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Abstract: Landslides are among the most frequent hazards in Latin America and the world. In Brazil,
they occur every year and cause economic and social loss. Landslide inventories are essential for
assessing susceptibility, vulnerability, and risk. Over the decades, a variety of mapping approaches
have been employed for the detection of landslides using Earth observation (EO) data. Object-
based image analysis (OBIA) is a widely recognized method for mapping landslides and other
morphological features. In Brazil, despite the high frequency of landslides, methods for inventory
construction are poorly developed. The aim of this study is to semi-automatically recognize shallow
landslides in Itaóca (Brazil) and evaluate the transferability of the approach within different areas
in Brazil. RapidEye satellite images (5 m) and the derived normalized difference vegetation index
(NDVI), as well as a digital elevation model (DEM) (12.5 m) and morphological data, were integrated
into the classification. The results show that the method is suitable for the recognition of this type of
hazard in Brazil. The overall accuracy was 89%. The main challenges were the identification of small
landslides and the exact delineation of scars. The findings validate the applicability of the approach
in Brazil, although additional adjustments to the primary rule set might lead to better results.

Keywords: inventory; mass movement; semi-automated mapping; expert knowledge integration;
remote sensing; Serra do Mar

1. Introduction

Landslides are one of the most common and destructive natural hazards worldwide
and were responsible for 500 deaths and an economic loss of USD 500 million in 2021 [1].
Latin America is highly affected by landslides, and it is considered a prone area due to local
conditions (e.g., geological, geomorphological, and meteorological conditions) [2]. The
region is profoundly conditioned by its colonial past, and society suffers from poverty, en-
vironmental degradation, and the absence of governmental strategic policies for territorial
management to address disasters [2].

Rainfall-triggered fatal landslide events occur frequently in Brazil, resulting in many
economic and social problems [3–5]. According to Alvalá et al. [6], out of every 100 inhabitants,
nine resided in areas vulnerable to disasters within the country. The presence of such
an exposed population is attributed to the absence of adequate urban planning and a
lack of a consistent policy for hazards and disaster management [7]. Despite the high
frequency of mass movement events and the population at risk, landslide inventories have
been poorly developed in Brazil [8,9]. Inventory maps document all landslide features
triggered in a location and are essential for risk and susceptibility studies and territorial
planning and management [10]. After a high-magnitude landslide event in 2011 [11,12], the
Brazilian Federal Government established the National Policy on Protection and Civil Defense,
with law No. 12,608 of 10 April 2012, to avoid possible new landslide occurrences, and
two of the main guidelines are directly related to landslide inventory construction (Source:
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http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12608.htm, accessed
on 14 September 2023). In recent years, there has been an increasing amount of literature
on mapping event-triggered landslides in Brazil using various methods (e.g., manual,
semi-automated, and automated) [13–20]. In general, these studies have concentrated
on recognizing landslide features and characterizing individual mass movement events,
without a primary focus on assessing the transferability of these approaches within the
Brazilian national territory. Object-based image analysis (OBIA) is a well-established
method for mapping landslides and geomorphological features [21–25], with significant
potential for the detection of landslides in satellite imagery [21,23,24,26]. Considerable
progress has been made in applying the OBIA method to landslide analysis in recent
years. Numerous studies have adopted diverse semi-automated approaches, primarily
utilizing optical satellite images and DEM data [26]. For instance, semi-automated methods
have been combined with machine learning algorithms [27,28], merging optical and DEM
data to automatically detect and distinguish various landslide types [22,25,29,30]. These
studies have also involved the use of open source tools and software [31,32], time series
analysis with optical satellite data [33], and comparisons between OBIA results and visual
image interpretation [23].

Although several studies have demonstrated the applicability of OBIA for landslide
mapping in various environments, its application for landslide mapping in tropical envi-
ronments in Brazil is still incipient. Brazilian studies which applied OBIA, for example,
focused on urban infrastructure, coral reefs, gullies, and vegetation pattern mapping, and
not on natural hazards [34–38]. This method considerably simulates human cognition and
enables the transfer of existing knowledge into machine-executable rule sets [27]. OBIA
involves two main steps: image segmentation and classification [39–41]. Segmentation is
the division of an image into objects [39]. Relatively homogeneous pixels are grouped into
meaningful objects using varied information [40]. This is the initial and most important
procedure because the accuracy of the extracted objects and further classification depends
on the quality of the segmentation [42]. During classification, several characteristics can
be used to describe and classify objects, such as spectral values, spatial, textural, and
morphological, as well as relationships between objects, proximity, and connectivity [40].
The input data are a crucial aspect to consider, as selecting the appropriate combination of
layers and parameters directly impacts the recognition of features. The selection process
must take into account the conditions influencing shallow landslide occurrence (e.g., slope).
Data resolution is also of great importance. For example, in the case of shallow landslides,
the size of the features varies significantly, and only may be useful for the detection and
classification of high- or very-high-resolution images. Landslides are complex geomor-
phological features that should be treated as objects when mapping them. By using OBIA,
landslides can be considered clusters of pixels instead of individual pixels without spatial
correlation [43]. The method allows for the creation of rule sets that are ideally transferable
to other study sites with similar environmental characteristics, requiring only minor adjust-
ments in thresholds [33]. This is very helpful in Brazil since the country has a continental
dimension (8,515,767.049 km2) and mass movements occur frequently in different regions.
Moreover, utilizing a pre-developed rule set for a recent event can enhance the generation
of new inventories, thereby contributing to effective territorial management. Thus, the aim
of this study was to recognize shallow landslides in Itaóca (Brazil) triggered in January 2014
and evaluate the transferability of the approach within different areas in Brazil.

2. Study Area

The study area is the Itaóca municipality, located in the south of the state of São Paulo,
southeastern Brazil (Figure 1). Itaóca is a small municipality in the Ribeira Valley with
an approximate population of 3200 in a total area of 183 km2 [44]. The site is covered by
the Atlantic Forest. It is characterized by elevations up to 1100 m.a.s.l., steep slopes, and
a temperature range between 11 ◦C and 30 ◦C [45]; the climate type is Humid subtropi-
cal (Cfa), characterized by hot summers and frequent thunderstorms. The geology and
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pedology consist of Archean-Proterozoic igneous and metamorphic rocks, predominantly
granite [46,47], and cambisols, leptsols, acrisols, and gleysols [48].

Rainfall-triggered mass movements occurred in Itaóca on 12 January 2014. As a
consequence of the numerous shallow landslides and debris flows, the local infrastructure
(e.g., roads, bridges, and energy supply) and 100 houses were destroyed, and 25 people
died [49,50]. The study site covers an area of 51 km2 and includes three watersheds:
Guarda-mão, Gurutuba, and Palmital. According to Dias et al. [51], the area has a medium
to high susceptibility to debris flows. Debris flows in Brazil are mostly triggered by shallow
landslides, and local geomorphological conditions favor the transportation of high volumes
of sediments [51].

Figure 1. (A) Location of the study areas in Brazil; (B) Itaóca in 2014 after the mass movement a
high-magnitude event; (C) Nova Friburgo in 2011 after the mass movement high-magnitude event;
(D) Mountains in Nova Friburgo. Photograph: M.F. Gramani; (E) Mountains in Itaóca. Photograph:
V.C. Dias.

The second study site is Nova Friburgo (Figure 1), located in the mountainous region
of Rio de Janeiro state, southeastern Brazil. Nova Friburgo is a municipality with an
approximate population of 192,000 in a total area of 936 km2 [44]. The site was selected to
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evaluate the transferability of the landslide mapping approach. The area is in the Serra dos
Orgãos geomorphological unit and is characterized by elevations of up to 2000 m.a.s.l. and
the Atlantic Forest [52]. The geology mainly consists of igneous and metamorphic rocks
(e.g., granites, gabbros, and gneisses) [53]. In January 2011, Nova Friburgo was affected by
a high-magnitude mass movement event, which is considered the most destructive event
in Brazilian history [11]. Extreme rainfall triggered many landslides, resulting in more than
1500 deaths, and damage to buildings and infrastructure [12].

3. Materials and Methods
3.1. Data

The satellite images used in this study were RapidEye Analytic Ortho Tile multispectral
images (5 m spatial resolution), a radiometric resolution of 16 bit, and five spectral bands
(blue, red, green, red edge, and near-infrared (NIR)) [54]. The normalized difference
vegetation index (NDVI) was computed by assessing the difference in reflectance in the
NIR and red bands. The NDVI has been widely used for vegetation monitoring and
assessment and is commonly applied in landslide studies [15,55,56]. In Itaóca (SP), the
1:10,000 scale drainage network provided by the Geographic and Cartographic Institute
of the State of São Paulo (IGC-SP) was utilized, while in Nova Friburgo (RJ), a drainage
network at a 1:25,000 scale from the National Water and Basic Sanitation Agency (ANA)
was employed. Additional data, such as slope, curvature, and flow accumulation, were
derived from the ALOS PALSAR DEM with a resolution of 12.5 m [57]. An overview of the
data is presented in Table 1.

Table 1. Overview of the datasets.

Dataset Source Scale/Resolution Description

Satellite imagery RapidEye 5 m Five multispectral bands (blue, red, green, red edge, and near-infrared).
Acquisition dates: 30 January 2014 (SP); 20 January 2011 (RJ)

DEM ALOS 12.5 m Parameters used: slope, curvature, flow accumulation.
Format: raster.

Drainage network IGC-SP 1:10,000 Geographic and Cartographic Institute of the State of São Paulo.
Format: vector.

ANA 1:25,000 National Water and Basic Sanitation Agency. Format: vector.

3.2. Object-Based Mass Movement Mapping

For semi-automated shallow landslide mapping, an OBIA method was employed,
utilizing the eCognition 10.0 (Trimble) software. For segmentation, the multiresolution
segmentation algorithm was applied. The algorithm consecutively merges adjacent pixels
or existing segments based on homogeneity, which is determined through a combination
of spectral and shape criterion [58]. The segmentation settings were the same as those
used by Dias et al. [30]: scale parameter: 50; shape: 0.3; and compactness: 0.9. These
settings were established through a combination of expert knowledge and trial-and-error
experimentation, with the goal of generating image objects conducive to the identification
of shallow landslides. After segmentation, the objects were classified as shallow landslides
based on low NDVI values (near zero). Once the non-vegetated or sparsely vegetated
objects were identified with the NDVI, the incorrectly selected drainage channel sectors
were removed using the slope angle, and the border to and distance from the drainage
network. Upon the completion of the classification workflow, mainly shallow landslides
were classified. The main classification parameters are listed in Table 2. The detection and
classification of shallow landslides were mainly based on three different metrics: spatial,
spectral, and morphological. Shallow landslides result in the exposure of bare ground
with little to no vegetation cover; thus, the NDVI was used to identify potential landslide
features in the first step, since non-vegetated areas, including bare soil, have low NDVI
values near zero [40]. Subsequently, the classification was refined stepwise using the spatial
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and morphological characteristics. The metrics selection was based on the classification of
Dias et al. [14]. The classification thresholds were determined and tuned based on expert
knowledge. A summary of the workflow is shown in Figure 2.

Table 2. Segmentation and classification thresholds used in OBIA.

Study Area Classification Parameters

Itaóca

Mean NDVI ≤ 0.32
Mean slope ≥ 16

Distance from drainage network ≤ 12 m
Border to drainage network ≤ 0.5 m

Nova Friburgo

Mean NDVI ≤ 0.15
Mean slope ≥ 12

Distance from drainage network ≤ 12 m
Border to drainage network ≤ 0.5 m

Figure 2. Overview of the processing steps followed in this study.

The workflow was developed for Itaóca and was subsequently tested in Nova Friburgo,
whereby only minor adaptations in threshold values were made. This allowed us to evalu-
ate the transferability of the approach and the applicability of the classification parameters
among different areas in Brazil. Shallow landslides generally occur under similar condi-
tioning factors in Brazil. Therefore, it was possible to apply the same rule set with only
minor adaptations in both study areas. These minor adaptations were necessary due to
environmental and urban changes between the study areas.

3.3. Accuracy Assessment

The accuracy of the results was assessed by comparison to a shallow landslide inven-
tory created through expert interpretation [14], taking into account the spatial alignment
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between the reference dataset and the new semi-automated classification. The accuracy
was assessed by true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN), and the recall (Equation (1)), precision (Equation (2)), overall accuracy (OA)
(Equation (3)), and F1 Score (Equation (4)) were calculated. These indices are common for
the validation of landslide recognition and mapping results [15,18,25,33]. TP represents cor-
rectly classified objects, FP represents incorrectly classified objects, TN represents correctly
classified objects as not shallow landslides, and FN represents incorrectly classified objects
not as shallow landslides. Recall indicates the probability that a given object has been
correctly classified as a landslide, and precision indicates the probability that a classified
object represents a landslide [59,60].

R =
∑n

i=1 TP1

∑n
i=1(TP1 + FP1)

(1)

P =
∑n

i=1 TP1

∑n
i=1(TP1 + FN1)

(2)

OA = 100× (TN + TP)
TN + FP + FN + TP

(3)

F1 Score = 2× P× R
P + R

(4)

Furthermore, a series of object-by-object spatial accuracy metrics were computed,
aiming to determine the spatial and geometrical agreement between the manually mapped
landslide polygons (reference inventory) (ARj) and the landslide polygons recognized
by OBIA (ASi) [23,61]. The OBIA classification requires an object-segmentation. These
segmented objects were used for the classification of landslide scars. However, the vari-
ability of landslides in size and shape makes it challenging to delineate single landslides
as single objects; for this reason, the identification of the exact same number of landslides
is complex and remains a challenge [62]. The delineation of OBIA objects did not align
with the manual landslide delineation; for instance, one manually identified landslide
might encompass several smaller OBIA objects. Objects classified as landslides using OBIA
were consequently organized into larger polygons through contiguity and proximity-based
merging. Five spatial indexes were used to calculate the geometric similarity of the object’s
delineations: (I) quality rate (QR) (Equation (5)); (II) area fit index (AFI) (Equation (6));
(III) over-segmentation rate (OS) (Equation (7)); (IV) under-segmentation rate (US) (Equa-
tion (8)); and (V) root mean square (D) (Equation (9)). The spatial indexes are based on
area proportions, and their values vary from 0 to 1 (excluding AFI). The spatial alignment
between the reference and the test dataset is more accurate when the value is nearest
to zero [23,61].

QR = 1−
ARj ∩ ASi

ARj ∪ ASi
(5)

AFI =
ARj − ASi

ARj
(6)

OS = 1−
ARj ∩ ASi

ARj
(7)

US = 1−
ARj ∩ ASi

ASi
(8)

D =

√
(OS)2 + (US)2

2
(9)
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4. Results
4.1. Semi-Automated Object-Based Mapping of Shallow Landslides

The semi-automated object-based classification of shallow landslides is presented in
Figure 3. In general, the approach correctly identified the locations with shallow landslides,
but the semi-automated classification underestimates the reference. A total area of 2.73 km2

(1430 polygons after merging) was categorized as shallow landslides, while the reference
inventory presented 3.48 km2 (1723 polygons). The variance between the semi-automatic
classification and the reference inventory amounts to approximately 21%. The spatial
overlap of the detected landslides and reference mapping was 54% (i.e., 1.88 km2) (Figure 4).

Figure 3. (A) Shallow landslide mapping resulting in Itaóca (SP) using OBIA; (B) RapidEye image
showing large shallow landslides in the northern sector; (C) OBIA classification of large shallow
landslides in the northern sector; (D) RapidEye image showing small shallow landslides in the
southern sector; and (E) OBIA classification of small shallow landslides in the southern sector.

An F1 Score of 88%, precision of 79%, recall of 98%, and OA of 89% were achieved.
Regarding the spatial accuracy metrics, satisfactory results were achieved, with QR: 0.52;
AFI: 0.33; OS: 0.46; US: 0.19; and D: 0.35. Through the merging of OBIA classification
objects, it became feasible to compare the overall count of landslides identified through
semi-automated means with the manually conducted mapping. However, several factors
limit the comparability in terms of numbers. OBIA failed to detect certain small shallow
landslides, and it also erroneously combined adjacent landslides into larger polygons.

Landslide Distribution Analysis

The majority of landslides were concentrated on slopes between 15◦ and 30◦, with ele-
vations between 300 m and 600 m presenting negative values for plan curvature (Figure 5),
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and relative low NDVI values (Table 3). Regarding the geology (Figure 5D), shallow
landslides are concentrated in the Itaóca batholith zone (Itaóca unit—Barra do Chapéu
Granite) [46], which is constituted of quartz monzonite to monzogranite [47]. Landslides
are also present in the Lajeado metasedimentary group (Serra da Boa Vista (MPbv), Passa
Vinte (MPpv), and Gorotuba (MPg) Formation) in the northern part of the study area,
which consists of marble, calc-silicate rocks, phyllite, schist, quartzite, and metabasite [47].

Figure 4. An example of a shallow landslide scar for the comparison of manual and semi-automated
mapping and overlap area.

Two different landslide shape patterns were identified based on size (m2) and format
(Figure 3B,D). The north sector has a significant concentration of large and long shallow
landslide scars (1.05 km2) (Figure 3B,C), whereas small-to-medium and rounded scars are
concentrated in the central and south sectors (1.6 km2) (Figure 3D,E). To better understand
the different spatial characteristics, the above-described spatial accuracy metrics were
calculated separately for each pattern (Table 4). The northern sector shows better accuracy
results, especially for the US index. A low US value (0.25) indicates a high spatial match
between the reference inventory and the landslide polygons recognized with OBIA, in
other words, there is a high agreement between both delineations. This indicates that large
and elongated shallow landslide scars were more easily recognized than small-to-medium
and rounded scars.

Table 3. Spectral and morphological characteristics of the shallow landslide inventory produced
with OBIA.

Spectral NDVI High Frequency: 0.1–0.32; Min: −0.16/Max: 0.32

Morphology

Slope degree High frequency: 15–30◦; Min: 5.6◦/Max: 59.8◦

Elevation High frequency: 300–600 m; Min: 158.1/Max: 968.9 m

Curvature High frequency: −0.2–0.1; Min: −4.5/Max: 5.3
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Figure 5. Shallow landslides (black features), morphological and lithological characteristics of Itaóca:
(A) slope; (B) elevation; (C) curvature; and (D) lithology.

Table 4. Spatial accuracy metrics calculated for two different patterns of shallow landslide scars:
large and elongated (north); small-to-medium and rounded (central and south).

Spatial Accuracy Metrics Northern Sector Central and Southern Sector

QR 0.52 0.59
AFI 0.23 0.20
OS 0.43 0.48
US 0.25 0.35
D 0.35 0.42

4.2. Rule Set Transferability

The semi-automated object-based classification of shallow landslides for Nova Friburgo
is presented in Figure 6. In general, the OBIA classification overestimates the reference. A
total area of 11.38 km2 was identified as shallow landslides through the OBIA classification,
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while the reference mapping indicated an area of 6.42 km2. The Nova Friburgo OBIA
inventory presents a higher number of false positives than the Itaóca inventory. Despite the
overestimation, our results are promising and indicate the good transferability of the OBIA
method in Brazil. In Itaóca, shallow landslides of various sizes occurred, whereas in Nova
Friburgo, large landslides were more common. In Itaóca, the mean size was 1900 m2 with a
median of 725 m2, while in Nova Friburgo, the mean size was 3200 m2 with a median of
725 m2. The rule set utilized for both study sites consisted of identical classification features
and parameters, albeit with slight adjustments in thresholds. For instance, the mean NDVI
and slope values were tailored to align with the specific environmental and geomorpholog-
ical conditions in each locality. The outcomes affirm the method’s applicability in Brazil,
although additional modifications to the primary rule set might lead to better results.

Figure 6. Shallow landslide mapping result in Nova Friburgo (RJ) using OBIA.

4.3. Common Classification Errors

The object-based method demonstrated its suitability for identifying shallow land-
slides in Brazil. Nonetheless, some errors occurred, whereby most of them are characterized
as FP, defined as objects that were wrongly classified (Figures 7 and 8). The FP identified
in Itaóca and Nova Friburgo varied because of specific local characteristics. In Itaóca, the
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primary FP errors were associated with non-vegetated areas, and there were instances
where debris flows were incorrectly classified as shallow landslides (Figure 7). In Nova
Friburgo, the main FPs were non-vegetated areas and urban infrastructure such as roads
and built-up areas (Figure 8). The FN objects in both study sites were mainly small features
and scar delineation.

Figure 7. Common classification errors in Itaóca (SP): non-vegetated areas and debris flows. RapidEye
(left) and Google Earth images (right) were used for comparison.

Figure 8. Common classification errors in Nova Friburgo (RJ): non-vegetated areas and urban
infrastructure. RapidEye (left) and Google Earth images (right) were used for comparison.
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5. Discussion

Rainfall-induced landslide inventories are commonly constructed worldwide based
on a variety of methods [15,18,19,32,63,64]. The semi-automated object-based classification
correctly identified most locations with shallow landslides, but some errors were identified.
Schwarz et al. [20] investigated the different effects of manual and semi-automatic inventory
mapping on the landslide morphological characteristics in Rio Grande do Sul, Brazil. They
used a semi-automated method based on the Modified Soil Adjusted Vegetation Index
2 (MSAVI2) variation, adopting a minimum slope threshold. The authors highlighted
the differences in the number of landslides in each inventory owing to the tendency
of grouping landslides in the semi-automatic method, a behavior was also identified
in our OBIA inventory. The OBIA method has its limitations; it can miss some small
features, and erroneously merge neighboring features into larger polygons [30]. The spatial
overlap of the detected landslides and reference mapping was 54%. Similar findings in
a tropical environment were reported by Schwarz et al. [20] and Hölbling et al. [22]
in Italy. The notable disparities in the total number of features when comparing the
OBIA and the reference dataset primarily stem from the fact that some small shallow
landslide features were not recognized with OBIA (Figure 3E); similar obstacles were
identified in southeastern Brazil [15,65]. The primary limitation lies in the fact that the
available data resolution in the study area did not allow for the complete identification
of small shallow landslide scars. These findings can be attributed to several factors. The
semi-automated detection of shallow landslides with OBIA relies on spectral, spatial,
and morphological differences between the landslides and surrounding features. OBIA
performs effectively in identifying landslide source areas but exhibits reduced accuracy in
recognizing landslide tails and delineating scars, as well as in detecting small landslide
features. This can likely be explained by the limited resolution of the RapidEye data (5 m),
as well as the absence of discernible spectral, spatial, or morphological attributes that could
have been employed during semi-automated mapping for the recognition of tails [62] and
small landslide features. Several small landslides were missed by OBIA, thus, the correct
detection of small scars requires expert knowledge. Such expert skills can hardly be directly
transferred into classification rule sets and remain a challenge [26,62], and only a few
attempts have been made to objectivize the classification step by integrating common expert
knowledge [66]. While further steps in this direction are needed, we attempted to keep
the classification rule set as simple as possible and applied commonly used classification
features to increase the transferability, comprehensibility, and replicability. Nevertheless,
large shallow landslides were well recognized by the OBIA approach (Figure 3C). The
accuracy metrics yielded results above 79% that were consistent with those reported in the
existing literature, [15,18,29,30]. All the spatial accuracy indexes were below 0.55, indicating
a good-to-high agreement between the manual and the semi-automated classification.
However, accuracy numbers should be treated with care, since most manually prepared
reference data, despite often being the best available reference, also include uncertainties
due to the data used, the skills of the interpreter, and study area characteristics [23].
Nevertheless, we believe that the reference data used are of high quality, as confirmed by
visual checks.

The distinct landslide shape patterns identified in the study site in Itaóca can be
explained by the lithology (Figure 5D). The northern sector consists of the Lajeado metased-
imentary group (metamorphic rocks: marble, phyllite, schist, and quartzite), and the central
and southern sectors are constituted by the Itaóca batholith zone (igneous rocks: granites).
The morphology of the landscape is influenced by the rock weathering profile, which
develops through mechanical or chemical weathering processes. This profile can vary
significantly from one location to another due to local differences in rock type, geological
structure, topography, erosion rates, groundwater conditions, and climate variations, as
noted by Gerrard [67]. The scars in the Lajeado metasedimentary group tend to develop
a longer and larger shape because they are conditioned by structural weakness planes in
rocks (e.g., sedimentary layers, granulometric difference, metamorphic banding). Granite
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scars, on the other hand, tend to develop a rounded shape as they depend more on joint
networks which in turn affect the process of weathering and soil formation [67,68]. The
relevance of the role of lithology in the recognition of shallow landslides using remote
sensing methods is clearly supported by the current findings. Regarding the morphological
characteristics of each scar shape type, the negative values for plan curvature are similar,
but the slope angle and elevation vary. A negative curvature value indicates that the surface
prior to the event was concave, which makes it responsible for the convergence of materials
and flows, as described in previous studies [69–71]. Long and large scars are more frequent
between 21 and 40◦ and 500–870 m. However, small to medium and rounded scars are
common between 10 and 30◦ and 300–600 m. These results suggest that a combination of
slope, elevation, curvature, and lithology can indeed impact the location and morphology
of shallow landslide scars.

Regarding the transferability of the approach, the semi-automated object-based clas-
sification of shallow landslides for Nova Friburgo overestimates the reference. Hölbling
et al. [23] also encountered similar challenges and confirmed that the transferability is
contingent upon the specific characteristics of satellite images, the study areas in question,
and the complexity and visual characteristics of shallow landslides. Despite the overesti-
mation, our results are promising and indicate the good transferability of the OBIA method
in Brazil. FP and FN classification errors were identified in Itaóca and Nova Friburgo.
These findings align with those observed in other remote sensing-based landslide mapping
studies conducted in Brazil [15,18] and worldwide [22,62]. These studies mentioned similar
challenges in landslide detection, as we experienced in this study.

Rainfall-induced landslide inventories are crucial for local stakeholders and decision
makers. Having information about the spatial distribution of these hazards is essential
for effective disaster management, especially in the context of climate change. According
to Alves et al. [72], the erosive power of rainfall is directly affected by climate change,
which, in turn, impacts the vulnerability of mountainous environments to natural hazards
like landslides. The study conducted by Alves et al. [72] in the state of Rio de Janeiro
raised concerns about the potential occurrence of extreme rainfall-related disasters in the
near future.

6. Conclusions

An object-based approach was employed for the classification of shallow landslides in
Itaóca (Brazil). Spatial, spectral, and morphological data were utilized for the segmentation
and subsequent classification of objects, all based on a high-resolution satellite image.
The results suggest that the OBIA method is well suited for application in the tropical
environments of Brazil. The approach correctly identified locations with shallow landslides,
but the semi-automated classification underestimated the reference, with a deviation of
approximately 21%. Two distinct patterns of landslide shapes were visually identified,
leading us to conclude that lithology can impact the morphology of shallow landslide scars.
This, in turn, can affect the recognition and accuracy of landslide features when utilizing
remote sensing approaches and data. The main challenges were the identification of small
scars, landslide tails, and scar delineation. This can likely be explained by the limited
resolution of the RapidEye data (5 m). Regarding transferability, the Nova Friburgo OBIA
inventory presents a higher number of false positives in comparison to Itaóca, because
Nova Friburgo presents a more complex environment. The rule set applied in Itaóca
and Nova Friburgo included the same classification features and parameters but with
slightly modified thresholds. The findings affirm the potential for transferring the approach
to different regions in Brazil. However, it is worth noting that further adjustments to
the primary rule set could potentially yield improved results. Further improvements
could be made with higher-resolution EO data in future studies. This could lead to an
enhanced mapping accuracy and help mitigate common classification errors. The results
can prove valuable for local stakeholders and decision makers, as having information about
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the location and spatial distribution of shallow landslides is crucial for effective disaster
management and territorial planning.
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