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Abstract: Deep learning methods can achieve a finer refinement required for downscaling me-
teorological elements, but their performance in terms of bias still lags behind physical methods.
This paper proposes a statistical downscaling network based on Light-CLDASSD that utilizes a
Shuffle–nonlinear-activation-free block (SNBlock) and Swin cross-attention mechanism (SCAM), and
is named SNCA-CLDASSD, for the China Meteorological Administration Land Data Assimilation
System (CLDAS). This method aims to achieve a more accurate spatial downscaling of a temperature
product from 0.05° to 0.01° for the CLDAS. To better utilize the digital elevation model (DEM) for
reconstructing the spatial texture of the temperature field, a module named SCAM is introduced,
which can activate more input pixels and enable the network to correct and merge the extracted
feature maps with DEM information. We chose 90% of the CLDAS temperature data with DEM and
station observation data from 2016 to 2020 (excluding 2018) as the training set, 10% as the verification
set, and chose the data in 2018 as the test set. We validated the effectiveness of each module through
comparative experiments and obtained the best-performing model. Then, we compared it with
traditional interpolation methods and state-of-the-art deep learning super-resolution algorithms. We
evaluated the experimental results with HRCLDAS, national stations, and regional stations, and the
results show that our improved model performs optimally compared to other methods (RMSE of
0.71 °C/0.12 °C/0.72 °C, BIAS of −0.02 °C/0.02 °C/0.002 °C), with the most noticeable improvement
in mountainous regions, followed by plains. SNCA-CLDASSDexhibits the most stable performance
in intraday hourly bias at temperature under the conditions of improved feature extraction capability
in the SNBlock and a better utilization of the DEM by the SCAM. Due to the replacement of the
upsampling method from sub pixels to CARAFE, it effectively suppresses the checkerboard effect
and shows better robustness than other models. Our approach extends the downscaling model for
CLDAS data products and significantly improves performance in this task by enhancing the model’s
feature extraction and fusion capabilities and improving upsampling methods. It offers a more
profound exploration of historical high-resolution temperature estimation and can be migrated to the
downscaling of other meteorological elements.

Keywords: deep learning; statistical downscaling; cross-attention; air temperature

1. Introduction

The High-Resolution China Meteorological Administration Land Data Assimilation
System (HRCLDAS) [1] relies on a large amount of dense ground observation data to
produce high-resolution and high-quality assimilation products. Due to the sparse number
of national meteorological stations before 2008, there is a lack of high-coverage ground ob-
servation data. Therefore, relying solely on existing observational data makes it challenging
for the HRCLDAS to retrieve high-quality, high-resolution land surface data before 2008.
Downscaling techniques can effectively address such issues. Low-resolution meteorological
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and auxiliary data can be used to generate high-resolution meteorological data, enabling a
small-scale reconstruction of local information. Downscaling methods are mainly divided
into two categories: dynamic downscaling and statistical downscaling.

The dynamical downscaling method nests a regionally limited climate model (RCM)
within a global climate model (GCM). It utilizes the initial boundary conditions provided
by the GCM to obtain high-resolution weather information after numerically integrating
the regional climate model. Huang et al. [2] evaluate VR-CESM for California’s climate
using high-resolution data, comparing it to observational and RCM data (WRF), and the
results suggest its potential in fine-scale climate modeling. Chen et al. [3] improve regional
climate simulations by nesting CWRF within ECHAM, leading to better temperature and
precipitation predictions over the contiguous US. These methods utilize various dynamic
and thermodynamic processes, independent of observational data, with a strong mathe-
matical and physical foundation. However, dynamic downscaling models exhibit notable
systematic biases in climate simulations [4]. In comparison to dynamic downscaling, statis-
tical downscaling offers relative simplicity, reduced computational time requirements, and
greater flexibility of implementation strategies in the study area, and it has been widely
applied in regional climate simulation. Statistical downscaling methods can be classified
into three categories: transfer function methods [5,6], weather pattern methods [7,8], and
stochastic weather generators [9,10].

In recent years, the rise of deep learning technology has provided new insights for
further improving the accuracy of statistical downscaling results. Among them, image
super-resolution techniques have emerged as important image reconstruction methods in
computer vision. Their objective is to restore high-resolution images from low-resolution
counterparts. The methods are widely applied in diverse fields such as remote sensing,
video restoration, 3D rendering et al. [11–14]. Image super-resolution and statistical down-
scaling are well-matched, and both natural images and meteorological features can be
described using digital matrices. Increasingly, research has demonstrated that end-to-end
image super-resolution algorithms can be effectively migrated to meteorological element
downscaling to improve the accuracy [15–17]. However, the distinctions between meteoro-
logical data and natural images, such as the number of data channels, the coupling degree,
and the inherent relationships between high and low-resolution data, impose limitations
on their application. These distinctions should be taken into account when constructing
downscaling models.

In 2017, Vandal et al. [18] introduced DeepSD, a super-resolution-based downscaling
method, which broke down high-magnification downscaling into smaller tasks using a
stacked SRCNN structure. It outperformed traditional methods for the precipitation over
the US. In 2019, Mao [19] improved DeepSD with VDSD and ResSD models, effectively
addressing network depth and non-integer scaling limitations. These models excelled in
the precipitation in China, surpassing DeepSD in TS score. In the same year, Singh et al. [20]
applied generative adversarial networks (GANs) to downscaling, improving wind field
reconstruction using ESRGAN, outperforming bicubic interpolation and SRCNN. In 2020,
Höhlein et al. [21] developed DeepRU, utilizing the UNet architecture to efficiently re-
construct wind field structures, overcoming issues faced by traditional CNN algorithms.
In 2022, Gerges et al. [22] introduced AIG-Transformer, transforming spatial downscaling
into a multivariate time-series prediction task, outperforming existing methods for weekly
temperatures. Also, Tie et al. [23] enhanced VDSD to create CLDASSD with global skip
connections and attention mechanisms, exhibiting strong spatial reconstruction in complex
terrains. Light-CLDASSD [24], an improved version in the same year, captured distribution
characteristics of small-scale temperature field in plain areas.

However, in the above works, researchers focused on incorporating high-resolution
auxiliary data such as the DEM to enhance model performance without effectively ex-
tracting feature information from these auxiliary data. Therefore, this paper addresses
the challenge of better utilizing high-resolution auxiliary data and proposes the Shuffle–
nonlinear-activation-free module and Swin cross-attention-mechanism-based CLDAS sta-
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tistical downscaling model (SNCA-CLDASSD). To better reconstruct the temperature field,
this study primarily focuses on three points: (1) Capturing the intrinsic connection between
temperature data of different resolutions; (2) leveraging DEM data to analyze their influ-
ence on the temperature field and learning the relationships between them; (3) selecting an
effective upsampling algorithm for deep learning network models that directly influences
the result generation.

In response to these points, our main contributions can be summarized as follows:

1. Without increasing the number of parameters and computational complexity of the
network, we introduce the feature extraction module of SNBlock to augment the
network’s feature extraction capability and the mapping learning ability between high
and low-resolution temperature fields.

2. We incorporate the cross-attention module of the SCAM inspired by the Swin Trans-
former [25] and Cross ViT [26] to facilitate a better integration of temperature and ter-
rain features by the cross windows interaction between feature maps of each channel.

3. Replacing the upsampling operator from sub-pixel to CARAFE, which is lightweight
and has a larger receptive field to reconstruct spatial details, effectively mitigates the
occurrence of checkerboard artifacts.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The study area of this paper spans from 117.7°E to 123.3°E in longitude and from
26.35°N to 31.95°N in latitude, encompassing the regions of Zhejiang, Fujian, Jiangsu, An-
hui, Jiangxi, Shanghai, and their surrounding areas. As depicted in Figure 1, the eastern and
western parts of the study area consist of ocean and land, respectively. The northern region
of the study area is primarily the middle and lower reaches of the Yangtze River plain,
the central part is Jiangnan hilly regions, and the southern area comprises the Wuyi Moun-
tains, resulting in a complex topography. Influenced by monsoons, the region experiences a
subtropical monsoon climate with ample sunshine throughout the year, abundant rainfall,
synchronous seasonal changes between rainy and hot periods, and a diverse distribution
of climate resources. This area is susceptible to a variety of meteorological disasters due to
its complex climatic conditions.

Figure 1. The left image depicts the spatial distribution of national meteorological stations (red
star markers) and regional stations (green triangle markers) within the study area. The right image
illustrates the spatial distribution of DEM across the study area.
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2.1.2. Data

The low-resolution (0.05°) land surface data are from the CLDAS-V2.0 product gen-
erated by the National Meteorological Information Center of the China Meteorological
Administration. This product covers the Asian region (0–60°N, 70–140°E) and provides
hourly fused grid data of land–atmosphere interactions. The data have a spatial resolution
of 0.05° in an equal latitude–longitude projection [27]. The CLDAS product incorporates
various ground and satellite observation data and techniques, such as space-time multiscale
analysis system (STMAS), cumulative distribution function (CDF) matching, physical inver-
sion, and terrain correction. When compared with similar products both domestically and
internationally, the CLDAS product demonstrates superior quality. Each low-resolution
temperature field within the study area has a size of 112 × 112.

The high-resolution (0.01°) label data are from the HRCLDAS-V1.0 product and pro-
vide hourly fused grid land surface data with a spatial resolution of 0.01° in an equal
latitude–longitude projection. The temperature, pressure, humidity, and wind products
of HRCLDAS employ the STMAS to assimilate ECMWF products along with data from
over 60,000 national and regional automatic meteorological stations deployed by the China
Meteorological Administration. Each high-resolution temperature field label within the
study area has a size of 560 × 560.

The 0.01° DEM data are from the joint mapping efforts of NASA and national space
agencies of the United States, Germany, and Italy under the Shuttle Radar Topography
Mission (SRTM). The current version, SRTM V4.1, is interpolated using a new algorithm
developed by the International Center for Tropical Agriculture (CIAT) to fill data gaps
effectively [28]. The DEM data for the study area also have a size of 560 × 560.

The study area consists of 157 national automatic meteorological stations and 5829 re-
gional automatic meteorological stations. The spatial distribution of observation stations is
shown in Figure 1.

All the data used in this study are detailed in Table 1. For the training phase, 90% of
the hourly data from the years 2016, 2017, 2019, and 2020 are allocated for training, 10% for
validation, and the year 2018 is used as an independent test set. The sample sizes of the
three datasets are 25,602, 2845, and 8760, respectively. During the training stage, the DEM
is introduced as auxiliary data, and a loss function is constructed using station observation
data to enforce soft constraints on the model, improving network accuracy.

Table 1. Descriptions of all types of datasets (all datasets are projected by equal latitude–
longitude projection).

Dataset Spatial Resolution Range Source

CLDAS 0.05° 2016.01–2020.12 (hourly) NMIC
HRCLDAS 0.01° 2016.01–2020.12 (hourly) NMIC

SRTM(DEM) 0.01° - NASA
Station Observation - 2016.01–2020.12 (hourly) NMIC

2.2. Data Preprocessing

Although the 0.05° and 0.01° resolutions are the same in spatial sampling, there exists
systematic error between the two types of products (low-resolution data from CLDAS and
high-resolution data from HRCLDAS). Additionally, the data from the national meteorolog-
ical stations of the China Meteorological Administration are stable and reliable, requiring
no data cleaning. However, the regional stations often exhibit data instability and large
errors, necessitating data-cleaning procedures.

To enable the model to learn a better spatial mapping relationship, this paper adopts
the following data-cleaning measures.
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2.2.1. Grid Data

According to the provisions on climatic threshold values for temperature elements in
the ground-based meteorological observation data quality control, as stipulated in the Me-
teorological Industry Standard of China (QX/T 118-2020) [29], data pairs with temperature
values within the range of −80 °C to 60 °C should be retained. Data pairs within the ±3 σ
confidence interval of the residual distribution between high-resolution and low-resolution
data should also be retained. Ultimately, all data need to be validated manually.

2.2.2. Regional Stations Data

Following the stipulations regarding climatic threshold values for temperature ele-
ments in ground-based meteorological observation data quality control as outlined in the
Meteorological Industry Standard of China (QX/T 118-2020) [29], data pairs with tempera-
ture values falling within the range of −80 °C to 60 °C are to be retained. A comparison
and computation of regional station data with CLDAS data yield statistical results for mean
absolute error (MAE) and correlation coefficient (COR), as presented in rows 1 and 2 of
Figure 2. According to the statistical outcomes, it is evident that, before data cleaning,
MAE values for regional station data versus CLDAS data exhibit a distribution ranging
from 0 to 30, with a predominant concentration from 0 to 4. Similarly, COR values are
distributed between 0 and 1, with a predominant concentration from 0.96 to 1. Based on
the aforementioned statistical results, this study retains regional station data with MAE
and COR values occurring with a frequency distribution of 0.05 or above. As revealed in
column 3 of Figure 2, following the data cleaning, it is possible to maintain MAE and COR
within a reasonable range, thereby eliminating a majority of outliers.

Figure 2. Column 1 depicts the histogram of mean absolute error (MAE) and correlation coefficient
(COR) for regional station data. Column 2 displays the violin plot of MAE and COR for regional
station data before data cleaning. Column 3 showcases the violin plot of MAE and COR for regional
station data after data cleaning.

2.3. SNCA-CLDASSD

This study presents an enhancement to the architecture of Light-CLDASSD, which
is a statistical downscaling network model for the CLDAS temperature data, referred to
as SNCA-CLDASSD, based on shuffling-nonlinear-activation-free block (SNBlock) and
Swin cross-attention mechanism (SCAM). Light-CLDASSD is a lightweight model up-
grade developed by Tie et al. [24] to address issues such as excessive parameterization,
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low computational efficiency, and limited accuracy in regional downscaling at sites of
CLDASSD. However, this model still exhibits deficiencies in downscaling accuracy for
plain areas, notable artifacts like the checkerboard effect, and is constrained by a relatively
small training dataset (four daily time steps per day in 2019), significantly impacting its
generalization capability. Therefore, this paper introduces the SNCA-CLDASSD model to
mitigate these shortcomings.

SNCA-CLDASSD employs a commonly used encoder–decoder structure in deep
learning, primarily composed of Shuffle–nonlinear-activation-free block (SNBlock), Swin
cross-attention mechanism (SCAM), and upsampling modules. The SNBlock serves as the
principal feature extraction component of the model, while the SCAM better learns and
extracts spatial features from high-resolution auxiliary data, such as DEM. The SNBlock and
SCAM together constitute the main feature extraction framework of the model, iteratively
repeated N times to enhance the model’s spatial reconstruction capability. When N is even,
SCAM is concatenated after SNBlock; when N is odd, SCAM is not added. Simultaneously,
following the concept of residual learning [30], the bilinear-interpolated temperature field
is added to the upsampled temperature field, facilitating the learning of global residuals.
The overall model structure is illustrated in Figure 3a, and each module depicted in the
figure will be elaborated upon in the subsequent sections.

Figure 3. (a) Overview of the proposed SNCA-CLDASSD model structure. (b) Overview of Shuffle–
nonlinear-activation-free block (SNBlock). (c) Overview of simplified channel attention. (d) Overview of
simple gate. (e) Overview of Swin cross-attention (SCAM). (f) Overview of cross-windows attention.

2.4. Shuffle–Nonlinear-Activation-Free Block

The design of the Shuffle–nonlinear-activation-free Block (SNBlock) originates from
both ShuffleNet [31] and NAFNet [32], as depicted in Figure 3b. This module can be
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decomposed into two components: (1) The mobile convolution module (MB-Conv Block),
based on depth-wise separable convolution, which is a simplified SE module [33]; (2) the
feedforward network module (FFN), based on two fully connected layers (implemented
by point-wise convolutions). Layer normalization (Layer Norm) is applied before both
modules, and residual connections are employed. Due to the utilization of depth-wise
separable convolution (a specialized form of grouped convolution with the drawback of
limited inter-group feature communication, thus potentially undermining feature extraction
capacity), a channel-shuffling technique is introduced following the channel attention
mechanism in the original module. This involves rearranging and blending the sequence
of all channels in the original feature maps, ensuring inter-group information exchange
post-grouped convolution. Additionally, simplification of the channel attention mechanism
is undertaken, as represented in Figure 3c and the following equation:

Simpli f ied Channel Attention(X) = X ∗W pool(X) (1)

where X represents the input feature map; W stands for the weights computed through
the fully convolutional layer applied to X; pool denotes the global pooling operation that
aggregates spatial information into the channels; ∗ signifies channel-wise multiplication.

The shared distinction between MB-Conv Block and FFN in comparison to the original
MobileNetV3’s MBConv [34] and the FFN in Transformer [35] lies in the replacement of
nonlinear activation functions (ReLU, GELU) with simplified gate mechanism units (simple
gate), as represented in Figure 3d and in the following equation:

Simple Gate(X) = X_1 � X_2 (2)

where X represents the input feature map; X_1 and X_2 denote the feature maps obtained
by splitting X along the channel dimension; � signifies element-wise multiplication.

2.5. Swin Cross-Attention Mechanism

The SCAM integrates the window attention mechanism from Swin Transformer and
the cross-attention from Cross ViT. As illustrated in Figure 3e, the SCAM adopts the
overall structure of the Swin Transformer block. This module utilizes a cross-attention
mechanism to facilitate the mutual interaction and fusion of feature information between
the temperature field and digital elevation model (DEM) elevation data. This facilitates
more effective learning of the characteristic features through which the DEM impacts the
spatial distribution of temperature.

This paper primarily introduces modifications in three aspects: (1) the input to the
module is divided into X_1 and X_2, where X_1 represents the temperature field feature
map and X_2 represents the DEM data; (2) since the SNBlock already includes the fully
connected layers of the FFN, the SCAM omits the MLP (multi-layer perceptron) to reduce
computational complexity and enhance efficiency; (3) the window attention is replaced
by a cross-window attention mechanism, which is based on scaled dot-product attention,
aiming to achieve cross data feature interaction between windows, as represented in the
following equation:

Attention(Q, K, V) = so f tmax(QKT
√

C)V (3)

In Figure 3f, q, k, and v correspond to the Q, K, and V in the formula, C representing
the number of channels in the input data. Specifically, q is derived from X_1, while both k
and v are obtained from X_2(DEM).

2.6. Upsampling Module
2.6.1. Sub-Pixel

Sub-pixel is an end-to-end learnable upsampling layer [36] extensively employed in
super-resolution models. This approach finds widespread usage due to its advantages
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over transpose convolution because of the larger receptive field that provides increased
contextual information for generating more realistic details. Notably, sub-pixel layers avoid
zero-padding intervals, preserving gradient continuity and alleviating the checkerboard
artifact [37]. However, owing to the uneven distribution of receptive fields, block-like
regions essentially share the same receptive fields, leading to potential artifacts near the
boundaries of different blocks. Moreover, this method does not fundamentally address the
checkerboard artifact issue.

2.6.2. CARAFE

Content-Aware ReAssembly of Features (CARAFE) is another form of an end-to-
end learnable upsampling layer [38]. CARAFE consists of two primary modules: the
upsampling kernel prediction module and the feature reassembly module. This approach
involves predicting a recombination kernel for each target position based on its content,
followed by the recombination of features using the predicted kernels. This method
provides an enlarged receptive field, facilitating better utilization of contextual information.
The resulting upsampled output maintains semantic relevance with the feature map and
ensures a lightweight model by avoiding excessive computational overhead. Moreover, it
effectively suppresses the checkerboard artifact.

2.7. Loss Function

In this study, the Charbonnier loss function [39] is employed to ensure the stability of
the downscaling model, as represented in the following equation:

LCharbonnier =
1
N

N

∑
i=1

√
(SRi − HRi)2 + ε2 (4)

where SRi represents the entire super-resolved result image when HRi corresponds to
high-resolution reference data, with N denoting the total number of pixels; SRi signifies the
super-resolved result interpolated to the pixel value of the corresponding site i when HRi
is station observational data, with N indicating the total number of stations; ε represents a
constant, typically taking the value of 10−3.

2.8. Evaluation Metrics

Currently, the quantitative assessment of the performance of deep-learning-based
super-resolution tasks primarily relies on pixel-level statistics. To comprehensively evaluate
the results of super-resolution, this study employs a “dual-truth” evaluation approach.
High-resolution label data and station observational data are treated as “truth”. Metrics
such as root mean square error (RMSE), bias, mean absolute error (MAE), and correlation
coefficient (COR) are utilized to evaluate the pixel-level performance of various super-
resolution methods, aiming for a detailed and comprehensive assessment, as represented
in the following equation:

MSE =
1
N

N

∑
i=1

(SRi − HRi)
2 (5)

RMSE =
√

MSE (6)

Bias =
1
N

N

∑
i=1

(SRi − HRi) (7)

MAE =
1
N

N

∑
i=1
|SRi − HRi| (8)

COR =
∑N

i=1
(
SRi − SRi

)(
HRi − HRi

)√
∑N

i=1
(
SRi − SRi

)2(HRi − HRi
)2

(9)
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where SRi represents the entire super-resolved result image when HRi corresponds to
high-resolution reference data, with N denoting the total number of pixels; SRi signifies
the super-resolved result interpolated to the pixel value of the corresponding site i when
HRi is station observational data, with N indicating the total number of stations.

To quantitatively analyze the accuracy and similarity of model reconstruction results
with label data in spatial distribution and high-resolution texture details, this study also
employs high-resolution HRCLDAS and PALM data as the “truth”. The commonly used
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) in the field of super-
resolution are utilized to evaluate the quality of super-resolution results. PSNR, which
quantifies the ratio of the maximum power of a signal to the power of noise in the signal, is
commonly employed to assess the quality of compressed or reconstructed images and is
typically expressed in decibels. SSIM, on the other hand, evaluates the distortion level of
an image by considering three key features: luminance, contrast, and structure. It can also
measure the similarity between two images, providing a metric that aligns more closely
with human visual perception, as represented in the following equation:

PSNR = 10 log10
I2
max

MSE
(10)

where Imax refers to the bit depth of the data, which is typically 8 bits (for natural images)
and corresponds to 255. In this study, when calculating the PSNR of super-resolution
results, the data are uniformly normalized to the range [0, 1]. Consequently, Imax can be
uniformly set to 1.

SSIM =
(2µSRµHR + c1)(σSH + c2)(

µ2
SR + µ2

HR + c1
)(

σ2
SR + σ2

HR + c2
) (11)

where µSR and µHR represent the mean values of the super-resolved image and the label
image, respectively. σSR and σHR correspond to the standard deviations of the super-
resolved image and the label image, respectively. σSH denotes the covariance between the
super-resolved image and the label image.

2.9. Experimental Designs

In this section, bilinear interpolation and a hybrid attention Transformer (HAT) [40] are
used as comparative experiments. Additionally, comparative experiments are conducted
using different modules for the CLDASSD model. Through the comparative results of
ablation experiments, this study analyzes the strengths of the proposed model in spatial
distribution and temporal sequence variations separately.

2.9.1. Ablation Study

To better validate the influence of each module on the downscaling performance of
the neural network model, this study designed ablation experiments as shown in Table 2.
The experimental results demonstrate that, compared to traditional interpolation methods,
Light-CLDASSD achieves a higher downscaling accuracy for the temperature field, yet
still encounters some challenges in controlling downscaling result bias. In this paper,
we progressively replace the modules in the original Light-CLDASSD with the SNBlock,
SCAM, and CARAFE. By comparing the performance of SN-CLDASSD-S, SN-CLDASSD-C,
and SNCA-CLDASSD-C, we confirm the effectiveness of the SNBlock, SCAM, and CARAFE
in improving model performance. Notably, all models employ a loss function combining
Charbonnier loss-based product loss and weighted station loss (weight of 0.5). The inclusion
of station loss allows the model to better learn spatial detail variations in local temperature.

Additionally, the Light-CLDASSD network has a depth and width of 18 and 128,
respectively. The convolutional kernels in the model’s header down-sampling section have
a size of 3 × 3 with a stride of 5, while the rest is 1. The depths and widths of the other
networks are 18 and 64, with convolutional kernels in the header down-sampling section
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being 5 × 5 with a stride of 5, and the rest being 1. The downscaling ratio of the model
is 5, and the CARAFE up-sampling convolutional kernel has a size of 5 × 5, resulting in
an output sample size of 560 × 560. AdamW is used in all the above models, with an
initial learning rate of 1× 10−3. A dynamic learning rate adjustment strategy is employed
to gradually reduce the learning rate to 1× 10−6. The input size of training samples is
112 × 112, which is upscaled by a factor of 5 using bilinear interpolation to 560 × 560.
The batch size is divided into 32 and 16 based on the model size, and training is conducted
on three Tesla V100 GPUs.

Table 2. Table of ablation study.

Model Feature Extraction Block SCAM Upsampling Module

Light-CLDASSD ResBlock - Sub-Pixel
SN-CLDASSD-S SNBlock - Sub-Pixel
SN-CLDASSD-C SNBlock - CARAFE

SNCA-CLDASSD-C SNBlock
√

CARAFE

2.9.2. Comparative Experiment

In this section, we will introduce the methods used as comparisons in Section 4.

1. Bilinear Interpolation

As a commonly used interpolation algorithm, bilinear interpolation finds widespread
application in various image processing domains. The implementation process of bilinear
interpolation involves performing linear interpolation successively along both axes of the
image. With a receptive field size of 2 × 2, this method strikes a balance between improved
performance and maintaining a relatively fast computational speed.

2. Hybrid Attention Transformer (HAT)

HAT, building on the foundation of SwinIR [41], innovatively combines channel
attention (CA) with Transformer’s self-attention mechanism (SA) to leverage more input
information. Additionally, it introduces overlapped cross-attention modules to better
aggregate information between different windows in window self-attention. For the task
at hand in this paper, with an input data size of 560 × 560, computational limitations led
to adjustments in HAT’s head convolution’s stride and upsampling ratio, both set to 5.
The depth and width of the network were modified to 18 and 64, respectively. The learning
rate and optimizer remain the same as in SN-CLDASSD.

3. Experimental Results
3.1. Ablation Study Result

Table 3 presents the results of all methods across the entire study area, compared
against HRCLDAS, national meteorological stations, and regional stations in RMSE, MAE,
COR, PSNR, and SSIM. PSNR and SSIM, which measure image visual quality, are computed
only using HRCLDAS with continuous spatial distribution as ground truth. The study
reveals that deep learning models outperform traditional bilinear interpolation methods,
enabling more attention and reconstruction of spatial details. Among the models designed
through ablation experiments, the performance gap between Light-CLDASSD and the
improved SN-CLDASSD-S, which incorporates a Shuffle–nonlinear-activation-free block
(SNBlock) for feature extraction, is noticeable due to the relatively simpler residual at-
tention feature extraction module (ResBlock) structure used by Light-CLDASSD. In the
comparison between SN-CLDASSD-S and SN-CLDASSD-C, content-aware recurrent fea-
ture extraction (CARAFE) outperforms sub-pixel convolution not only in overall metrics
but also in suppressing the checkerboard artifact (detailed in Section 3.2). Compared to
SN-CLDASSD-C, SNCA-CLDASSD-C demonstrates advantages in all metrics, indicating
that the introduction of the Swin cross-attention module (SCAM) in SNCA-CLDASSD-C
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enhances the capturing of spatial details from auxiliary information of the DEM, leading to
an improved spatial reconstruction ability in SN-CLDASSD-C. For conciseness, in subse-
quent comparisons, we focused on contrasting the worst-performing and best-performing
models from the ablation experiments with other methods.

Table 3. Comprehensive evaluation metrics table of downscaling results by various methods; evalua-
tion metrics are assessed using HRCLDAS, national meteorological stations, and regional stations as
reference values, with the optimal metrics indicated in bold. (Here, the data are of all time steps.)

Methods
HRCLDAS/Nation Stations/Region Stations

PSNR SSIM
RMSE MAE COR

BILINEAR 1.365/0.646/1.118 0.993/0.419/0.845 0.879/0.954/0.844 24.206 0.781
Light-CLDASSD 0.898/0.134/0.810 0.638/0.096/0.589 0.946/0.998/0.912 28.707 0.943
SN-CLDASSD-S 0.713/0.163/0.771 0.514/0.119/0.565 0.960/0.997/0.917 29.981 0.953
SN-CLDASSD-C 0.711/0.131/0.727 0.514/0.093/0.531 0.961/0.998/0.927 30.027 0.954

SNCA-CLDASSD-C 0.706/0.118/0.724 0.507/0.082/0.527 0.961/0.998/0.928 30.083 0.957
HAT 0.720/0.178/0.774 0.515/0.131/0.566 0.959/0.996/0.916 29.899 0.952

HRCLDAS - /0.450/0.443 - /0.313/0.296 - /0.976/0.974 - -

Furthermore, in Figure 4, we present a scatter map illustrating the correlation be-
tween observed meteorological station data and interpolated predictions at each time
step. The results indicate that, among all methods, SNCA-CLDASSD-C and HRCLDAS
exhibit a higher correlation with the observed data. In Figure 4a, all methods are evaluated
on non-independent data (CLDAS product data incorporates information from national
meteorological stations), but they are temporally independent (the data from 2018 are
treated as a separate test set without participation in model training). As a result, all
methods show a strong correlation with the national station observations. Among them,
the three deep learning models perform even better than HRCLDAS, nearly conforming to
the 1:1 line. Particularly, SNCA-CLDASSD-C achieves an average correlation coefficient of
1.0 in 2018, with an RMSE of 0.11 °C, which is 0.31 °C lower than HRCLDAS. In Figure 4b,
except for HRCLDAS, which is temporally independent, no method relies on independent
data (HRCLDAS product data lack information from regional stations). All methods are
temporally and spatially independent (CLDAS product data do not incorporate infor-
mation from regional stations). Due to the inherent data instability and larger errors in
regional meteorological station observations, even after data cleaning, the performance of
all methods experiences a certain degree of degradation compared to national station data.
The scatter points are more dispersed, reflected from −20 °C to 40 °C. Although HRCLDAS
fits the regional stations more closely, it demonstrates a noticeable underestimation within
the temperature range of −5 °C to 20 °C. On the other hand, the deep learning model
does not exhibit such a phenomenon. Overall, the trend shows that the fit of the deep
learning models to station observation data does not fluctuate significantly with tempera-
ture changes. Among all deep-learning-based methods, SNCA-CLDASSD-C maintains a
respectable average correlation coefficient of no less than 0.97 in 2018, with an RMSE of
0.56 °C, which is 0.07 °C lower than Light-CLDASSD and 0.16 °C higher than HRCLDAS.
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Figure 4. (a) Scatter density map between observed values from national meteorological stations and
interpolated predictions at station locations; (b) scatter density map between observed values from
regional stations and interpolated predictions at station locations. (Different from Table 3, here, the
data are after data cleaning and are not of all time steps in 2018.)

3.2. Spatial Distribution

This section focuses on the comprehensive analysis of various downscaling meth-
ods’ performance across different underlying surface types (water bodies, islands, plains,
and mountainous regions) within the study area. Additionally, a visual comparison is
presented to address the occurrence of checkerboard artifacts within the results.

Firstly, we present the evaluation results of various downscaling methods across dif-
ferent underlying surface types in Table 4. Due to the impact of scale effects, the results
of bilinear interpolation represent the coarse-scale temperature field of CLDAS, resulting
in considerable discrepancies in performance metrics when compared to the finer-scale
HRCLDAS. This discrepancy is particularly evident in mountainous regions, where the
RMSE of bilinear interpolation is 0.492 °C higher than HRCLDAS when evaluated against
both national and regional stations. This reveals the presence of systematic bias. In contrast
to bilinear interpolation, Light-CLDASSD, SNCA-CLDASSD-C, and HAT exhibit signifi-
cant improvements across all aspects. This improvement is attributed to the inclusion of
station loss during model training to enhance the reconstruction ability within station areas.
Their performance even surpasses that of HRCLDAS at national meteorological stations,
though a notable disparity remains when compared to HRCLDAS at the regional stations.
Among the three models, SNCA-CLDASSD-C performs the best, followed by HAT and
Light-CLDASSD. Indicators from the provided table reveal that our SNCA-CLDASSD-
C model demonstrates more evident enhancements in mountainous and plain regions
compared to Light-CLDASSD. This improvement is particularly pronounced when val-
idated against the larger dataset of HRCLDAS and regional meteorological observation
stations. Specifically, the RMSE decreases by 0.28 °C and 0.17 °C, and the MAE decreases
by 0.202 °C and 0.121 °C, respectively. These improvements can be attributed to SCAM’s
critical role in capturing spatial texture details from the DEM. Furthermore, the overall com-
parison of evaluation metrics in Table 4 highlights that SNCA-CLDASSD-C outperforms
other models in pixel-level accuracy, spatial structure, and visual similarity. Moreover, in
comparison to HRCLDAS, SNCA-CLDASSD-C demonstrates a certain level of advantage
and competitiveness.
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Table 4. Evaluation metrics of different downscaling methods on four distinct underlying surface
types: water bodies, islands, plains, and mountainous regions. The division between plains and
mountainous regions is based on a terrain undulation threshold of 30 m, while water bodies and
islands are determined using the 2018 CNLUCC land use data. Evaluation metrics are assessed
using HRCLDAS, national meteorological stations, and regional stations as reference values, with the
optimal metrics highlighted in bold. (Here, the data are of all time steps.)

Methods Topography
HRCLDAS/Nation Stations/Region Stations

RMSE MAE COR

BILINEAR

Water 1.113/0.336/1.009 0.849/0.250/0.769 0.852/0.981/0.812
Island 0.839/0.236/0.967 0.630/0.193/0.761 0.772/0.974/0.715
Plain 0.994/0.521/1.013 0.704/0.370/0.760 0.838/0.961/0.832

Mountains 1.732/1.162/1.325 1.346/0.816/1.046 0.754/0.974/0.812

Light-CLDASSD

Water 0.741/0.093/0.800 0.539/0.071/0.585 0.912/0.999/0.883
Island 0.668/0.073/0.744 0.503/0.059/0.560 0.867/0.998/0.844
Plain 0.775/0.125/0.741 0.551/0.092/0.540 0.906/0.997/0.904

Mountains 1.088/0.187/0.924 0.806/0.136/0.688 0.908/0.998/0.892

SNCA-CLDASSD-C

Water 0.638/0.092/0.697 0.467/0.072/0.511 0.929/0.998/0.907
Island 0.527/0.081/0.640 0.394/0.066/0.485 0.903/0.997/0.878
Plain 0.605/0.104/0.670 0.430/0.077/0.488 0.934/0.998/0.920

Mountains 0.808/0.175/0.823 0.604/0.117/0.613 0.938/0.998/0.911

HAT

Water 0.648/0.154/0.749 0.467/0.117/0.554 0.923/0.996/0.892
Island 0.542/0.147/0.702 0.406/0.119/0.537 0.896/0.991/0.852
Plain 0.623/0.174/0.713 0.443/0.130/0.523 0.930/0.995/0.908

Mountains 0.825/0.200/0.881 0.617/0.148/0.658 0.934/0.998/0.895

HRCLDAS

Water - /0.424/0.379 - /0.324/0.240 - /0.965/0.974
Island - /0.407/0.333 - /0.314/0.246 - /0.918/0.969
Plain - /0.387/0.403 - /0.269/0.265 - /0.975/0.972

Mountains - /0.670/0.531 - /0.519/0.379 - /0.974/0.963

Secondly, as shown in Figure 5a, the HRCLDAS image at 02:00 UTC on 19 July 2018
is displayed on the left-hand side, while the right-hand side presents localized images of
various methods for each underlying surface classification. From the visual comparison of
these images, it is evident that traditional bilinear interpolation only increases the grid count
to form a blurry and coarse representation during downscaling. In contrast, deep learning
models, by incorporating DEM information, are capable of better reconstructing spatial
details and textures of the temperature field, especially in mountainous, plain, and island
areas, bringing the results closer to those of HRCLDAS. Among all methods, only SNCA-
CLDASSD-C manages to capture the spatial distribution details between high and low
temperatures in the island and plain regions. However, due to the lack of rich texture
information from the DEM in oceanic areas, there still exists a significant overestimation
phenomenon, along with some degree of underestimation in plain and island regions.
Furthermore, we conducted histogram statistics of the bias distribution for all samples in
the test set. As depicted in Figure 5b, the control of bias by the bilinear interpolation method
is notably weaker than that of other methods. SNCA-CLDASSD-C demonstrates the most
stable control of bias, albeit with an overall slight underestimation, approximately around
−0.024 °C. Notably, when evaluated against national meteorological station observations,
HRCLDAS exhibits a widely dispersed bias distribution, whereas it becomes significantly
centered around zero when evaluated against regional meteorological station observations.
This could be attributed to the dense incorporation of regional station observations in
HRCLDAS, which impacts the sparse national station observations. Conversely, our SNCA-
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CLDASSD-C model remains unaffected by this phenomenon, highlighting its advantage in
this aspect.

Figure 5. (a) Visual comparison of the results for various methods at 02:00 UTC on 19 July 2018.
The large left image represents the HRCLDAS image; (b) spatial bias histograms for all samples in
the test set. Column 1 is evaluated against HRCLDAS as the reference value, column 2 is evaluated
against national meteorological station observations as the reference value, and column 3 is evaluated
against regional meteorological station observations as the reference value.

Lastly, in Figure 6, we provide visual zoom-in comparisons in the islands and plain
regions between CARAFE and sub-pixel upsampling techniques. According to Table 2,
we choose Light-CLDASSD, SNCA-CLDASSD-C, and HAT to show the improvement of
our model. Light-CLDASSD and HAT, employing sub-pixel, exhibit varying degrees of
checkerboard artifacts and pseudo-shadow phenomena. In contrast, SNCA-CLDASSD-C,
utilizing CARAFE, effectively suppresses the occurrence of checkerboard artifacts, which
can be seen by comparing the reconstruction results of two upsampling methods in the
low-temperature region of column 2 and the high-temperature region of column 4, as well
as the sea area in islands region. Compared to the other two methods for reconstructing
the fragmented and striped temperature field, the temperature field reconstructed by
SNCA-CLDASSD-C exhibits a more comprehensive spatial distribution of high and low
temperatures, along with a more continuous texture detail. Furthermore, CARAFE tends
to overlook small islands in island regions, as evident from the comparison of the two
upsampling methods in columns 1 and 3.
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Figure 6. Visual comparison of the results using CARAFE and sub-pixel upsampling method. Column
1, 3 are in the islands region, and column 2, 4 are in the plain region.

3.3. Temporal Change

In this section, a comprehensive comparative analysis of the results obtained from var-
ious downscaling methods is performed, focusing on the temporal variation characteristics.

Firstly, in Figure 7a–d, the monthly average temperature RMSE, BIAS, MAE, COR,
PSNR, and SSIM for each downscaling method are computed against HRCLDAS, national,
and regional meteorological station data as reference values. Overall, all models exhibit a
similar trend in the temporal variation of these metrics, with the best performance observed
during winter and followed by autumn. Spring and summer seasons show a compara-
tively poorer performance due to the significant temperature fluctuations caused by the
influence of the East Asian monsoon and the warm and humid summer monsoon in the
study area. Notably, the deep learning models consistently outperform bilinear interpo-
lation, with SNCA-CLDASS-C and HAT exhibiting a superior performance, especially
the bias. Moreover, deep-learning-based methods have better fitting and reconstruction
capabilities than HRCLDAS in sparse observations, but there is still a certain gap compared
to HRCLDAS in fitting the dense observations. The utilization of the SNBlock, SCAM,
and CARAFE in SNCA-CLDASS-C results in a more intricate structural design compared to
Light-CLDASSD, incorporating a terrain attention module and improving the upsampling
algorithm, leading to a more pronounced disparity. Moreover, our CNN-based model
outperforms the state-of-the-art single-image super-resolution SOTA method HAT, which
utilizes an improved Swin Transformer for image super-resolution.

Additionally, Figure 8 presents a comparative analysis of various downscaling meth-
ods’ intraday temperature deviation. It can be observed that Light-CLDASSD, compared
to bilinear interpolation, shows limited improvement in intraday deviation, particularly
at the national meteorological stations. In contrast, SNCA-CLDASS-C and HAT manage
to effectively control the intraday deviation, maintaining it at near zero while reducing
the magnitude of variation. When evaluated against HRCLDAS and regional stations,
the intraday temperature bias of all models is larger during the daytime and smaller during
the night-time. In the case of national meteorological stations, the bias is larger during the
night-time and smaller during the daytime. However, SNCA-CLDASS-C remarkably flat-
tens the deviation curve, although it exhibits a slight overall overestimation, approximately
around 0.019 °C. In conclusion, SNCA-CLDASS-C demonstrates exceptional control over
the intraday deviation variation in the results.
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Figure 7. Monthly inter seasonal trend lines of RMSE, BIAS, MAE, PSNR, and SSIM. (a) The RMSE,
BIAS, MAE, and COR with HRCLDAS as the ground truth for the results of various methods; (b) the
PSNR and SSIM with HRCLDAS as the ground truth for the results of various methods; (c) the RMSE,
BIAS, MAE, and COR with national stations as the ground truth for the results of various methods;
(d) the RMSE, BIAS, MAE, and COR with regional stations as the ground truth for the results of
various methods. (Here, the data are of all time steps.)

Figure 8. Intraday trend lines of BIAS. (a) The BIAS with HRCLDAS as the ground truth for the
results of various methods; (b) the BIAS with national stations as the ground truth for the results of
various methods; (c) the BIAS with regional stations as the ground truth for the results of various
methods. (Here, the data are of all time steps.)
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3.4. Local Attribution Analysis

We employed an attribution interpretation method called local attribution mapping
(LAM) [42], specifically designed for image super-resolution methods. LAM reveals which
input pixels contribute most to a selected region by attributing certain features (using
gradient detectors to quantify the presence of edges and textures) to the distribution of
locally activated pixels in the output image. As illustrated in Figure 9b, among all models,
only the attention of the SNCA-CLDASS-C network with the SCAM is distributed along the
direction of DEM texture extension, particularly evident in the complex mountainous region
highlighted by the red box. Additionally, we observe that Light-CLDASSD, in comparison
to HAT, also attends to a wide range of pixels, yet it still misrepresents textures. Therefore,
although Light-CLDASSD employs information from more pixels, it fails to effectively
use them for accurate reconstruction and may even compromise the temperature accuracy
within the small black box.

Figure 9. (a) Visual comparison of the results for various methods at 02:00 UTC on 19 July 2018.
The large left image represents the HRCLDAS image; (b) local attribution mapping (LAM) of the
results for various methods at 02:00 UTC on 19 July 2018. LAM reflects the importance of each pixel
in the input LR image when reconstructing the patch marked by the small black box. The large left
image represents the DEM image.
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4. Discussion

The statistical downscaling approach based on deep learning offers substantial compu-
tational advantages over traditional dynamical downscaling. As model resolution increases,
it avoids exponential complexity growth and eliminates the need for extensive parameter
adjustments, thus saving time and computational resources [43]. Moreover, it offers greater
flexibility in local study areas and the design of specific implementation strategies [44].

The SNCA-CLDASSD-C model demonstrates certain advantages over HAT and ex-
hibits a competitive edge compared to HRCLDAS through improvements made to different
modules of the Light-CLDASSD network. Given the high correlation between the DEM and
temperature, complex terrain variations inevitably impact the spatiotemporal temperature
distribution. Although the selected study area has modest terrain fluctuations, its diverse
terrain types and location in eastern mainland China, affected by monsoon variations
and typhoons, result in substantial temperature fluctuations during the rainy and hot
summer [45,46]. As elaborated in Section 3 of this paper, our improved SNCA-CLDASSD-C
model not only learns more complex mapping relationships but also addresses the limited
spatial detail reconstruction ability of Light-CLDASSD in plain areas. The incorporation
of DEM-based cross-attention contributes to an enhanced focus on and understanding of
DEM-derived information for reconstructing temperature trends and details in complex
mountainous terrain. Our model exhibits superior stability and control over bias, partic-
ularly concerning intraday hourly deviation variations. In addition, SNCA-CLDASSD-C
only takes about 45 ms to infer 560 × 560 data for one time, which is more than 100 times
faster than traditional dynamic downscaling methods.

While SNCA-CLDASSD-C demonstrates significant strengths, some challenges persist
when compared to HRCLDAS. Fitting regional meteorological station data and reconstruct-
ing sea near-surface temperatures remain areas of improvement. The distribution density
of regional stations in the study area leads to extremely high and low temperatures, as well
as highly detailed spatial textures, under the assumption of unbiased estimation, which
may not be perfectly reconstructed by our model. Nevertheless, HRCLDAS is not the true
value, and the quality of observations from regional stations is also unstable, making this
discrepancy not a sufficient criterion to measure our model’s performance. Additionally,
the absence of DEM values in sea areas hinders spatial detail, providing limited spatial
detail information, and the primary driving factor for sea near-surface temperature varia-
tions is not the terrain. Therefore, supplementary auxiliary data like air pressure and wind
speed can be considered in such cases.

Furthermore, there is potential to further enhance the utilization of auxiliary data.
The integration of cross-attention mechanisms for utilizing data like land use information in
tasks related to various meteorological variables holds promise. Additionally, the modular
design of the study creates opportunities for other deep learning downscaling networks to
benefit from the fusion of terrain and feature information modules, thereby improving the
overall model performance.

5. Conclusions

This paper introduces the SNCA-CLDASSD network model, utilizing deep learning for
spatially downscaling CLDAS temperature data from 0.05° to 0.01°. The SNCA-CLDASSD
model incorporates the SNBlock, SCAM, and CARAFE, and employs ablation experiments
to validate its performance enhancement over Light-CLDASSD. Data from 2016, 2017, 2019,
and 2020 were used, with 90% for training, 10% for validation, and 2018 as an independent
test set. During training, the DEM was introduced as auxiliary data, and a loss function
incorporating station observation data was employed for soft constraint. Through the
evaluation and analysis of the results for various methods, the following conclusions
are obtained:

1. The SNCA-CLDASSD-C model, incorporating the SNBlock, SCAM, and CARAFE,
exhibits the best performance among all variations. Compared to Light-CLDASSD, it
significantly improves the spatial downscaling accuracy.



Remote Sens. 2023, 15, 5084 19 of 21

2. The SNCA-CLDASSD-C model shows the most improvement in mountainous ar-
eas compared to Light-CLDASSD, followed by plain areas. Additionally, CARAFE
effectively reduces checkerboard patterns compared to sub-pixel. Furthermore, the
CARAFE upsampling operator effectively suppresses the checkerboard artifacts com-
pared to sub-pixel.

3. Our model performs best in winter, and then in autumn, but has a relatively lower perfor-
mance in spring and summer. It also has the least bias, especially in hourly temperature.

4. Through local attribution analysis (LAM) of various downscaling methods, it is
evident that the SCAM effectively utilizes high-resolution auxiliary data such as the
DEM to enhance model performance. The SCAM adeptly extracts feature information
from these auxiliary data sources, allowing for the reconstruction of more detailed
temperature field textures.
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