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Abstract: As wildfires become increasingly perilous amidst Pakistan’s expanding population and
evolving environmental conditions, their global significance necessitates urgent attention and con-
certed efforts toward proactive measures and international cooperation. This research strives to
comprehensively enhance wildfire prediction and management by implementing various measures
to contribute to proactive mitigation in Pakistan. Additionally, the objective of this research was to
acquire an extensive understanding of the factors that influence fire patterns in the country. For this
purpose, we looked at the spatiotemporal patterns and causes of wildfires between 2000 and 2023
using descriptive analysis. The data analysis included a discussion on density-based clustering as
well as the distribution of the data across four seasons over a period of six years. Factors that could
indicate the probability of a fire occurrence such as weather conditions, terrain characteristics, and
fuel availability encompass details about the soil, economy, and vegetation. We used a convolutional
neural network (CNN) to extract features, and different machine learning (ML) techniques were
implemented to obtain the best model for wildfire prediction. The majority of fires in the past six
years have primarily occurred during the winter months in coastal locations. The occurrence of fires
was accurately predicted by ML models such as random forest (RF), which outperformed competing
models. Meanwhile, a CNN with 1D and 2D was used for more improvement in prediction by
ML models. The accuracy increased from an 86.48 to 91.34 accuracy score by just using a CNN 1D.
For more feature extraction, a CNN 2D was used on the same dataset, which led to state-of-the-art
prediction results. A 96.91 accuracy score was achieved by further tuning the RF model on the total
data. Data division by spatial and temporal changes was also used for the better prediction of fire,
which can further be helpful for understanding the different prospects of wildfire. This research aims
to advance wildfire prediction methodologies by leveraging ML techniques to explore the benefits
and limitations of capturing complex patterns and relationships in large datasets. Policymakers, envi-
ronmentalists, and scholars studying climate change can benefit greatly from the study’s analytical
approach, which may assist Pakistan in better managing and reducing wildfires.

Keywords: machine learning; wildfire assessment; CNN; random forest; fire occurrence

1. Introduction

The global risk of wildfire disasters has surged due to the effects of climate change.
These wildfires pose a significant threat to wildland ecosystems, affecting their formation
and stability on a global scale [1,2]. While fires have historically played a role in renewing
and reshaping landscapes, the intensification of wildfires has led to devastating conse-
quences for people, the environment, and economies [3]. Moreover, the impacts of wildfires
extend beyond plants and animals, affecting the air, soil, and water quality [4,5]. The
economic losses and threats to human lives and health are substantial [6–9].

The escalation in the frequency and severity of wildfires has been particularly no-
ticeable across several Asian countries [10–12]. Research strongly suggests that with the
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ongoing impact of climate change, wildfires are projected to become more frequent and in-
tense worldwide [13–17]. This phenomenon is also evident in Pakistan, where forest cover
is notably low, accounting for just approximately 4.5 percent of the land. Consequently,
Pakistan grapples with significant forest degradation issues [16].

During the latter half of the 20th century, there was a noticeable increase in fire
occurrences in Pakistan and other nations, surpassing historical records. This period also
witnessed a rise in large-scale wildfires and an expansion of their affected areas [2].

Understanding the factors that influence wildfire behavior such as ignition ease, rate
of spread, management challenges, and overall impact is often referred to as “wildfire
hazard” assessment [17]. Several components play a role in the occurrence and progression
of wildfires including favorable weather conditions, the presence of combustible materials,
the continuity of these materials, and potential ignition sources [18]. These factors can be
categorized into topography, weather, and fuel-related factors. Each factor’s spatial and
temporal variability contributes differently to the overall fire risk.

Among these factors, climatic conditions have gained substantial attention in the
context of wildfire changes [19,20]. The influence of topographic elements such as slope,
aspect ratio, and elevation on the burnt area and ignition density has also been extensively
studied [21]. Notably, fuel—comprising various plant species—plays a critical role in fire
initiation and propagation [22,23]. While natural causes are important, human activities
significantly contribute to fire incidents, impacting both ignition likelihood and subsequent
fire behavior [24–26].

Human factors including population dynamics, socioeconomic elements, land use
changes, and activities such as agriculture have a substantial impact on fuel availability
and thus fire variation [27–29]. However, these human-related variables exhibit complex
temporal and spatial dynamics.

Considering the availability of thermal sensors and RADAR systems, this research
utilized space-borne remote sensing to derive relevant predictor variables (e.g., temperature,
precipitation, population) from open-source satellite imagery, addressing the challenges
associated with modeling numerous environmental and socioeconomic factors. Satellite
remote sensing has emerged as a crucial tool for monitoring ecosystems and identifying
potential hazards such as wildfires.

Recent advancements in ML algorithms offer significant potential for various data
science applications [30–33]. These algorithms require high-quality training datasets to
excel. To address this issue, remote sensing data are enhanced using a CNN. Previously,
researchers utilized machine learning techniques, along with remotely sensed fire data
and GIS, to develop a wildfire susceptibility map for the Adana and Mersin provinces in
Turkey, aiming to identify and predict areas at high risk of wildfires by analyzing multiple
factors [34]. Another researcher explored the use of remote sensing data and machine
learning algorithms to predict and map wildfire occurrences over multiple time periods,
providing valuable insights into the temporal patterns of wildfires through the generation
of grid maps [35]. One further study introduced a machine-learning approach to identify
and assess dense-fire events and their atmospheric emissions on the Indochina peninsula,
utilizing data from 2010 to 2020 and providing insights into the impact of these fires on the
atmosphere [36].

This study delved into ML techniques such as decision trees (DTs), RFs, K-nearest
neighbors (KNNs), and support vector machines (SVMs) to map wildfires, with the goal
to identify the most effective approach for model training and validation. Furthermore,
to augment the features used in modeling, CNNs were employed—both 1D and 2D—to
demonstrate their capabilities in wildfire assessment [37–42].

Compared to physics-based models, ML models train on satellite data and climate
features from monitoring stations, covering different span periods. By incorporating
historical data, ML models can learn from past patterns and trends, enabling them to
make predictions based on historical patterns of wildfire occurrence and behavior. Physics-
based models may require detailed knowledge of physical processes, which may not
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be readily available or practical for all regions. ML models offer improved prediction
power by extracting patterns and relationships from complex datasets, resulting in more
accurate predictions of wildfire occurrence. Being relatively novel, ML models provide fresh
approaches to wildfire prediction, potentially uncovering new insights. Additionally, ML
models can handle imbalanced datasets, which is crucial for obtaining reliable predictions in
wildfire analysis [43]. The previous study emphasized the computational efficiency of ML
models for fire forecasting, offering significant advantages over physics-based simulations.
The integration of reduced-order modeling and ML ensures efficiency while maintaining
accurate predictions. Data assimilation and error covariance tuning improve forecasting
accuracy by incorporating real-time data. ML models accelerate fire forecasting, enabling
near real-time predictions for effective decision-making and emergency response [44]. The
application of existing models in other regions can be impracticable or very difficult due
to distinct geographic characteristics and data availability. ML models, trained using
a dataset specific to the Brazilian Federal District and enriched with various features,
offer adaptability and outperform physics-based models, achieving an accuracy of 91% in
predicting wildfire impacts, making them valuable for fire management agencies [45].

Despite the existing research, there remains a gap in thoroughly assessing fire suscep-
tibility using remote sensing data. Previous research has highlighted the application of
artificial neural networks and mapping techniques for fire risk assessment and vegetation
analysis [46–48]. This study addresses this gap by focusing on a specific region with limited
datasets. The research aims to build improved prediction models that can provide tailored
recommendations for fire management and prevention, considering geographic, temporal,
and seasonal aspects.

This research aimed to comprehensively assess wildfire prediction and management by
evaluating model durability and reliability over an extended period, exploring the impact
of seasonality on accuracy, capturing patterns linking precipitation and wildfire events,
analyzing spatial distribution, developing targeted strategies, assessing advanced machine
learning models, integrating real-time data, constructing a comprehensive management
framework, implementing preemptive measures, and improving forecasting accuracy
through data refinement. These objectives contribute to proactive wildfire mitigation in
Pakistan. This study seeks to holistically address the wildfire conundrum in Pakistan by
shedding light on its multifaceted dimensions. The overarching objective is to delve into the
temporal and spatial facets of wildfire occurrences, aiming to advance our comprehension
of their patterns and behaviors. At the heart of this pursuit is the integration of cutting-
edge machine learning techniques including a CNN 2D and RF to bolster the accuracy
of wildfire prediction models. The driving force behind this research is the aspiration to
not only contribute to the academic discourse, but also to offer practical insights that have
tangible implications for policymaking, disaster management frameworks, and sustainable
community development in the face of escalating wildfire risks.

The primary objectives of this study encompass four key aspects. First, the study aims
to undertake comprehensive data collection including historical fire data, and subsequently
preprocesses the data by rectifying errors and standardizing formats. This process will
involve the acquisition of pertinent details such as location, date, and pertinent factors
such as temperature. Second, the study intends to perform model training and evaluation.
This involves the identification of influential features, the division of data for training and
testing purposes, and the training of a model—potentially employing techniques such as
RF. Model performance evaluation will rely on metrics such as accuracy and recall. Third,
the study seeks to acquire and refine data from the FIRMS dataset, which is utilized for
fire detection. This refined dataset will be subjected to spatial analysis, allowing for a
comparison with historical fire data and an assessment of alignment. Finally, the study will
focus on identifying causal factors through an analysis of feature importance within the
model. Insights garnered from this analysis will be leveraged to propose effective strategies
aimed at fire management, prevention, and early detection. Collaboration with experts in
the field will further enhance the applicability and efficacy of these recommendations.
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The structure of the study comprises various sections: Section 2 gives an overview of
the research area and past fire incidents; Section 3 details the techniques used and presents
results; Section 4 covers data preparation, a CNN design, accuracy assessment, and key
findings; Section 5 discusses the statistics and findings. Finally, Section 6 concludes the
study with a brief summary.

2. Study Area

The research region is Pakistan, and the study period was from November 2000 to
December 2020. Pakistan is situated in the Arabian Sea in South Asia. A total of 875,175 km2

of surface area in Pakistan is made up of 25,683 km2 of wildland, and 33.3% is agriculture.
There are 292,882 km2 of grassland and shrub land overall. The percentage of wilderness
in Pakistan is 36.4%. There were 175,000 fires reported in Pakistan, of which 22,311 were
wildfires. According to land cover categorization, Figure 1 represents the wilderness
area of Pakistan, which is categorized as wildness. The area of interest is shown on the
map, along with historical fire occurrences that occurred between 2001 and 2020. One of
the most vulnerable regions of Pakistan is its eastern region. The least rainy and most
prone to desertification weather, dry weather, is featured. The maximum elevation reaches
28,251 m, whereas the minimum altitude is at sea level, which is 0 m [49]. The northern
region of the country is characterized by mountainous terrain, while the southern areas
gradually transition into flatter landscapes. Notably, the northeast region exhibits the
highest population density in the nation. The population is very evenly dispersed over
the nation, with population clusters also being visible close to the largest cities. Southwest
Pakistan is the least inhabited part of the country [50].
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Pakistan experiences four distinct seasons throughout the year. From December to
February, the country experiences a cool and dry winter. The months of March to May mark
the arrival of a hot and dry spring season. Then, from June to August, Pakistan experiences
a wet monsoon season characterized by rainfall. Finally, the monsoon season gradually
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subsides from September to November, known as the waning monsoon season. Previous
wildfire studies were not undertaken on a national scale due to the absence of a continuous
dataset that spanned the entire country. Due to the excellent remotely sensed datasets, the
best model for fire prediction may be studied using a publicly available worldwide dataset
collected from remotely sensed data.

After defining the essential terms, we conducted an exploratory investigation into
Pakistani wildfires. Our research approach involved using diverse remotely sensed datasets
that are publicly accessible. Furthermore, we integrated datasets from other industries that
also relied on satellite images as essential features (dependent variables) and influential
factors (independent variables). The primary objective of this study was to gain a deeper
understanding of Pakistani wildfires. By analyzing information from previous fire incidents,
along with utilizing remote sensing data and incorporating datasets from various sources,
we aimed to identify underlying patterns and factors contributing to wildfire occurrences in
the region. This comprehensive methodology allowed us to explore potential relationships
among different variables and contribute to the development of effective strategies for
wildfire management and prevention.

To determine the total number of fires, data from the Fire Information for Resource
Management System (FIRMS) were utilized. FIRMS provides data that are almost real-time
and available approximately three hours after satellite observation. These data are trans-
ferred via FIRMS to the Terra and Aqua Earth Observing System (EOS) as part of NASA’s
Land, Atmosphere, Near Real-Time Capability (LANCE) for EOS. The data originate
from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS). The wildfires currently occurring are highlighted
in Figure 1, which displays pixels covering a square kilometer of the landscape. Within
each 1 sq. km pixel, the publicly accessible dataset includes records for temperature, fire
confidence, and fire type. From November 2000 to October 2023, users can obtain FIRMS
data with a one-day temporal resolution and a one-kilometer square geographic precision.

In this study, we applied filtering criteria to remotely sensed fire data. Specifically,
we categorized the fire data based on two criteria: confidence level and fire type. For
the confidence level, we set a threshold of 60 percent confidence. This means that only
fire observations with a confidence level of 60 percent or higher were chosen for further
analysis. This filtering step helped ensure that we focused on more reliable fire detections
and reduced the inclusion of potential false positives. Regarding fire type, we utilized the
MODIS landcover vegetation data to filter the fire observations. We selected only those
fire pixels that corresponded to vegetation-covered areas, as indicated by the land cover
data. This helped us narrow down the analysis to fires occurring within vegetated regions
and excluded non-vegetated areas or other land cover types. By applying these filtering
criteria, we aimed to improve the quality and accuracy of the remotely sensed fire data
used in our study.

Figure 2 illustrates the overall count of pixels indicating active wildfires in Pakistan
during specific seasons from 2000 to 2023. In terms of fire activity, the data suggest that the
year 2020 did not stand out significantly compared to the previous two decades. The most
severe years in terms of fire activity were 2008, 2016, and 2017. Notably, the number of active
fires in 2016 surpassed the combined count of 2015 and 2019. To identify irregularities across
seasons, it is necessary to have a comprehensive understanding of fire activity throughout
the year. The number of active fires in 2008 was significantly higher than that in earlier
years. Satellite-based fire data, however, revealed that until 2023, every year, in December
and February of each year for the previous 24 years, MODIS recorded 10,357 active wildfire
indications throughout Pakistan.
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Figure 2 presents the seasonal distribution of active fire sites between January 2001
and October 2023. It can be observed that the majority of fires tended to occur during
the winter season, spanning from December to February. The seasons are categorized as
follows: Seasons 1 and 2 encompass December to February and March to May, respectively;
Season 3 encompasses June to August; Season 4 encompasses September to November.

A diverse range of studies utilizing machine learning techniques in the context of
wildfire management and prediction [51] focused on the comprehensive application of deep
learning methodologies using satellite remote sensing data for detecting, mapping, and
predicting wildland fires. The authors in [52] explored the creation of wildfire susceptibility
maps through the integration of interferometric synthetic aperture radar (InSAR) coherence,
deep learning, and metaheuristic optimization techniques. The study by [53] contributed
to the field by presenting a novel approach to forest fire prediction that leveraged long-
and short-term time-series networks [54] and concentrated on active fire mapping in the
Brazilian Pantanal region by employing deep learning and China-Brazil Earth Resources
Satellite-4A (CBERS-4A) satellite imagery. These studies collectively showcase the increas-
ing significance of machine learning approaches in advancing our understanding of wildfire
behavior, enhancing prediction accuracy, and enabling effective fire management strategies
using remote sensing data.

3. Methodology

In this section, we discuss how we went about achieving our main goals. The first
stage was to find the optimum fire susceptibility model, and the second was to use a CNN
to improve the characteristics of the features. The structure was divided into three sections:
(a) data preparation and preprocessing; (b) a CNN; (c) model assessment (Figure 3). On a
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dataset with varied perspectives, the entire procedure was run four times. For the complete
dataset, the data were split by year (six-year gap), the data were sorted regionally based on
density, and the data were separated by season. To construct the training dataset, the three
main driving factors of topography, weather, and fuel were considered. This information
is gathered from various sources such as soil, socioeconomics, vegetation, and past fire
incidents. The historical fire occurrences were divided into separate subgroups for training
and testing purposes. Machine learning models were then trained using the training
dataset, and the performance of the model was evaluated using the test dataset. The most
effective ML model was employed to predict wildfire susceptibility.
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3.1. Feature Extraction Layer

The feature extraction layer in the workflow diagram for wildfire mapping and predic-
tion patterns was extracted from the input data. In the context of this particular workflow,
the feature extraction layer was responsible for identifying and extracting meaningful fea-
tures from the wildfire data such as satellite imagery or other relevant sources. This layer
played a crucial role in capturing the distinctive characteristics and patterns associated with
wildfire events. Typically, techniques such as CNN or other machine learning algorithms
are employed in this layer to automatically learn and extract these features from the input
data. The extracted features are then used as inputs to subsequent layers or models for
the further analysis, prediction, or mapping of wildfires. The goal of the feature extraction
layer is to transform the raw input data into a more compact and representative feature
representation that can be effectively utilized by the subsequent stages of the workflow
such as classification or prediction models. By properly extracting and selecting relevant
features, the feature extraction layer helped to improve the accuracy and effectiveness of
the overall wildfire mapping and prediction process.

3.2. Data Extraction and Preprocessing

The passage describes the training dataset used for a specific analysis. The training
dataset consists of two types of variables: independent variables (also known as predictors)
and dependent variables (also known as response variables). Independent variables were
the factors that were used to predict or explain the outcome, while dependent variables
were the outcomes or responses that we were interested in understanding or predicting.
The entire dataset was quite large and contained a substantial amount of data. It spans a
24-year period and covers information at the country level. Handling such a vast dataset
manually would be impractical and time-consuming, so the creation of training datasets
was automated. Automation allowed for a more efficient and streamlined process of
preparing the necessary data to train the models. By providing the chosen models with
more training data samples, their performance improved. This means that having a larger
and more diverse set of data to train the models resulted in more accurate and robust
predictions or classifications. The models were able to learn from a more extensive range
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of examples, leading to better generalization and higher accuracy in their predictions or
classifications when applied to new, unseen data.

Fire and no-fire detail: The dependent variable was a binary variable that contrasted
with areas where fire incidence occurred and those where it did not. Hence, mapping fire
susceptibility can be viewed as a binary classification task in machine learning, with two
distinct classes: fire and no-fire. This research served as the foundation for the development
of an automated method for identifying where fires and no-fire incidents occurred.

To perform additional research on the driving mechanisms, no-fire instances must
also be gathered. Pakistan’s wildland land cover collection created a historical database of
no-fire occurrences. Random locations in a wilderness area were selected and separated by
a distance of one kilometer. To be classified as a no-fire occurrence, sites had to fall outside
the firing zones within the 1 km buffer zone. From November 2000 to October 2023, six
points were assigned to each day as no-fire points, corresponding to the same time period
as the fire data. Additionally, latitude and longitude values were assigned to each month,
resulting in a total of 184 points. Both fire and no-fire data had the same spatial resolution.
Pakistan’s dataset consisted of 22,311 fire points and an equal number of no-fire points.

Contributing factors: Choosing the independent variables, also referred to as pre-
dictors or conditioning factors, is a crucial step in predictive modeling. Based on field
observations from several research projects as well as open-source and international satel-
lite data, 34 driving elements were selected for this investigation [55–57]. While there are
no strict guidelines regarding the inclusion of variables in a model, geomorphological,
climatic, and human-related factors are commonly considered conditional components in
many studies [58].

Wildfires are mostly caused by three factors: topography, weather, and fuel. The two
primary applied wildfire conditioning variables related to fuel conditions are vegetation
type and socioeconomic issues. A summary of each dataset used in this study can be found
in Table 1. Information from a publicly available database of remotely sensed data, some
of which had records with different classifications, was used to build the independent
variables. Numerous socioeconomic traits were constructed using remote sensing data.
Table 1 includes links to the data sources and data catalogs in the Source of Data column.
The imported data in this study were in the form of raster data.

The weather is one of the primary factors generating wildfires, according to numerous
studies. The fire weather index (FWI) is a dataset provided by NASA that encompasses
various weather information such as temperature, humidity, and transpiration [59]. It is
employed widely outside of Canada [60–63]. Instead of merely using a few parameters
for data models, in our study, we utilized the Terra Climate dataset [64] and the Global
Land Data Assimilation System (GLDAS) [65], which offer a higher spatial resolution, as
indicated in Table 1. We incorporated several climatic variables, both derived and primary,
into our analysis. It is worth noting that Pakistan has not been extensively explored in terms
of the FWI, and the global FWI only encompasses a limited number of factors. Given their
superior spatial resolution, we opted for the GLDAS and Terra Climate datasets among the
suggested datasets for FWI analysis.

To generate the training dataset, we established fire and no-fire training points along
with corresponding conditional factors [66–75]. Subsequently, 34 independent variables
were collected and resampled to match the spatial resolution. Information extraction
techniques were employed to incorporate predictor values into the dataset. Training
samples were then created for each latitude and longitude, resulting in a comprehensive
dataset containing fire and non-fire sites, with associated driving variable data stored for
each geographic location.



Remote Sens. 2023, 15, 5099 9 of 24

Table 1. Various datasets represent different variables, all obtained from reliable sources. These
datasets have a spatial resolution of 1 km grid cells and cover the time period from November 2020
to October 2023.

S. No. Parameter
[Source] Unit Spatial

Resolution S. No. Parameter [Source] Unit Spatial
Resolution

1 Elevation [66] Meters

90 m

18 Average surface skin
temperature [68] k

28 km × 28 km
2 Slope [66]

Degree

19 Soil moisture [68] kg/m2

3 Aspect [66] 20
Actual

evapotranspiration
[67]

mm

4.5 km

4 Hill shadow [66] 21 Water deficit [67] mm

5 Population [76] person/km
(grid cell) 1 km 22

Downward surface
shortwave radiation

[67]
W/m2

6 Human
modification [68] Km2 23 Precipitation

accumulation [67] mm

7 Travel speed [69]
minutes/

meter

24 Minimum
temperature [60] ◦C

8 Travel speed walk
[69] 25 Maximum

temperature [60]

9 Settlement [73] classes 100 m 26 Vapor pressure [60] kPa

10 Urban cover [67] % 12 m 27 Tree cover [73] % 100 m

11 Precipitation [71] kg/m2/s

28 km ×
28 km

28 NDVI [74] nm

500 m12 Transpiration [71] W/m2 29 FPAR [75]

13 Wind speed [71] m/s 30 LAI [75] m2

14 Soil temperature
[71] k 31 Land cover [73] classes 100 m

15 Humidity [71] kg/kg 32 Soil bulk density [70] kg/m3

250 m16 Heat flux [71] W/m2 33 Soil taxonomy [72] classes
17 Albedo [71] % 34 Soil texture [71]

3.3. Convolutional Neural Network

Following the creation of the training set, the classification accuracy was evaluated.
The supervised classifications frequently make use of the input training samples. It is es-
sential to carry out multicollinearity in the creation of the training set, and the classification
accuracy was evaluated, so it is essential to carry out a multicollinearity analysis before
beginning fire modeling. In Figure 4 a multicollinearity analysis was conducted to check
for any connected components. The link between the predicted wildland fire factors was
then investigated using a multicollinearity analysis. The choice of features is extremely
important in the prediction of fire susceptibility.

Multicollinearity analysis was conducted to assess the relationship between the cli-
mate, environment, socioeconomic, topography, and vegetation factors. The analysis aimed
to determine whether there were high correlations or dependencies among these factors,
which could impact the reliability and interpretability of the model. The results of the mul-
ticollinearity analysis provide insights into the extent to which these factors are correlated,
helping to identify potential redundancies or overlapping information.
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high correlations that may affect the model reliability and interpretability.

Prior to implementing machine learning techniques, a comprehensive analysis of
multicollinearity was conducted on the variables. The results indicated a strong correlation
exceeding 0.8 among certain variables. Variables with correlation coefficients surpassing
0.8 or 0.9 were considered for removal. Consequently, these variables were excluded
from the machine learning process based on the criterion of high correlation coefficients.
This approach was adopted due to the understanding that strong correlations between
variables imply the capture of similar information, thereby complicating the ability to
discern their individual effects on the dependent variable. By prioritizing variables with
lower correlations, the aim was to enhance the reliability and applicability of the models.

Feature Selection: Multicollinearity helped identify redundant features. In the multi-
collinearity analysis, we found that some of the variables were highly correlated, and they
likely captured similar information. In such cases, in our feature importance analysis, we
selected only one of these variables as it can be sufficient, reducing the dimensionality of
the dataset and improving model performance.

Feature importance analysis: By assessing the importance of features, we gain insights
into which variables have the most influence on the model’s predictions. This analysis
helps prioritize and focus on the most influential factors when interpreting and making
decisions based on the model’s outputs. In Figure 5 the results of the feature importance
analysis provide a ranking or score for each feature, indicating their relative importance
in predicting the target variable. This information can guide further analysis, model
refinement, or decision-making processes.
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The model utilizes a CNN with a depth of 20 layers. The architecture of the CNN,
consisting of 20 layers, is depicted in Figure 6. CNN has emerged as a fundamental concept
in the field of deep learning. Its ability to leverage vast amounts of data in the era of big
datasets is different from traditional methods, yielding promising results. Consequently,
numerous applications have been developed. Furthermore, a CNN can be applied to
process both 1D data and 2D images.

out(N, Cout) = bias(Cout) +
Cin−1

∑
k=0

weight(Cout, k) ∗ input(N, k) (1)

In the 1D case, the output value of the layer with input size (N, Cin, Lin) and output
(N, Cout, Lout) can be precisely described, where N is the batch size, C denotes the number
of channels, and L is the length of the sequence (34 in our case). In the 2D case, the output
value of the layer with input size (N, Cin, Hin, Win) and output (N, Cout, Hout, Wout) can be
precisely described, where N is the batch size, C denotes the number of channels, H is the
height of the input planes in pixels, and W is the width in pixels.

The maps of wildland fire susceptibility were created using various classification meth-
ods including DT, SVM, RF, and KNN. Among these methods, RF employs an ensemble
learning technique by combining the results of multiple classification trees. It achieves this
by utilizing bootstrapping techniques and selecting subsets of observations to construct
random binary trees. This approach involves taking random samples from the original
training dataset. Using an RF offers several advantages over a single-participant method.
It yields more accurate results due to the diversification and randomness introduced by the
subset selection process, leading to enhanced generalization and robustness in the model.

The SVM is a popular and extensively employed classification method known for its
non-parametric kernel-based approach. They are the most efficient at handling difficult,
robust linear and non-linear classification and regression tasks.
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The KNN approach is a non-parametric model that is commonly used for classification
and regression tasks. It adopts a lazy learning strategy, which means that it does not make
any assumptions about the data. This makes the KNN model particularly valuable for
predicting air pollution when there is a lack of general predictors. The KNN technique
begins by randomly selecting a certain number of class centers (k) and then classifies the
training data based on their proximity to these centers. The class centers are then iteratively
adjusted to the middle of the training data, and the data are reclassified accordingly.

DTs are considered universal function approximators and belong to the category of
supervised learning algorithms. However, achieving such universality in its basic form can
be challenging. DTs are versatile and can be applied to both classification and regression
problems. A DT is composed of a set of if-then-else rules organized as branches connected
by decision nodes that ultimately lead to leaf nodes. The decision nodes represent the
points at which the tree splits into different branches, indicating the specific decisions made
by the algorithm. On the other hand, the leaf nodes represent the output of the model.

3.4. Validation and Evaluation Matrix

Once ML models have been trained to predict the origin of a fire, it becomes essential
to evaluate their performance. To accomplish this, an accuracy evaluation was carried
out. To validate the model, the sample dataset containing fire and non-fire zones was
divided into training and testing datasets. The points were allocated in an 80:20 ratio, with
80% assigned for training and the remaining 20% for testing purposes.

Accuracy assessment: The performance of the ML model was evaluated using a widely
recognized accuracy evaluation technique. This involved assessing characteristics such as
overall accuracy, area under the curve score (AUC score), and precision score.

To conduct the accuracy evaluation, independent testing datasets were created by di-
viding the sample dataset at an 80:20 ratio, with 80% allocated for training and 20% reserved
for testing.

The accuracy of a binary classification test is determined by its ability to correctly
determine the presence or absence of a condition. It is measured as the percentage of
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accurate predictions, which includes both true positives (TP) and true negatives (TN), out
of all the instances considered.

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

The F1 score combines precision and recall, focusing on the model’s performance in
binary classification tasks. It is particularly useful when there is class imbalance or varying
impacts of false positives (FP) and false negatives (FN).

The F1 score combines two important metrics: precision and recall. Precision measures
the accuracy of the model’s positive predictions, while recall quantifies the model’s ability to
correctly identify positive instances. While TN are important for evaluating a classification
model’s overall performance, they do not directly factor into the F1 score calculation, which
specifically focuses on the positive class.

Precision is a crucial metric in binary classification, emphasizing the quality of positive
predictions made by the model. It is calculated by dividing the number of TN predictions
by the sum of TP and FP predictions. Precision ensures that when the model claims
something is positive, it is highly likely to be correct, minimizing FP. High precision
indicates reliable and accurate positive predictions. Precision is often used alongside
recall, which measures the model’s ability to capture all positive instances. Precision
quantifies the trustworthiness of the model’s positive predictions. In summary, precision
helps us understand the proportion of the true positive predictions among all instances
predicted as positive by the model. It is an important metric, especially when FP has
significant consequences.

Precision =
TP

TP + FP
(3)

4. Results

In this section, the conclusions of the study are presented based on the methodology
utilized. The first part reports the results of the fire occurrence sites obtained from the
FIRMS dataset. The second half of this section reviews the findings of various machine
learning methods. It is worth noting that the majority of the predictive variables used in
this study were sourced from open-source platforms.

This study employed supervised ML methods (RF, DT, SVM, and KNN) with an
80–20 split for training and testing, respectively. The accuracy summary in Table 2 and
Figure 7 shows that RF had the highest accuracy (96.56%), DT had the lowest (85.12%), and
SVM and KNN both had 87.2%. Notably, all methods showed higher accuracy in predicting
the absence of fire than in predicting its occurrence.

The evaluation script using RF algorithms is commonly used to determine the optimal
number of maximum trees and max-depth for the RF model. These statistics directly
influence the accuracy of the model, making this step crucial. Additionally, the script
can provide insights into the number of leaf nodes needed for classifying two classes.
Hyperparameter tuning involves selecting the best combination of hyperparameters to
maximize model performance. Finding the perfect set of hyperparameters is essential
for achieving optimal model performance. Manual tuning of hyperparameters involves
manually setting and testing various combinations. However, this method can be time-
consuming and impractical when there are numerous hyperparameters to test.

For a CNN 1D and a CNN 2D, the output of the completely connected layer is 512,
which is fed directly into the RF. In the case of a CNN, the RF accuracy also significantly
increased when the variable rose to 512. When the variable increased from 34 to 512, the RF
accuracy rose from 86.48 to 91.34. A total of 512 variables were sent to the RF while using
the picture data for a CNN 2D to maintain quick processing and achieve a 96.56 accuracy.
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Table 2. An overview of the ML algorithm results for accuracy assessment including the RF, SVC, DT,
and KNN models compared with the Conv1D, Conv2D, and no Conv approaches.

Classifier Feature Accuracy Score AUC Score Precision Score F1-Score

RF

No-Conv 86.48 86.55 85.11 86.83

Conv1D 91.34 90.90 90.04 91.71

Conv2D 96.56 95.90 95.24 96.95

SVC

No-Conv 77.88 77.22 74.95 78.19

Conv1D 82.19 82.58 80.02 82.52

Conv2D 87.14 86.99 84.19 87.49

DT

No-Conv 76.41 76.40 70.91 76.72

Conv1D 81.76 81.36 77.53 82.09

Conv2D 85.13 82.37 80.03 85.47

KNN

No-Conv 77.18 77.10 71.99 77.49

Conv1D 83.24 83.19 80.07 83.57

Conv2D 87.19 88.24 82.27 87.54
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The RF model’s accuracy improved as the number of leaf nodes increased, reaching its
peak at 110 leaf nodes and a maximum depth of 50. Beyond the 50 max-depth, the accuracy
remained relatively stable. Based on these findings, it can be concluded that 110 leaf nodes
were the optimal number of trees for the RF model in this experiment. The RF model with
110 trees and a maximum depth of 50 achieved an impressive accuracy of 96.91 percent, as
demonstrated in Table 3.
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Table 3. Hyperparameter (leaf node 110 and max-depth 50) tuning of the RF model and scores on the
testing dataset.

Classifier Feature Accuracy Score AUC Score Precision Score F1-Score

RF

No-Conv 86.73 86.53 85.29 87.13

Conv1D 91.56 91.04 90.35 91.92

Conv2D 96.91 95.94 95.54 97.29

It is essential to assess the performance of the RF model compared to other models
under different temporal, geographical, and seasonal conditions to ensure its reliability.
Extensive research has shown that the RF model consistently produces diverse results
based on the specific location. Additionally, it is crucial to consider the temporal validity of
the models. To enhance the model’s applicability in real-time scenarios, the entire dataset
was categorized into different subsets and subcategories. This approach aims to improve
the model’s adaptability in dynamic environments.

Temporal relatability of the model: One common issue in data-driven problems is the
selection of the optimal time period for model training. The stochasticity or heterogeneity
of the data presents a challenge, as using long-term data in model construction may result
in a smoothing effect on behavior tendencies when applied to current data. Conversely,
relying on short-term data could introduce higher levels of uncertainty. It is important to
evaluate the durability of the model over an extended period to assess its reliability.

In Table 4 the dataset was divided into four groups with a six-year interval between
them. The time periods from 2000 to 2005, 2006 to 2011, 2012 to 2017, and 2018 to 2023 were
designated Y1, Y2, Y3, and Y4, respectively. It is important to note that there were fewer
samples available in Y1 due to the data accessibility limitations for the year 2000. Across all
time periods, the CNN 2D feature extraction technique consistently outperformed other
feature techniques in terms of accuracy. Specifically, the highest accuracy score of 96.21 was
achieved in Y1 using a CNN 2D feature extraction, while the lowest accuracy score of 86.01
was observed in Y1 with regular tabular data.

Table 4. The temporal relatabilities of the RF models from 2000 to 2005, 2006 to 2011, 2012 to 2017,
and 2018 to 2023 were designated Y1, Y2, Y3, and Y4, respectively.

Division Feature Accuracy Score AUC Score Precision Score F1-Score

Y1

No-Conv 86.01 83.47 83.87 86.35

Conv1D 90.87 88.33 88.73 91.23

Conv2D 96.21 93.67 94.07 96.59

Y2

No-Conv 83.52 83.35 83.20 83.85

Conv1D 88.38 88.03 88.06 88.73

Conv2D 93.72 93.55 93.40 94.09

Y3

No-Conv 84.23 84.10 85.74 84.56

Conv1D 89.09 89.77 90.60 89.44

Conv2D 94.43 95.02 95.94 94.80

Y4

No-Conv 83.67 83.59 82.44 84.00

Conv1D 88.53 88.45 87.30 88.88

Conv2D 93.87 93.79 92.64 94.24

Seasonal relatability of the model: Pakistan experiences four distinct seasons: S1 (mild,
dry winter) from December to February, S2 (hot, dry spring), S3 (summer rainy season
or southwest monsoon period), and S4 (receding monsoon period) from September to
November. To analyze the data, it was divided into these seasonal categories (Table 5).
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Notably, the CNN 2D approach consistently outperformed other feature techniques in each
seasonal distribution. S3 with a CNN 2D feature extraction had the highest accuracy score
of 98.71, whereas S3 with conventional tabular data had the highest accuracy score of 90.51.

Table 5. Seasonal relatability of the RF model.

Division Feature Accuracy
Score AUC Score Precision

Score F1-Score

S1

No-Conv 82.75 80.63 82.86 83.16

Conv1D 87.61 85.49 87.72 88.04

Conv2D 92.95 90.83 93.06 93.41

S2

No-Conv 83.89 83.20 83.53 84.30

Conv1D 88.75 88.06 88.39 89.19

Conv2D 94.09 93.40 93.73 94.56

S3

No-Conv 90.51 87.43 89.28 90.96

Conv1D 95.37 92.02 94.14 95.84

Conv2D 98.71 97.63 99.48 99.20

S4

No-Conv 87.30 80.12 86.71 87.73

Conv1D 92.16 84.98 91.57 92.62

Conv2D 97.50 90.32 96.91 97.98

Recognizing the relationship between wildfires and precipitation during the summer
rainy season is of utmost importance as it highlights the considerable influence that precip-
itation can exert on wildfire behavior and frequency. Rainfall plays a vital role in increasing
the fuel moisture content, making it less susceptible to ignition and reducing the potential
for fire spread. Moreover, higher humidity levels associated with rainy seasons can also
influence the flammability of vegetation, further contributing to wildfire prevention. In
our study, we found that the use of machine learning models including No-Conv, Conv1D,
and Conv2D significantly contributed to the prediction of wildfires during the summer
rainy season in Pakistan. Through extensive data collection on factors such as weather
patterns, historical wildfire incidents, and fuel moisture content, we were able to train
and evaluate our model accurately. Our findings support the notion that there is a strong
relationship between wildfires and precipitation. Specifically, during the summer rainy
season in Pakistan, increased rainfall leads to a higher moisture content in vegetation and
fuels. This increased moisture makes them less susceptible to ignition and reduces the
potential for fire occurrence and spread. Based on our analysis, we observed a significant
reduction in wildfires during the summer rainy season, which was reflected in the high
accuracy score of our prediction model. This aligns with our understanding of the connec-
tion between wildfires and precipitation, as rainfall plays a vital role in mitigating the risk
of fire incidents.

Spatial assessment of the model: Although the data-driven approach in this study
focused solely on a national perspective, the significance of distinctive attributes across
various clusters within Pakistan is vividly illustrated in Figure 8. The data’s relative
characteristics separated in a pronounced manner, highlighting spatial variations. To delve
into the impact of these variations on fire occurrences, the study opted for a selection
of four distinct density-based clusters. For this investigation, the K-means clustering
technique was employed, recognized for its simplicity and effectiveness. The primary
objective of K-means clustering is to minimize the collective distance between each entity
and its respective centroid, disregarding any predefined grouping. This process aims to
identify the best arrangement of n entities into k clusters, assigning each object to the
cluster with the nearest average, resulting in a partitioned data space known as Voronoi
cells. Specifically, this study employed K-means spatial location clustering to segment the
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dataset into four clusters based on density. These clusters are denoted as C1, C2, C3, and
C4, with corresponding colors of brown and pink for C1 and C2 and purple and green for
C3 and C4, respectively.
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The implementation of K-means clustering allowed for the categorization of spatially
related data points into meaningful groupings, each representing a unique cluster. The
selection of four clusters was based on the characteristics and distribution of the data. The
distinctive attributes and patterns within each cluster provide insights into the spatial
variations in fire occurrences. This approach enables a deeper exploration of the spatial
dynamics of fires across different regions of Pakistan. By partitioning the data into these
clusters, it becomes possible to identify areas with similar fire occurrence trends and
understand the factors contributing to these patterns.

The resulting clusters, designated C1, C2, C3, and C4, offer a more refined under-
standing of the spatial distribution of fire incidents within Pakistan. The colors assigned
to each cluster—brown and pink for C1 and C2 and purple and green for C3 and C4,
respectively—further aid in visually distinguishing the distinct groupings. Through this
K-means spatial clustering approach, the study gains valuable insights into how fire
occurrences vary across the landscape. This information can be particularly useful for
policymakers, land managers, and other stakeholders involved in fire management and
prevention strategies. By considering the spatial patterns revealed by the clusters, more
targeted and effective approaches to managing fire risks can be developed.

It was observed that in all cluster distributions, a CNN 2D outperformed other feature
techniques. In Table 6 the highest accuracy score of 97.66 was observed in C4 with a
CNN 2D feature extraction, and an 87.45 accuracy score was observed in C4 with normal
tabular data.
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Table 6. Spatial relatability of the RF model.

Division Feature Accuracy Score AUC Score Precision Score F1-Score

C1

No-Conv 86.10 83.61 83.87 86.61

Conv1D 90.96 88.47 88.73 91.50

Conv2D 96.30 93.81 94.07 96.87

C2

No-Conv 82.71 81.75 82.85 83.20

Conv1D 87.57 86.61 87.71 88.09

Conv2D 92.91 91.95 93.05 93.46

C3

No-Conv 86.71 85.13 87.06 87.23

Conv1D 91.57 89.99 91.92 92.11

Conv2D 96.91 95.33 97.26 97.49

C4

No-Conv 87.46 87.09 82.90 87.98

Conv1D 92.32 91.95 87.76 92.87

Conv2D 97.66 97.29 93.10 98.24

To retain all of the available data, the researchers utilized one-month average values of
daily datasets, considering that some figures were missing for specific dates. Consequently,
they chose a minimum timeframe of one month for all driving-related components in
their analysis.

The second objective of the study was to evaluate and compare various machine
learning models to identify the most effective model for predicting fire occurrences. The
test dataset was used to assess the performance of four different ML techniques, with the
RF model demonstrating the most favorable outcomes. The RF model is characterized
by multiple independently trained decision trees, and its classification decision is based
on selecting the class with the highest number of votes from the individual trees. This
ensemble approach contributes to the RF model’s high precision. The researchers fine-tuned
the RF model by adjusting parameters such as the maximum depth and the number of
trees, which further improved its accuracy. The optimal configuration that yielded the best
results consisted of 110 trees and a maximum depth of 50. Additionally, the study analyzed
the importance of each variable to understand its contribution to the classifier’s accuracy.
Eliminating any of these variables led to a decrease in the classifier’s accuracy rate.

Furthermore, researchers have explored the integration of a CNN model with RF
to achieve even better prediction accuracy than other state-of-the art models [77]. In the
case of a CNN 1D and a CNN 2D, the output of the completely connected layer was set
to 512, which was directly fed into the RF. By increasing this variable from 34 to 512, the
RF accuracy improved significantly, rising from 86.48% to 91.34%. This combination of
a CNN and RF led to an overall accuracy of 96.56%, making it a successful approach for
wildfire prediction.

Comparing the performance of the CNN alone with the ensemble approach, we
observed a notable increase in precision and F1-score by incorporating traditional classifiers.
This suggests that the ensemble approach better captures the intricate patterns in the
wildfire data, resulting in more accurate predictions. In conclusion, while using a CNN
directly for classification is a robust approach, the combination of a CNN with traditional
classifiers offers a performance boost in terms of the key evaluation metrics. The ensemble
approach’s improved precision, F1-score, and accuracy highlight the benefits of synergizing
deep learning and classical machine learning techniques in wildfire prediction.

The study proposes several succinct recommendations: first, the formulation of cus-
tomized fire management plans for different sub-areas based on density clusters, utilizing
appropriate datasets for training; second, the adoption of a seasonal approach to wildfire
mitigation, incorporating insights into fire behavior across seasons for effective strategies;
third, considering population and critical facility relocation from fire-prone regions to
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mitigate financial and public health risks; fourth, the enhancement of existing wildfire
control decision support systems in Pakistan through the integration of the study’s data,
model insights, and platform development; finally, the utilization of freely available global
databases to assess catastrophic risks and augment wildfire management approaches in
emerging nations, fostering cross-border knowledge exchange for improved prevention
and control efforts.

5. Discussion

The primary aim of this study was to improve the process of extracting data related to
fire incidents. The aim of this study was to improve the process of extracting data related to
fire incidents and no-fire conditions from historical inventories. These data were intended
to be used in machine learning models for predicting wildfires and analyzing the factors
that contribute to their occurrence. Here, we referenced previous novel studies that utilized
both remotely sensed fire data and tree-based machine learning algorithms [78,79]. Our
research goes beyond previous studies by incorporating a CNN, which is an advanced
deep learning technique, to map and predict wildfires. Previous research often focused
on identifying fire incidence sites using a 1 km-resolution dataset from FIRMS, but it
neglected the inclusion of no-fire points. Additionally, previous research conducted on the
wildland–urban interface (WUI) has revealed that wildfires have been observed to extend
beyond the 1 km buffer zone surrounding the initial ignition points. This occurrence is
attributed to the dispersion of firebrands over longer distances, leading to the ignition
of spot fires. In our study, the classification of no-fire occurrence zones was based on a
systematic approach. We defined a no-fire occurrence zone as areas that fell outside the
firing zones within a 1 km buffer zone. The purpose of this classification was to differentiate
between areas with documented fire incidents and areas that did not experience fires during
the specified time period. The selection of the 1 km buffer zone as the basis for classifying
no-fire occurrences was determined by several factors. First, it allowed us to establish a
clear spatial boundary for analysis and comparison with fire occurrence zones. By defining
a buffer zone around the fire zones, we can establish a contextually relevant reference area
for identifying no-fire occurrences. This buffer zone allows us to capture the immediate
vicinity surrounding the fire zones, enabling a focused analysis of the factors influencing
fire occurrence and spread in nearby areas. The buffer zone helps in differentiating between
areas with documented fire incidents and areas that remained unaffected by fires. It
provides a clear spatial boundary within which we can classify and study the no-fire
occurrence zones. By excluding areas within the 1 km buffer zone from the fire occurrence
zones, we identified and analyzed the areas that fell outside this buffer zone as no-fire
occurrence zones. Moreover, certain areas within the WUI exhibited an extended buffer
zone of up to 5 km, which significantly increases the risk of wildfires encroaching upon
residential properties [80,81]. While we acknowledge that wildfires can spread beyond a
1 km buffer zone, it is important to note that our study focused on analyzing the immediate
impact and characteristics of fire incidents. The purpose was to identify factors contributing
to fire susceptibility within a relatively close proximity to the fire zones. By examining the
areas within this buffer zone, we aimed to gain insights into the factors influencing fire
occurrence and spread in the immediate vicinity of fires.

Our study introduced advanced techniques such as the utilization of a CNN, which
has demonstrated significant potential in image analysis and classification tasks. By apply-
ing this advanced technique to wildfire mapping and prediction assessment, we aimed to
improve the accuracy and reliability of the results. Some of the new studies published re-
cently in this field have aimed to contribute to the field of wildfire mapping and prediction
assessment by exploring different approaches, metrics, and indices to improve our under-
standing and assessment of fire severity. These addressed specific regions and ecosystems
and provide valuable insights into the application of remote sensing techniques and indices
for assessing fire impacts [82–84]. Our research adopted a comprehensive approach by
considering various contributing factors to wildfire occurrence and severity. We recognize
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that wildfires are complex events influenced by multiple factors such as weather conditions,
vegetation type, terrain, and human activities. By taking into account these different factors,
our study provides a more holistic understanding of the dynamics and patterns of wildfires.
Moreover, our findings uncover novel relationships, patterns, or correlations that were
not previously explored in the literature. The utilization of a CNN allows us to analyze
and interpret large amounts of data, potentially revealing hidden insights and connections
between contributing factors and wildfire occurrences. These novel findings contribute to
the advancement of knowledge in wildfire mapping and prediction assessment, improving
our ability to predict, prevent, and manage wildfires.

We build upon the literature by introducing advanced techniques, adopting a com-
prehensive approach, and potentially uncovering novel findings. Through our research,
we aim to contribute to the advancement of wildfire mapping and prediction assessment,
ultimately enhancing our understanding and ability to mitigate the devastating impacts
of wildfires.

6. Conclusions with Constraints and Limitations

In the realm of data-driven approaches, the selection of an optimal time period for
model training is a common challenge, influenced by data stochasticity and heterogene-
ity. Striking a balance between long-term data utilization, which may smooth behavior
trends, and short-term data reliance, which introduces uncertainty, is pivotal. Evaluating a
model’s durability over an extended period is crucial to assessing its reliability. This study
addressed this concern by dividing the dataset into four distinct time intervals, Y1 to Y4,
each spanning six years. Notably, the CNN 2D feature extraction consistently showcased
superior performance in accuracy across all time periods, with the highest accuracy score
of 96.21 achieved in Y1.

Moving to seasonal applicability, Pakistan experiences four distinct seasons, and this
study delved into the impact of seasonality on model performance. The CNN 2D approach
consistently outperformed other feature techniques in each seasonal category. The highest
accuracy score of 98.73 was achieved during S3, the summer rainy season, utilizing a CNN
2D feature extraction. These findings underscore the adaptability of a CNN 2D in capturing
season-specific fire occurrence patterns, an essential aspect for accurate prediction.

Our study found that machine learning models (No-Conv, Conv1D, Conv2D) im-
proved wildfire prediction in Pakistan’s summer rainy season by considering weather
patterns, historical incidents, and fuel moisture content, revealing a strong relationship
between wildfires and precipitation. The prediction model achieved a high accuracy score
of 98.71, confirming the effectiveness of considering wildfire–precipitation dynamics in
minimizing fire risk and spread.

Moreover, the study investigated the spatial distribution of fire incidents within Pak-
istan, revealing significant attributes in various clusters through K-means clustering. This
approach offered valuable insights into the diverse landscape of fire occurrences. The spa-
tial clusters, labeled C1, C2, C3, and C4, enhanced our understanding of the fire dynamics
in different regions, and the consistently superior performance of a CNN 2D was evident
across all clusters. By utilizing these spatial patterns, policymakers and stakeholders can
formulate targeted strategies for effective fire management and prevention.

Addressing the increasing wildfire risk in Pakistan, which is exacerbated by urban
expansion encroaching upon wildland interfaces, demands immediate attention from
policymakers. Mitigation strategies should encompass urban planning, zoning regulations,
and community awareness initiatives to safeguard human settlements and infrastructure.
This study highlights the potential of advanced machine learning models such as a CNN
2D and RF in predicting wildfires, emphasizing the role of technology in assessing fire risk.
The integration of real-time remote sensing and weather monitoring data could further
enhance prediction accuracy, empowering proactive wildfire management strategies.

In conclusion, this study’s evaluation of historical fire events in Pakistan provides
a solid foundation for constructing a comprehensive wildfire management framework.
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By harnessing insights from data-driven analysis and advanced modeling techniques,
policymakers can implement preemptive measures to protect communities and natural
resources while mitigating the impacts of wildfires. Collaborative efforts among scientific
communities, government bodies, and local stakeholders are pivotal in addressing the
escalating wildfire threat in Pakistan. While data limitations have been acknowledged,
refining the variable values, employing finer-resolution datasets, and aligning satellite
data with real fire occurrences are crucial steps to enhance wildfire forecasting accuracy
and management understanding. The alignment of remotely sensed data with forest
department-maintained records promises further improvements in prediction reliability
and overall management strategies.

Author Contributions: R.K.: Conceptualization, methodology, data curation and writing-original
draft preparation. W.R.: Visualization, investigation, software and validation. M.I.: Writing-reviewing
and editing. S.W.: Supervision. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was supported by the National Key R&D Program of China (2021YFC3000300).

Data Availability Statement: All the data that support this study are open access and can be accessed
using websites or data repositories. The sources of the datasets are described accordingly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Verde, J.C.; Zêzere, J.L. Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat. Hazards Earth Syst. Sci.

2010, 10, 485–497. [CrossRef]
2. FerreirA-leiTe, F.; Lourenço, L.; Bento-Gonçalves, A. Large Forest fires in mainland Portugal, brief characterization. Méditerranée.

Rev. Géographique Pays Méditerranéens/J. Mediterr. Geogr. 2013, 121, 53–65. [CrossRef]
3. Tedim, F.; Remelgado, R.; Borges, C.; Carvalho, S.; Martins, J. Exploring the occurrence of mega-fires in Portugal. For. Ecol. Manag.

2013, 294, 86–96. [CrossRef]
4. Brown, J.K.; Smith, J.K. Wildland Fire in Ecosystems: Effects of Fire on Flora; Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT; U.S.

Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000; Volume 42, 257p.
5. Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; Gen. Tech. Rep. RMRS-GTR-42-

vol. 4. Ogden, UT; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005;
Volume 42, 250p.

6. Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, global climate
change, and human health. N. Engl. J. Med. 2020, 383, 2173–2181. [CrossRef] [PubMed]

7. Sandberg, D.V. Wildland Fire in Ecosystems: Effects of Fire on Air; US Department of Agriculture, Forest Service, Rocky Mountain
Research Station: Fort Collins, CO, USA, 2003.

8. Johnston, L.M.; Wang, X.; Erni, S.; Taylor, S.W.; McFayden, C.B.; Oliver, J.A.; Stockdale, C.; Christianson, A.; Boulanger, Y.;
Gauthier, S.; et al. Wildland fire risk research in Canada. Environ. Rev. 2020, 28, 164–186. [CrossRef]

9. Martell, D.L. Forest Fire Management, in Handbook of Operations Research in Natural Resources; Springer: Berlin/Heidelberg, Germany,
2007; pp. 489–509.

10. Shvidenko, A.Z.; Schepaschenko, D.G. Climate change and wildfires in Russia. Contemp. Probl. Ecol. 2013, 6, 683–692. [CrossRef]
11. Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in vegetation fires in south and southeast Asian

countries. Sci. Rep. 2019, 9, 7422. [CrossRef] [PubMed]
12. Reddy, C.S.; Bird, N.G.; Sreelakshmi, S.; Manikandan, T.M.; Asra, M.; Krishna, P.H.; Jha, C.S.; Rao, P.V.N.; Diwakar, P.G.

Identification and characterization of spatio-temporal hotspots of forest fires in South Asia. Environ. Monit. Assess. 2019, 191, 791.
[CrossRef]

13. Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015,
24, 77–86. [CrossRef]

14. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced
variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [CrossRef]

15. Barbero, R.; Abatzoglou, J.T.; Pimont, F.; Ruffault, J.; Curt, T. Attributing increases in fire weather to anthropogenic climate change
over France. Front. Earth Sci. 2020, 8, 104. [CrossRef]

16. Oliveira, S.L.; Pereira, J.M.; Carreiras, J.M. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps.
Int. J. Wildland Fire 2011, 21, 48–60. [CrossRef]

17. Stacey, R.; Gibson, S.; Hedley, P. European Glossary for Wildfires and Forest Fires; European Union-INTERREG IVC: Cham,
Switzerland, 2012.

https://doi.org/10.5194/nhess-10-485-2010
https://doi.org/10.4000/mediterranee.6863
https://doi.org/10.1016/j.foreco.2012.07.031
https://doi.org/10.1056/NEJMsr2028985
https://www.ncbi.nlm.nih.gov/pubmed/33034960
https://doi.org/10.1139/er-2019-0046
https://doi.org/10.1134/S199542551307010X
https://doi.org/10.1038/s41598-019-43940-x
https://www.ncbi.nlm.nih.gov/pubmed/31092858
https://doi.org/10.1007/s10661-019-7695-6
https://doi.org/10.1111/geb.12246
https://doi.org/10.1038/ncomms8537
https://doi.org/10.3389/feart.2020.00104
https://doi.org/10.1071/WF10131


Remote Sens. 2023, 15, 5099 22 of 24

18. Álvarez-Díaz, M.; González-Gómez, M.; Otero-Giraldez, M.S. Detecting the socioeconomic driving forces of the fire catastrophe
in NW Spain. Eur. J. For. Res. 2015, 134, 1087–1094. [CrossRef]

19. Flannigan, M.D.; Wotton, B.M. Climate, Weather, and Area Burned, in Forest Fires; Elsevier: Amsterdam, The Netherlands, 2001;
pp. 351–373.

20. Tymstra, C.; Jain, P.; Flannigan, M.D. Characterisation of initial fire weather conditions for large spring wildfires in Alberta,
Canada. Int. J. Wildland Fire 2021, 30, 823–835. [CrossRef]

21. Nunes, A.; Lourenço, L.; Meira, A.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total
Environ. 2016, 573, 1190–1202. [CrossRef] [PubMed]

22. Cao, X.; Cui, X.; Yue, M.; Chen, J.; Tanikawa, H.; Ye, Y. Evaluation of wildfire propagation susceptibility in grasslands using
burned areas and multivariate logistic regression. Int. J. Remote Sens. 2013, 34, 6679–6700. [CrossRef]

23. Holsinger, L.; Parks, S.A.; Miller, C. Weather, fuels, and topography impede wildland fire spread in western US landscapes. For.
Ecol. Manag. 2016, 380, 59–69. [CrossRef]

24. Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Interacting effects of topography, vegetation, human
activities and wildland-urban interfaces on wildfire ignition risk. For. Ecol. Manag. 2017, 397, 10–17. [CrossRef]

25. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural
vulnerability and environmental variables. Fire 2019, 2, 50. [CrossRef]
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