on either side of the narrow gully, eventually forming a ‘trumpet-shaped’ accumulation,
and the granular flow simulation matched the findings of the landslide site accumulation.

Keywords: rock avalanche; numerical simulation; accumulation body; diffusion mechanism;
dynamical fragmentation

1. Introduction

The Elm landslide-avalanche debris in Switzerland in 1881 was one of the world’s
earliest recorded rock avalanche events [1]. The flow transported 2232 m in 40–45 s at an
average speed of 180 km/h, killing 115 people. In the 1963 Vaiont landslide in Italy, a
gravity deformation of a deep rocky slope with a volume of approximately 2.75 × 108 m3
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slid rapidly into the reservoir beneath at a speed of 60 km/h in 1 min, causing a flood that
killed 1925 people downstream [2]. In 1987, the Val Pola avalanche debris (4 × 107 m3) in
Valtellina, Italy, traveled down the ditch at over 200 km/h, destroying three villages along
the way and killing 27 people [3].

In China, the 1983 high-speed landslide (4 × 107 m3) in Springhill, Gansu, crossed the
Baxie River at a speed of 5–10 m/s and washed approximately 10 m of the opposite bank
slope [4]. The entire transport path was approximately 0.8–1.0 km in length and lasted
for 2 min, causing 220 deaths and 27 injuries, as well as an earthquake with a magnitude
of approximately 1.4, which was recorded by the Lanzhou Seismological Observatory.
In 2000, a landslide-avalanche debris occurred in Zamunong Gully, Yigong Township,
Tibet [5]. After falling from an altitude of 5000 m, the voluminous slope (3 × 107 m3)
formed high-speed avalanche debris by entraining debris material along the way, which
transported 8–10 km in just 3 min, with an average accumulation thickness of 60 m [6]. In
2009, a landslide-avalanche debris event occurred at Jiwei Mountain, Chongqing, China,
which resulted in the rapid destruction and disintegration of a rock mass with a volume of
approximately 5× 106 m3, forming an accumulation area of approximately 2.2 km in length
along the route, and resulting in 10 fatalities and 64 missing persons [7–9]. Landslide-
avalanche debris are catastrophic, lethal, and destructive, is a major hazard to people’s
lives and property, and has been occurring continuously for nearly 100 years. The causes of
its occurrence and the process of its accumulation have received much scholarly attention.

A distinctive feature of landslide-avalanche debris is that they spread over distances
much greater than those inferred by any simple friction model. Several transport mecha-
nisms have been proposed and explained for the long-range, high-speed characteristics of
avalanche debris moving in low-gradient gully beds [10–13]. Shreve and Goguel [2,14,15]
proposed ‘air-cushion lubrication theory’ and ‘local vaporization theory’ that could be
summarized as the ‘gas lubrication theory’ in the landslide-avalanche debris migration
and diffusion processes, which emphasizes the decisive role of gas in the rapid migration
of debris. These high-speed, long-range dispersal mechanisms are important for specific
landslide-avalanche debris events, but no universally accepted, uniform explanation exists.

As the visual object of field research, mound accumulation characteristics play a
decisive role in the study of avalanche debris dispersion mechanisms. Landslide-avalanche
debris accumulations have a wide range of grain size distribution, with fine particles
of micron size and large masses of up to several meters in size [16–18]. The wide size
distribution is a common feature of landslide-avalanche debris accumulations worldwide.
In the investigation and analysis of the accumulation body, some scholars have reported
that the accumulation body section has a ‘reverse sequence’ structural feature [19,20].
Cruden and Hungr [21] found that a sorting or phase separation phenomenon occurred in
the section of Frank landslide accumulation in Canada, in which large particles remained
above and fine particles moved below, which cannot be true. Vallance and Savage [22]
explained this phenomenon by suggesting that inter-particle friction promotes particle
sorting, with fine particles falling more readily into the spaces between coarse particles.
Pudasaini [23] on the other hand, explained the particle sorting behavior based on a two-
phase flow model, suggesting that the flow velocity of the pile varies with depth, which
results in coarse particles vibrating in the upper layer and transporting them to the leading
edge of the avalanche debris. Usually, the sample weight of a single sieving point is less
than 20 kg, and the sample covers a small range of particle sizes; therefore, the results are
not representative enough. This, to some extent, has limited the understanding of landslide-
avalanche debris accumulation characteristics, affecting the judgment of avalanche debris
dispersal mechanisms.

Particle flow experiment is one of the main research methods for high-speed and
long-distance landslides. By establishing a simplified engineering geological model, it can
be realized. Wang et al. [24] analyzed the remote effect of momentum transfer by tracking
measurements of tracer particles on the surface of a granular flow based on a granular flow
inclined trough experiment under three-dimensional topographic conditions and from a
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quantitative point of view. Ge et al. [25] used PIV analysis to characterize the velocity field
evolution of granular flow in a sloping channel. The existence of collision and momentum
transfer between particles during the granular flow motion is revealed, and the momentum
transfer mechanism during the high-speed remote landslide motion is explored.

Rapidly developing computer simulation techniques after 2010 has been a major boost
towards the inversion of avalanche debris movement and dispersion processes. In order to
simulate the mechanical behavior of discontinuous media such as rocks and soil particles,
Cundall and Strack [26] proposed the discrete element method (DEM). Many scholars have
achieved many results in avalanche debris using discrete elements. Tang [27] employed
particle flow code (PFC3D) to numerically simulate the whole process of the Jiwei Mountain
landslide movement in Chongqing, China. The effects of different friction coefficients
and bond strengths of particles on the farthest slip distance and accumulation of debris
particles were mainly studied. Ge et al. [25,28] established a three-dimensional discrete
element numerical model under the control of rock structure to investigate the motion
evolution process and disaster-causing range of a high-speed, long run-out landslide,
considering the example of the Jiwei Mountain landslide in Wulong, Chongqing, China.
Liu et al. [29] proposed a three-dimensional discrete element model and a simulation
method to simulate the whole process of initiation, movement, and accumulation of large
landslides in Xinmo Village, Mao County, Sichuan Province. The reliability of the method
was verified by comparing it with actual landslides, providing an efficient computational
method for numerical simulation of high-speed, long run-out landslides and assessment of
their disaster extent.

In the above research, it can be found that the difficulty of the research is the complexity
of rock avalanche-debris flow and its huge volume is often accompanied by huge energy,
and the occurrence of landslides is sudden [30,31]. The existing monitoring technology is
often unable to obtain effective monitoring of the occurrence and movement process of
rock avalanche-debris flow. At the same time, due to the limitation of the ‘size effect’, the
conventional model test cannot make an in-depth exploration of its motion mechanism.
Discrete element simulation has significant advantages in inverting the transport work and
accumulation of rock avalanche-debris flow. However, a large number of previous studies
are mostly two-dimensional models, which do not consider the energy dissipation effect
of collision of three-dimensional terrain on particles, thus affecting the diffusion range of
debris flow [32,33].

In this study, the Touzhai rock avalanche (TZRA) in Yunnan, China was taken as the
research object. Through field investigation, remote sensing satellite image analysis and
simulation comparison of discrete element method (particle flow code PFC3D), the high
speed, high energy, long distance and dispersion range were studied. In the numerical
analysis, characteristics of the on-site accumulation body are used to verify the validity
of the numerical model. The study focuses on the kinetic, fragmentation and influence of
terrain on the whole process of avalanche debris movement characteristics of the TZRA,
hoping to provide useful implications for the study of inversion of landslide avalanche
debris impact range.

2. Study Area
2.1. Geological Background

The TZRA occurred in the Touzhai gully on the left bank of the Panhe River, Yunnan
province, China approximately 30 km and 320 km from Zhaotong and Kunming cities,
respectively, geographically located between 27◦32′52′′–27◦34′15′′N and 103◦51′09′′–103◦

52′50′′E (Figure 1a) [34]. The Touzhai Gully is approximately 4.0 km long, with an average
width of approximately 130 m at the bottom, a watershed area of 3.2 km2, altitudes ranging
from 1820 to 2940 m (Table 1), and a vertical difference of 1120 m (Figure 1b). The gully
has a “V”-shaped cross-section, with an average variation in slope of 40.65◦–52.00◦ on both
sides [35]. The basin is structurally located in the northwest wing of the Panhe Fault and the
Touzhai-Xindianzi Syncline, and the geological structure in the area is dominated by folds.
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The Panhe Fault presents a northeast trend, with a width of the fault fracture zone of 50 m,
and is composed of compressive cataclastic rock mass, showing compressive characteristics.
Structural planes were developed in the Touzhai River Basin, and the structural planes
controlling the development of landforms were mainly tensile and compressive-torsional
structural planes. The headward erosion of the stream made the rock mass near the surface
smaller, causing the unloading and rebounding of the compressive structural plane. The
increase in the structural plane fissure also created conditions for precipitation and seepage,
promoting weathering of the rock mass.
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Table 1. Main geomorphic geometric parameters of Touzhai River Basin [36].

Basin Area
(km2)

Highest Elevation
(m)

Minimum
Elevation (m)

Slope on Both Sides
of the Valley (◦)

Main Ditch
Length (km)

Main Gully
Channel Slope (◦)

3.2 2940 1820 40.65–52.00 4.0 12.4

Regarding stratigraphic lithology, the Permian and Triassic strata were mainly exposed
in Touzhai. The following strata were exposed from the mouth of Touzhai to the source
area of the rock avalanche: Lower Triassic Feixianguan Group; Lower Triassic Yongn-
ingzhen Group; Upper Permian Xuanwei Group and Permian Emeishan Basalt Group,
with stratigraphic production of 170◦ ∠ 45◦ in strike.

2.2. Climate

The study area was located in the warm zone and had a subtropical highland conti-
nental monsoon climate. Year-long automatic weather gauge monitoring data near the slip
source area showed that the average temperatures in the hottest month (July) and coldest
month are 16.5 ◦C and −1 ◦C, respectively, with an annual average temperature of 8.2 ◦C.
Rainfall in the study area is mainly concentrated between May and September each year,
with abundant rainfall, while rainfall is sparse between October and April. Based on the
annual rainfall monitoring data, the rainfall in the source area is approximately 1.8 times
the rainfall in the Touzhai area as monitored by the Zhaotong Meteorological Bureau, and
rainfall varies both spatially and temporally [36].

2.3. Landslide Description

The site mapping (scale 1:1000) estimated that the volume of the source rock mass
of the TZRA was approximately 9.0 × 106 m3, having a large slope instability. The un-
stable source rock started at the shear outlet at an elevation of 2300 m, collided with the
gully scarp, and transformed into high-speed avalanche debris that transported 3.4 km in
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3 min and finally stopped on the left bank of the Pan River. The average velocity of debris
transport was approximately 68 km/h. The elevation of the back edge of the source area
was 2580 m, and the elevation of the front edge of the accumulation was 1820 m. The
apparent coefficient of friction was only 0.22 (H/L) (Figure 2), contributing to four major
characteristics: large size, high speed, long distance, and low apparent coefficient of fric-
tion. The investigation demonstrated that the first half of the slide, after the main slide
destabilized, quickly rushed out of the shear outlet and slid, violently hitting the slope of
the left bank and climbing along the side, followed by the second half of the slide over both
sides of the hill after the convergence with the first half of the slide, forming avalanche
debris, and turning SE15◦ direction to spread. The debris were transported at high speeds
and filled the valley floor and again rose up the slope of the right bank, eventually diving
down the gully to the left bank of the Pan River.
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2.4. Deposit Features

Since the occurrence of the TZRA, the geomorphology has undergone great changes.
The post-disaster ditch is filled with yellow debris soil and scattered boulders. As the
topsoil of the mound is eroded to different degrees by surface water, two distinct landscapes
emerge in the gully. After the surface layer of the landslide accumulation has been drained
and eroded by groundwater, only angular basalt blocks with 5–20 cm diameter and good
“sorting” remain in place. The valley terrain played a controlling role in determining
the distribution of landslide deposits. By comparing the elevations at the same locations
before and after the slip, we observed that the average thickness is approximately 10 m, the
average width is 130 m, the width at the narrowest point is 60 m, and the widest point at
the front edge is 230 m. The landslide deposits are mainly distributed in a band in the gully,
which has no surface water flow in the dry season and surface runoff in the rainy season.
During site research, the area once affected by the landslide avalanche debris can still be
clearly seen. The scraping and shoveling effect of the landslide-avalanche debris movement
on both sides of the mountain can be clearly seen through the different vegetation covers on
the mountain. Only low herbaceous vegetation grows in the area affected by the avalanche
debris, in contrast to the vegetation outside the impact area. Two boundaries, the main
landslide-avalanche debris accumulation range and the ripple range boundary (shown in
Figure 3a), can be roughly depicted by means of a fixed-point line on Google Earth, and the
ripple range of avalanche debris can be observed far beyond the main accumulation range
from the range curves of the two boundaries.
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To facilitate the study of accumulation in Touzhai Gully, first, the gradation survey
was conducted separately by particle size, and 12 points were distributed from upstream
to downstream. The large span and high density of sampling made the analysis results
representative. The gradation curves from the sieving points showed that the cumulative
gradation curves were relatively similar, with the highest percentage of particles in the
range of 20–50 mm reaching 23.79–39.29% (Figure 3b). Second, the accumulation of grain
size above the meter level was investigated by using a combination of measurement,
positioning, and geo-radar to investigate the boulder grain size and their accumulation
location from the shear outlet to the location of the accumulation fan (Figure 3c).

The accumulation body of the TZRA is composed of 0.5~8 m boulders and gravel-
clay mixtures below 20 cm, accounting for 10% and 90%, respectively. The boulders are
distributed throughout the valley, and there are boulders with an equivalent particle size
of approximately 3.5 m in the accumulation fan. A total of 992 boulders with equivalent
particle size greater than 0.5 m were investigated on site, with an outcrop area of 2554 m2,
which is approximately 0.22% of the total debris accumulation area. GPS location (The
longitude and latitude coordinates of the boulder are marked on Google Maps) of the
boulders in the ditch was performed to obtain the distribution of boulders in the valley
(Figure 4).
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3. Methodology
3.1. Discrete Element Modelling

To comprehensively reflect the whole process from the beginning of motion to the
stopping of the accumulation of the TZRA. The motion time, average velocity, energy
dissipation process, and characteristics of the final stopping motion of the TZRA were
inverted using discrete element numerical software, PFC3D v.7. The scope of the model
covers all stages of the entire TZRA movement. After determining the wave and influence
range of the TZRA, an effective area was selected to establish a three-dimensional geological
model of the TZRA avalanche debris (Figure 5a). The size of the completed numerical
model of the TZRA was 3980 m long in the north-south direction and 1550 m wide in the
east-west direction, and the maximum height difference of the model was approximately
800 m, which is consistent with the field topography. The three-dimensional model of
the entire TZRA was composed of triangular walls (slip surface) with particle movement
boundaries; each triangular surface was isosceles, with a total of 158,702 triangular surfaces
and the volume of the landslide body in the source area was approximately 9 × 106 m3.
The slip surface can be modeled using wall groups, and the slip body uses approximately
12,000 balls with three groupings of radii 0.5–1.0 m, 1.0–2.0 m, and 2–3.0 m, which are
uniformly filled in the slip source area. The linear bond contact model was used to simulate
the rock mass between the spherical elements, and the linear contact model was used
between the wall and sphere. In the linear bond model, the force and moment borne by
the bond between particles are recorded as cementation behavior. When the applied stress
exceeds its bond strength, the linear bond breaks the residual friction of the particles [37,38].
In this study, the TZRA was monitored for five main aspects: particle sliding mass velocity,
particle movement time, slide energy, average displacement of the sliding mass, and
particle accumulation range. To have a complete understanding of the TZRA movement
characteristics on a spatial scale, the arrangement of monitoring points should consider
two areas, the front edge of the landslide and the back edge of the landslide, respectively,
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involving the surface particles and the bottom particles of the landslide mass (as shown
in Figure 5b).
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3.2. Parameter Setting

The parameters in PFC used microscopic parameters between the particles because
the macroscopic parameters in the actual geotechnical body hardly correspond to the
microscopic parameters. The particles cannot be directly used to realize the macroscopic
material properties, but there is a certain connection between the two. The common param-
eter calibration methods are the trial-and-error method and triaxial experiments to obtain
stress-strain curves and compare them with macroscopic parameters (Table 2). However,
the trial-and-error method involves many attempts, and the calibration parameters may
cause relatively large errors. Therefore, the use of PFC to establish triaxial experiments for
microscopic parameter calibration has become an effective tool for studying catastrophic
landslides [39,40]. In the linear bond model, the effective bond modulus is related to
Young’s modulus, the particle stiffness ratio is related to Poisson’s ratio, and the linear
bond strength is related to the uniaxial compression stress; therefore, the servo mechanism
in PFC3D was used to set up the uniaxial compression experiment without a lateral limit to
obtain the stress-strain curve (Figure 6).

Table 2. Parameters of the sliding rock mass.

Rock Mass Density ρ (g/cm3) UCS (MPa) Young’s Modulus (GPa) Poisson’s Ratio µ

Basalt 2100 200 11 0.14
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The micro-parameters for the PFC model (Table 3) were derived from a numerical
test of uniaxial compression (Figure 6), in which the unconfined compressive strength of
rock mass UCSm (Uniaxial compression strength (MPa)), was fitted with that of Touzhai
rock mass. UCSm of Touzhai rock mass was estimated to be 11.1 MPa, by an empirical
relationship [41,42], where UCSr is the unconfined compressive strength of intact rock
that was 200 MPa based on laboratory tests and S is an empirical parameter related to
discontinuities in the rock mass that was estimated to be 0.004 according to Hoek et al. [43].
Based on the trial-and-error process, the best-fit macroscopic properties were obtained, and
their relevant microscopic parameters are listed in Table 3.

Table 3. Numerical microscopic parameters of the numerical simulations.

Parameter Micro Parameter Type Values

Rmax/Rmin Particle radius 2
N Number of particles 87,000
ρ Particle density (kg/m3) 2600
Ec Ball-ball contact modulus (GPa) 1.49
K Normal-to-shear stiffness ratio (kn/ks) 1.0

E
′
c Bond effective modulus (GPa) 4.8

K
′ Bond normal-to-shear Stiffness ratio 1.2

σc Contact-bond normal strength (MPa) 5 × 106

τc Contact-bond shear strength (MPa) 2 × 106

µ1 Friction coefficient (ball friction coefficient) 0.3
µ2 Friction coefficient (wall friction coefficient) 1.0

The particles in PFC are rigid substances, which cannot be used to simulate particle
crushing and wearing, and the inelastic energy dissipation generated by the collision
between particles is difficult to simulate directly. Therefore, damping was introduced
to accelerate the convergence of the numerical solution and realize energy dissipation.
Furthermore, the value of the viscous damping coefficients was obtained by back-analysis
of the merical-experimental data [44]. Numerical simulations suggested that reasonable
values of the viscous damping coefficients for the model were νn = νs = 0.05 (where νn
and νs are the normal and shear damping constants, respectively).
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4. Simulation Results
4.1. Simulation of Velocity Variations

After the initiation and accelerated motion of the TZRA, the rock mass rapidly crum-
bled and broke apart. The sliding body has experienced three collisions. After cutting
out from the locking section, the sliding body first collided with the northwest slope of
the watershed and the northwest slope at an azimuth angle of 111◦ and then collided
with the left bank mountain at an azimuth angle of 90◦. After that, the avalanche debris
collided with the right bank slope and finally migrated to the gully along the azimuth
angle of 108◦. The simulation results showed that the TZRA movement time was ap-
proximately 200 s (Figure 7). The numerical simulation time was slightly longer than the
actual observed duration of the TZRA event, which was 180 s. The main reason for this
overestimation is that the discrete element software was set to dissipate the energy of each
particle, and the velocity of motion tended towards zero, ending the calculation with more
stringent conditions.
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velocity curves of the velocity in different parts.

After the initiation of the landslide, the rock mass collapsed and broke under the
action of gravity, and the velocity increased rapidly before passing through the terrain
deflection area. The landslide decayed twice at 10 s and 40 s mainly under the influence
of the terrain. After 40 s, the landslide mass passed through the terrain deflection area,
and the velocity increased to its peak of 32 m/s. Influenced by the topography of the
trench deflection area, the geotechnical body and the mountain body collided fiercely. At
T = 125 s, most of the geotechnical body of the landslide reached the trench deflection
area and the velocity dropped to 5.1 m/s. As most of the landslide rock mass passed
through the trench deflection area, TZRA moved to the relatively wider and flatter terrain,
and the speed gradually decreased under the action of friction and collision factors. At
approximately 200 s, the landslide stopped accumulating, ending the landslide movement.

Combined with the evolutionary characteristics of the velocity and acceleration distri-
bution of the TZRA movement, avalanche debris can be divided into three main stages,
namely, the rapid acceleration stage, the high-speed long-runout, and the final low-speed
deposition.

(1) Stage 1: Rapid acceleration Figure 8b: According to the average velocity curve drawn
from the data of the monitoring points set at the leading and trailing edges of the
landslide (shown in Figure 9), the duration of the rapid acceleration phase of the
avalanche debris was 40 s. The average velocity was 32 m/s at the leading edge of the
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sliding mass, which was greater than that of 35 m/s at the trailing edge of the sliding
mass (Figure 9a). The leading edge of the sliding mass was more influenced by the
topography, where two abrupt velocity changes were experienced, mainly due to the
deflection area on the three-dimensional topography.
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(2) Stage 2: High-speed long-runout Figure 8c: The duration of the high-speed long-
runout phase of the avalanche debris was 45–80 s, where the leading edge of the
sliding mass lasted for 20s. The avalanche debris is subject to friction and collision,
which results in a decrease in velocity. In this stage, the avalanche debris acceleration
curve grew slowly due to the continuous collisional disintegration of rock mass and
terrain to form avalanche debris that maintained a high speed in the gully.

(3) Stage 3: Final low-speed deposition (Figure 8d): After passing through the last
deflection zone, the terrain was flat, and the movement of the particle flow was
no longer constrained by the valley. The movement of the particle flow no longer
appeared in the middle of the particles due to being wrapped by the friction and
collision of the smaller energy consumption and thus maintaining a higher speed.
The influence of friction and collision gradually decelerated the particle flow until it
stopped at the accumulation. When the TZRA moved to the accumulation area, it
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entered the slow deceleration stage, and the avalanche debris moved to an open area
altogether, tending the velocity of each part of the geotechnical body toward zero.
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In the rapid acceleration stage, the particle movement speed was basically the same,
and the speed was at its peak in the deflection area (Figure 9a). Due to the fierce collision
between the rock and the mountain, the rock mass disintegrated, and the avalanche debris
continued to move forward until it gradually stopped accumulating. The distance of
particle movement on the surface was larger than the distance of particle movement at the
bottom, which was less than the average distance of particle movement (Figure 9b). This
was because the particles on the surface after the initiation of the landslide had the greatest
acceleration under the action of gravity and reached the deflection zone first, collided with
the mountain, scraped, and shoveled to cause a climbing effect, and thereby dissipated
more energy, showing the phenomenon of the shortest movement distance. The rock at the
bottom mainly rubbed against the mountain at the bottom, causing a large dissipation of
kinetic energy, resulting in a small movement distance. At the same time, from the curve
change trend in Figure 8e, it can be inferred that the parallel contact between most of the
bonded particles is constantly broken. After the rock avalanche debris began to move for
150 s, the percentage of bond failure between particles reached 78%, and the sliding body
was seriously fragmented, so the diffusion and movement range of the whole avalanche
debris was great.

4.2. Simulation of Accumulation Characteristics

The diffusion mechanism of rock avalanche-avalanche debris in Touzhai was inferred
by combining the results of particle size composition of different grain groups, particle
morphological characteristics analysis, and field investigation of the stacked body profile.
The rock avalanche, in the process of leaving the locked section to form avalanche debris
and the final diffusion of its internal compressed air trapped in the graded continuous
debris, generates a super-porous gas pressure, weakens the connection between the internal
particles, and results in particle suspension (as shown in Figure 10a). The presence of
compressed air between the debris particles is the main reason for the particle grinding and
dynamic crushing action, and the accumulation does not show the common phenomenon of
particles gradually becoming finer from upstream to downstream (as shown in Figure 10b).
The high-speed diffusion of the debris compresses the air between the particles, generating
super-porous gas pressure. The super-porous gas pressure and the weathering-generated
clay minerals intersperse between the debris of each particle size, playing an active role in
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trapping compressed air, both of which cause the avalanche debris to remain in motion at
very high speeds in a trench with a low apparent friction coefficient.
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Overall analysis of the TZRA model along its cross and longitudinal sections deduced
that in the process of landslide avalanche debris movement, many particles stop accumu-
lating behind the raised boulders due to the topographic obstruction (Figure 11b), and
violent collisions and scraping of the mountains also occur on both sides during the actual
TZRA movement. The study established the mountain topography using a wall group as
the motion boundary, so the simulation cannot observe scraping and scraping effects on
the mountain. However, the accumulation of particles at the location illustrates the validity
of the simulation. Figure 11a shows the accumulation of avalanche debris particles, and
Figure 11c shows the distribution of the boulders in the entire equivalent particle size range
of 2.0–3.0 m in the Touzhai gully. Since the percentage of particles in the particle size range
of 1.5–3.0 m in the sphere model established in the PFC3D numerical simulation reached
50%, the simulation results of this particle size range were selected to compare with the
actual results. Figure 11b shows that some particles stay on both sides of the slope due
to the influence of the topography during the downward transport of particles, while the
distribution of scattered boulders on the slope surface can be clearly seen in the survey
distribution map of boulders with equivalent particle sizes of 2.0–3.0 m (Figure 11c).

Figures 12 and 13 are the horizontal and vertical sections of the deposit, sectioned
according to the positions shown in Figure 4. In the cross-section (shown in Figure 13),
the thickness of the accumulation underwent a gradual change from thin to thick from
upstream to downstream, and more fine particles remained in the cross-section below the
upstream shear outlet (profile). The coarse particles were mainly concentrated in the middle
and lower reaches of the gully, which is basically consistent with the results of the boulder
distribution survey of the actual site accumulation, and this phenomenon was caused by the
larger kinetic energy of large particle-size debris. Simultaneously, it should be noted that
the cross-sections of the debris piles with larger thicknesses (as shown in Figure 12) showed
that the coarse debris was not only concentrated on the surface of the piles but also existed
in the lower part of the piles, and this phenomenon of mixed accumulation of particles
was apparent. The accumulation thickness gradually decreased in each cross-section, and
finally, the debris rushed out of the trench and spread laterally to form the accumulation fan,
which had an overall “trumpet shape” (Debris flow accumulations present an elongated
posterior margin and an open anterior margin.) (as shown in Figure 11). The shape of
this accumulation fan was slightly different from the rounded edge shape of the field
accumulation fan, and the results of the numerical simulation and distribution of the
boulder survey were in good agreement. The images of the whole numerical calculation
visually showed that the debris accumulation tends to be distributed downstream, and
the thickness of the accumulation at the profile gradually becomes thinner, similar to the
“planar elongation movement” of the debris in the source area. The longitudinal profiles at
different locations showed that the accumulation does not show apparent particle sorting
from above and below (Figure 13).
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4.3. Simulation of Kinematic Process

During the flow of the debris stream, gravitational potential energy is converted into
kinetic and deformation energies, which are then dissipated by friction and collision. The
energy change of the landslide throughout its movement was analyzed by monitoring
the kinetic energy change in the slide (as shown in Figure 14). The moment of energy
change inflection point was consistent with those of the mean velocity change curve,
confirming that energy decay was the main cause of the substantial decrease in the mean
velocity. The avalanche debris contained huge gravitational potential energy at the time of
initiation, and the kinetic energy of the landslide was increasing with the velocity. With the
gradual movement of the avalanche debris into the valley and the continuous collisional
disintegration with the bottom of the slope, the kinetic energy reached its peak after 45 s
and gradually began to decay. Simultaneously, as part of the slide stopped moving after
colliding with the terrain or the occurrence of climbing, with the gradual increase in friction
energy, the avalanche debris moved all the way down along the movement path of the gully
and gradually accumulated. The kinetic energy of the landslide body tended to zero out
after 180 s, when the avalanche debris reached the mouth of the trench in the accumulation
and diffusion stage. The energy monitoring curve was roughly similar in time to the
inflection point of the average velocity curve, where the decrease in velocity and the decay
of energy were synchronized, from a linear increase at the beginning to a gradual decay
and finally convergence to zero. The avalanche debris was subjected to intense friction as
it moved along the head of the gully due to the influence of the valley topography. The
accumulated frictional energy of the slide body formed an upward trend, and the inflection
point of the curve appeared at 90 s (as shown in Figure 14b). The avalanche debris had a
large number of particles that stopped moving at 120 s, and eventually, all the gravitational
potential energy was dissipated by collision and friction.
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5. Discussion
5.1. Mechanisms for the Occurrence of Rock Avalanche

Fluidization is the primary mode of movement for high-speed, long-runout landslides
following debris disintegration, and it is also a prerequisite for further amplification of
their disastrous effects. Heim [1] was the first to systematically describe the fluidization of
high-speed, long-distance landslides during his study of the Elm landslide in 1881. After
the disintegration, landslides move at high speed in the form of avalanche debris, exhibiting
fluid-like behavior such as climbing and avoiding obstacles in their path. When studying
high-speed, long-runout landslides using the discrete element method, it is crucial to
reproduce the motion process and accumulation characteristics. To achieve this, researchers
have employed various simulation techniques. Tang et al. [7] used a particle parallel bond
model to analyze the kinematic characteristics of the Jiufenershan landslide induced by
an earthquake. Their simulation results were found to be in line with the accumulation
characteristics of real landslides, particularly under low residual friction coefficient and
medium particle bond strength conditions. Furthermore, the exploration of the long run-
out mechanism of a landslide demonstrated that self-lubrication, frictional vaporization,
and frictional melting effects might be the main reasons for the reduced frictional resistance
of a landslide [45–47]. To study typical high-speed, long run-out landslides such as the
Donghekou and Wenjiagou landslides triggered by the Wenchuan earthquake, a discrete
element method based on the parallel cohesive model can better simulate the debrisisation
and fluidization motion process of landslides, reproducing their typical accumulation
characteristics, and revealing the destabilization and motion mechanism [48–52].

5.2. Effect of the Topography

The geomorphic landscape after the TZRA occurrence is different from the current
geomorphic landscape. The sorting of the accumulation is poor, and there is no apparent
particle sorting phenomenon. Simultaneously, large-size stones still exist in the middle of
the deposited profile rather than being concentrated on the surface of the deposit. Therefore,
the ‘reverse grading’ phenomenon is not apparent in the TZRA deposit. Combined results
of the particle size composition of different grain groups, particle morphology characteris-
tics analysis, and field investigation of the mound profile inferred the diffusion mechanism
of the TZRA. In the process of diffusion, the compressed air in the accumulation body is
trapped in the graded continuous debris, resulting in excess pore gas pressure, weakening
the connection between the particles, and resulting in particle suspension. This is precisely
because the compressed air trapped between the debris particles exerts a cohesive force
between the particles to weaken them, resulting in weak particle grinding and dynamic
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crushing, and the debris of the deposit can still maintain a high roundness, so the phe-
nomenon of particles gradually becoming finer from upstream to downstream does not
occur. In discrete element numerical simulations, the particles in the middle were found
to be greater than the average value in terms of movement distance and velocity. Since
this part of the particles is less influenced by the topography, it causes the long-runout
transport of the avalanche debris. The terrain has a great influence on the accumulation of
morphological characteristics and the transport distance of the avalanche debris, which
should not be neglected because of the large decay in velocity after passing through both
deflection zones.

5.3. Integration of Multi-Source Analysis Techniques

The discrete element model (DEM) is an approach that considers the sliding body as a
collection of particle flows. This method provides a more accurate simulation of various
aspects, including the impact of the sliding body, scraping effect, mutual collision, and
rolling between particles. It also allows for the reverse analysis of the movement process of
the landslide debris flow.

However, the topography has a great influence on the movement speed and diffusion
range of rock avalanche debris flow. Additionally, the application of GIS and remote
sensing technology plays a crucial role in identifying and delineating areas affected by
the movement and accumulation of rock avalanche debris flow. This inversion model’s
accuracy is validated through these advancements. Precise mapping of topographic features
using high-resolution remote sensing enables the detailed modeling of individual elements,
which is essential for understanding the process behind rock avalanche debris flow.

In recent years, significant progress has been made in identifying slippery geological
structures, delineating landslide boundaries, and classifying the evolution stages of land-
slides, thanks to advancements in Unmanned Air Vehicles (UAVs), optical remote sensing
image satellites, and interferometric synthetic aperture radar [53,54]. However, due to
various factors such as topography, climate, rainfall, and vegetation coverage specific to
the study area, the understanding of the movement process for high-speed long-runout
rock avalanche debris flows is still lacking [55,56]. While these technologies can provide
early warning and help define the scope of the disaster before and after its occurrence, they
are unable to capture the detailed dynamics of the movement.

Future research can be carried out from the ‘space-ground’ integrated remote sensing
monitoring, combined with the landslide movement and diffusion accumulation range
simulation of DEM. It plays a good role in guiding the subsequent realization of the combi-
nation of “geological analysis, multi-source remote sensing analysis and DEM inversion
method”. It guides the analysis and prediction of the whole process of rockfall-debris
flow, from the disaster-generating process to the evolution of the movement and spreading
accumulation range.

6. Conclusions

The TZRA was a high-speed long-runout landslide with a volume of approximately
9 × 106 m3 that traveled a vertical height of 1120 m (H) over a distance of 4000 m (L),
yielding an effective friction coefficient of approximately 0.22 (H/L). A combination of
field investigation and discrete element simulation was used to investigate the motion and
dispersion characteristics of the TZRA in Yunnan Province, China. The important findings
of the study can be summarized as follows:

(1) The kinetic phase of the TZRA probably lasted for 3 min and can be further divided
into three phases: the rapid acceleration (<45 s) phase; the high-speed long-runout
(45–120 s) phase and the final low-speed deposition (>2 min) phase.

(2) Analysis of the accumulation pattern of the TZRA indicated that during the movement
of the landslide-avalanche debris, a climbing phenomenon and scraping effect co-
existed on both sides of the mountain. When the TZRA reached the mouth of the
gully, the avalanche debris spread to both sides because it was no longer restrained by
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the mountain bodies on both sides of the narrow gully, forming a “trumpet”-shaped
accumulation pattern that is roughly consistent with the results of the large-size
boulder survey.

(3) Numerical results show that the debris accumulation tends to be distributed down-
stream, and the accumulation thickness gradually thins at the profile, similar to the
“planar elongation movement” of debris in the source area; therefore, accumulation
does not show evident particle sorting from above and below.
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