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Abstract: High-resolution images have a wide range of applications in image compression, remote
sensing, medical imaging, public safety, and other fields. The primary objective of super-resolution
reconstruction of images is to reconstruct a given low-resolution image into a corresponding high-
resolution image by a specific algorithm. With the emergence and swift advancement of generative
adversarial networks (GANs), image super-resolution reconstruction is experiencing a new era
of progress. Unfortunately, there has been a lack of comprehensive efforts to bring together the
advancements made in the field of super-resolution reconstruction using generative adversarial
networks. Hence, this paper presents a comprehensive overview of the super-resolution image
reconstruction technique that utilizes generative adversarial networks. Initially, we examine the
operational principles of generative adversarial networks, followed by an overview of the relevant
research and background information on reconstructing remote sensing images through super-
resolution techniques. Next, we discuss significant research on generative adversarial networks
in high-resolution image reconstruction. We cover various aspects, such as datasets, evaluation
criteria, and conventional models used for image reconstruction. Subsequently, the super-resolution
reconstruction models based on generative adversarial networks are categorized based on whether
the kernel blurring function is recognized and utilized during training. We provide a brief overview
of the utilization of generative adversarial network models in analyzing remote sensing imagery.
In conclusion, we present a prospective analysis of forthcoming research directions pertaining to
super-resolution reconstruction methods that rely on generative adversarial networks.

Keywords: generative adversarial networks; super-resolution reconstruction; remote sensing;
low-resolution (LR) images; high-resolution (HR) images

1. Introduction

Images are indispensable in life and production, serving as one of the most crucial
means for individuals to access, convey, and disseminate information. With economic
development and the advancement of science and technology, people’s living standards are
steadily improving, and their demands for higher image resolution are gradually increasing.

Compared to low-resolution (LR) images, high-resolution (HR) images exhibit greater
pixel density and more intricate texture details. Hardware upgrades are a means of obtain-
ing HR images. However, this approach presents significant drawbacks: (1) In practice,
the specifications constantly evolve, and investing in new hardware is costly and inflexible.
(2) Hardware devices cannot enhance LR images.

The core concept of image super-resolution (SR) reconstruction is to overcome the
constraints imposed by hardware conditions, enabling the enlargement of images and
restoring the high-frequency details that might have been lost during the process (as shown
in Figure 1).
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Figure 1. The process of image super-resolution reconstruction.

The SR technique was initially proposed by Harris [1]. It is a crucial technology in the
domains of computer vision and digital image processing [2]. It is extensively employed in
medical imaging [3,4], remote sensing [5,6], video analysis [7], and other domains [8–11].

Currently, imaging technology for remote sensing has been utilized in numerous
industries, including but not limited to agriculture, forestry, marine, meteorology, and en-
vironmental protection [12]. Remote sensing imagery is integral in applications like land
cover analysis, crop growth identification, disaster and weather prediction, land use man-
agement, and water ecology monitoring. The demand for remote sensing imagery in
various industries is steadily growing, with HR being particularly sought after.

During the acquisition of remote sensing images, the resolution may be limited by
several factors, including shooting conditions, equipment resolution, and atmospheric
conditions [13]. These limitations have the potential to cause blurring in the resulting
images. Image SR reconstruction technology aims to obtain an HR image by reconstructing
an LR image, which can improve the recognition ability and recognition accuracy of
the image.

Public security field: With advancements in society and technology, traditional video
surveillance methods are often limited in terms of clarity and accuracy, which may not
adequately meet the needs of individuals and organizations. The utilization of artifi-
cial intelligence in video surveillance and integrated image processing technology can
significantly enhance public safety measures. Image super-resolution techniques have
wide applications in iris recognition, abnormal behavior detection, license plate recogni-
tion [14,15], etc. This can improve the accuracy of object identification and greatly improve
the safety factor.

Traditional SR reconstruction algorithms can be divided into three main categories.
The initial category is grounded on interpolation algorithms, such as bicubic interpola-
tion [16], nearest neighbor interpolation [17], adaptive image interpolation [18–20], and so
on. The second category of algorithms is reconstruction-based, including methods such
as iterative inverse projection [21,22] and convex set projection [23,24]. The third category
refers to hypersegmentation algorithms based on learning, including sparse coding tech-
niques [25–28], among others. While the traditional technique for SR reconstruction may
appear simple at first glance, it is not without its drawbacks [29].

The interpolation method exhibits a straightforward and easily comprehensible struc-
ture, making it manageable for users. However, it is important to note that this method
relies solely on the pixel information available in the low-resolution (LR) image. Each pixel
is interpolated using information from surrounding pixels, resulting in a blurred image.
The processing of the image’s edges, texture, and other areas is not optimal, resulting in
accuracy issues.

The reconstruction-based approach can sharpen the details, but its performance de-
creases rapidly as the scale factor increases. Its convergence speed is slow, and its compu-
tational cost is large. The shallow learning approach entails the acquisition of the LR-HR
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image connection from an extensive range of training samples, which is then employed
to forecast the reconstructed images. While certain elements may be retrievable, there are
evident imperfections, and the process of designing is intricate.

Machine learning is an essential subfield of artificial intelligence [30]. Deep learning is
an algorithm that is widely used in the field of information technology. In the field of remote
sensing imagery, deep learning-based methods for super-resolution (SR) reconstruction
can be classified into three categories: single-image super-resolution approaches [31,32],
multi-image super-resolution techniques [33,34], and multi-(hypo)spectral remote sensing
image super-resolution methods [35].

Currently, CNN and GAN-based techniques are commonly employed for SR recon-
struction of single remote sensing pictures. The primary CNN-based approaches for SR
include SRCNN [36] (super-resolution convolutional neural network), VDSR [37] (very
deep convolutional networks for super-resolution), and EDSR [38] (enhanced deep residual
networks for super-resolution). The outcomes yielded from such approaches surpass those
of the conventional bicubic interpolation techniques, but they remain underdeveloped.
Therefore, the reconstruction effect is not particularly obvious.

The generative adversarial network (GAN) is a deep learning model that was intro-
duced by Goodfellow et al. [39] in 2014. In recent years, this approach has shown great
promise for unsupervised learning with intricate distributions. Since the proposal of GAN,
it has garnered significant attention from both academic and industrial spheres. Through
extensive research on GANs, the technology has rapidly advanced in both theoretical
understanding and model construction. There are numerous applications in the areas of
computer vision and human–computer interaction.

The main inspiration for the GAN model is derived from the idea of zero-sum games
in game theory [40,41]. In particular, GAN comprises two components, the generative
network and the discriminative network, which constantly refine their output through
iterative learning. The authors in [42] primarily conducted a comparative analysis of
various GANs. It demonstrates the implementation of the widely used GAN framework on
image samples of varying dimensions. Most initial reviews focus on utilizing deep learning
technology for reconstructing HR images from a single source. The introduction of the
GAN-based SR reconstruction model is only a part of it.

Although numerous super-resolution techniques have attained satisfactory recon-
struction outcomes, certain limitations still exist in recovering images from actual scenes.
GAN networks possess formidable learning abilities. Nevertheless, there has been limited
research dedicated to comprehensively summarizing the implementation of GAN-based
super-resolution in recent times. In this work, we refrain from providing a general overview
of SR based on deep learning, distinct from the approach in many other papers. However,
unlike most works, this article comprehensively analyzes super-resolution reconstruction
techniques for images that utilize generative adversarial networks (GANs). Furthermore,
this paper explores the core principles and processing techniques of GANs. It also provides
an overview of the SR (super-resolution) model of GANs, highlighting its reconstruction
performance, strengths, and limitations. The paper’s structural framework is depicted in
Figure 2.

The main contributions of this paper are as follows:

• We offer a thorough overview of the super-resolution process based on GANs, which
covers the working mechanism of GANs, the reconstruction process for SR, and the
GAN application in super-resolution reconstruction. This provides the detailed back-
ground knowledge for this paper.

• We present pertinent datasets of both natural and remotely sensed images, metrics for
assessing image quality, and techniques for inducing degradation in imagery.

• We present the model of GANs on super-resolution reconstruction. We categorize
them as blind super-resolution models and non-blind super-resolution models based
on whether or not the blurred kernel is assumed to be known and applied to the image.
We compare performance on natural images and remote sensing imagery.
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• We examine the issues and challenges surrounding SR reconstruction of remote sens-
ing imagery from various perspectives. Additionally, we provide an overview and
forecast of the SR reconstruction methodologies based on GAN.

Classification of GAN

Blind Image
 Super-resolution 
Reconstruction

Non-blind Image 
Super-resolution 
Reconstruction

Image Super-resolution 
Reconstruction

GAN and SR

Image Degradation
  Bicubic
BSR Degradation
High-order Degradation

Loss Function
GAN Loss
Pixel Loss
Perceputal Loss

Training and Test Datasets
Natural Images Datasets

Remote Sensing Images Datasets

Evaluation Metrics

Network Design

Operational Efficiency

Degradation Model

Registration Challenge in SR by Different Sensors

Current Challenges and Future Directions

TE-SAGAN

ISRGAN

NDSRGAN

Enlighten GAN...

GAN Models for Remote Sensing

Explicit Modeling Kernel GAN、BSRGAN...

Natural Images SRGAN、ESRGAN、USRGAN...

Face Images  SPGAN、GLEGAN...

Medical Images PathSRGAN、LMISR-GAN...

CinCGAN、FS-SRGAN...Implicit Modeling

Figure 2. The structural framework of this paper.

The subsequent sections of this paper are as follows. In Section 2, we present a concise
overview of GANs, how they are used in the SR reconstruction process, and introduce the
loss function and image degradation process. Section 3 categorizes and briefly describes SR
reconstruction models that rely on GAN. The impact of noise on remotely sensed images
is initially discussed in Section 4. Then, some GAN-based SR models for photos from
remote sensing are presented. Finally, we provide a description of the regions where
super-resolution reconstruction of remote sensing pictures is applied. In Section 5, we
present the commonly used datasets and evaluation metrics. Section 6 compares the
performances of five SR models using two objective evaluation metrics, namely PSNR
and SSIM. Furthermore, this section also analyzes their impact on the reconstruction of
remotely sensed images. Section 7 discusses the present difficulties and future goals in
utilizing GAN for remote sensing super-resolution reconstruction. Finally, we provide a
summary of the research presented in this paper.
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2. Background
2.1. GAN and SR
2.1.1. Generating Adversarial Networks

Generative adversarial networks are a trending topic in artificial intelligence research.
The basic idea behind GAN is derived from the zero-sum game of game theory [43]. GAN
mainly comprises a generator G and a discriminator D.

The model is trained using adversarial learning techniques to converge toward a Nash
equilibrium. The term “equilibrium”, also referred to as balance, describes a situation
in which the samples produced by the generator cannot be distinguished from the real
samples. The discriminator is unable to differentiate between the real and generated
samples accurately.

As shown in Figure 3, the basic principle of GAN is straightforward. Using an image
as an example, G is a generative network that takes in random noise and outputs an image,
which is denoted as G(z). The variable z stands for noise, which is arbitrary random data
with the same structure as the real data. D is a discriminative network that determines
the authenticity of the image. The input is an image x, and the output D(x) calculates the
likelihood that it depicts a genuine image. If the value is 1, the image is deemed authentic.
If the output is 0, the image is considered fake.

noise
G(z)

G

D

0

1Real  Image  x

D_loss

G_loss

Figure 3. Generating an adversarial network mainly consists of a generator and a discriminator.

The goal of the generator G is to use the produced samples to deceive the discriminator.
The objective function can be defined as follows:

min(D(x)− D(G(z))). (1)

The goal of the discriminator D is to identify the authenticity of the input samples,
which is defined as

max(D(x)− D(G(z))). (2)

Therefore, the objective function of GAN can be summarized as follows:

min
G

max
D

(D(x)− D(G(z))). (3)

The three equations provided above serve as a concise introduction to the principles of
GAN. Equation (1) demonstrates that the objective of G is to generate an image that closely
resembles reality in order to deceive the discriminator. The more finely we interpolate
between the distribution D(x) and D(G(z)), the closer the generated image will resemble
the original image. Equation (2) represents the objective of D, which is to differentiate
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between the image generated by G and a real image. A higher value indicates a stronger
judgment from the discriminator. Equation (3) shows that the variables G and D are
involved in a dynamic game process. Both parties are competing against each other to
achieve superior reconstruction results.

2.1.2. Super-Resolution Reconstruction

Super-resolution reconstruction is the methodology for recreating a high-resolution
image from a low-resolution one. Low-quality images are often degraded from high-quality
originals. The process can be defined as

Ix = Deg(Iy, δ), (4)

where Ix denotes the low-resolution image, Iy denotes the high-resolution image, Deg()
denotes the degradation function, and δ denotes the relevant parameters of the degrada-
tion process.

Thus, given the current low resolution of Ix, the procedure for constructing a high-
resolution image can be described as follows:

Îy = F(Ix, θ), (5)

where Îy denotes the reconstructed result, F is the hypersegmentation model, and θ is the
model parameter.

The degradation of images in reality is impacted by various factors, including but not
limited to weather conditions, motion blur, and sensor noise. Researchers usually describe
Equation (4) as the following process:

Ix = (Iy ⊗ k) ↓s +n, (6)

where k denotes the degenerate fuzzy kernel, n represents the noise, and ↓s stands for the
downsampling operation with a scaling factor, s. Iy ⊗ k denotes the convolution operation
between the HR image Iy and the degenerate fuzzy kernel k.

The conventional SR reconstruction model features a singular network structure,
which fails to consider the intricate image degradation process and myriad influencing
factors present in reality. Adapting to complex real-world scenarios can present challenges.
Applying generative adversarial networks to super-resolution reconstruction can make the
output images more natural through adversarial training.

2.2. Loss Function

The loss represents the discrepancy between the predicted value and the true value.
The model’s performance can be evaluated using the loss function, which compares the
predicted output with the expected output and helps determine the direction for model
optimization. In the area of SR reconstruction, the loss function is utilized to determine the
dissimilarity between the HR image achieved through model reconstruction and the actual
image. It can assist in directing the model learning throughout the training procedure.
A lower loss function value indicates that the model is more resilient. In this section, we
will briefly introduce several types of loss functions.

2.2.1. Perceptual Loss

Johnson et al. [44] introduced a perceptual loss function to evaluate the perceived
quality variance between genuine and reconstructed images. Specifically, the features of
different images are extracted using natural image hypersegmentation models that have
been pre-trained, such as VGG [45], ResNet [46], etc., and then the distances on the feature
space are calculated as follows:

Lperceptual =
1

cjhjwj

∥∥∅j(Isr)−∅j
(

Iy
)∥∥2

2′ , (7)
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where cj, hj, and wj denote the number of channels, height, and width of the feature map,
respectively. ∅ denotes the pre-trained network. ∅j represents the high-level features of
the j-th layer network.

2.2.2. Pixel Loss

A pixel is the basic unit of an image. Pixel loss is a commonly encountered type of loss.
It is used to measure the pixel difference between the generated and real images. It mainly
contains L1 loss and L2 loss [47]. The L1 loss function, also known as the mean absolute
error (MAE), is the absolute value of the difference between the predicted and actual values.
The L2 loss function, synonymous with mean squared error (MSE), computes the square of
the discrepancy between the predicted and actual values.

L1 =
1
m

m

∑
i=1
|yi − f (xi)|, (8)

L2 =
1
m

m

∑
i=1

(yi − f (xi))
2, (9)

where yi is the true value and f (xi) is the predicted value.
A study [48] highlighted that using the L1 loss function can accelerate convergence

and enhance reconstruction performance compared to the L2 loss function. The L1 loss is
generally more robust when dealing with outliers. However, its derivative functions are
discontinuous, which can result in less efficient solutions. The L1 loss function is generally
considered to be more resilient than the L2 loss function. L1 and L2 can yield relatively high
PSNR values, but they often result in overly blurred texture in the reconstructed image.

The smooth L1 loss methodology [49] integrates the benefits of both L1 and L2 ap-
proaches. It can be a fast convergence of the model and is insensitive to outliers with small
gradient changes. The smooth L1 loss function is a piecewise function, as depicted in the
following equation:

SmoothL1(x, y) =

{
0.5(xi − yi)

2 |xi − yi| < 1
|xi − yi| − 0.5 otherwise

, (10)

where xi and yi are the output and label of the model, respectively, and |xi − yi| denotes the
difference between them. When |xi − yi| is less than 1, the squared error is used; otherwise,
the linear error is used. Since the reaction to outliers is smoother, the smooth L1 loss is
more resilient than MSE.

The gradient will dynamically decrease as long as the smooth L1 loss function assumes
a small value. This addresses the convergence challenges encountered when utilizing L1
loss and mitigates the gradient explosion in certain circumstances.

2.2.3. GAN Loss

GANs are neural networks that improve their output quality through adversarial train-
ing, where generators and discriminators compete against each other. The discriminator
D recognizes the challenging regions in the image and then prompts the generator G to
make relevant adjustments. This yields a super-resolution image that closely resembles the
original image. The basic functions are shown in Equations (1) and (2).

2.3. Image Degradation

Image degradation refers to the decline in an image’s quality, which occurs due to flaws
in the imaging system, transmission media, and equipment used during image capture,
transmission, or preservation. It is a pivotal aspect of super-resolution reconstruction.
The low-resolution images utilized in the process of SR reconstruction are obtained through
the degradation of the high-resolution images, as shown in Figure 4.
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HR

Y

X

downsample

LR
Figure 4. LR images employed in SR reconstruction are acquired through the degradation of the HR
images. An M× N image is resized to a smaller dimension of M

s by N
s , where s is the downsam-

pling factor.

In fact, image deterioration is affected by various factors. The conventional methods
of image degradation, such as bicubic interpolation, are uncomplicated and convenient.
However, they often struggle to address the degraded areas in authentic low-resolution
images. Given the intricate nature of image deterioration in real-life scenarios, scholars
have introduced elements, such as blurring, downsampling, noise, and compression into
their degradation model. As a result, a comprehensive model for image degradation,
as represented by Equation (6) above, has been put forth.

2.3.1. Bicubic Interpolation

Currently, the most frequently utilized datasets consist of high-resolution images.
Algorithms frequently create pairs of images by diminishing the quality of high-resolution
images within a dataset, producing low-resolution counterparts. Among them, bicubic
interpolation is widely used as an image degradation method in the field of super-resolution
research. Downsampling creates smaller versions of images to fit within a specific area or
size requirement.

To obtain the downsampled image, an M× N image is resized to a smaller dimension
of M

s by N
s , where s is the downsampling factor. The principle is shown in Figure 4.

Moreover, there are certain limitations associated with bicubic downsampling. It is the most
computationally intensive, with slow processing speed, and does not simulate degradation
in real scenes very well.

2.3.2. BSR Degradation

To obtain a range of diverse degradation effects and simulate image degradation more
effectively in practical settings, Zhang et al. [50] proposed a new degradation model in 2021.
It presents a strategy of random permutation, which can expand the degradation space
and achieve a superior degradation outcome. It consists of three components: fuzziness,
downsampling, and noise. The order of execution of the three parts is randomly disordered
to extend the degradation space.

Blurring is a commonly used method for image degradation. The BSR degradation
model employs isotropic and anisotropic Gaussian fuzzy functions. The primary techniques
for downsampling include nearest neighbor, bilinear interpolation [51], and bicubic inter-
polation. The predominant noise sources are Gaussian noise, JPEG compression artifacts,
and camera sensor noise.

In this paper, we simulate the process of image degradation using an on-the-fly
substitution strategy, as shown in Figure 5.



Remote Sens. 2023, 15, 5062 9 of 34

R
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Figure 5. Simulation of stochastic degradation processes

2.3.3. Degradation of Higher Order

In [52], an advanced version of the customary degeneracy model, referred to as
the “higher order” degeneracy model, was presented. Its degradation model is shown in
Figure 6. The higher-order degradation model is built upon the foundation of the first-order
degradation model through multiple iterations.

The parameters utilized in each degradation process vary. Using the extension makes it
possible to obtain low-resolution images that closely resemble the actual degradation. While
numerous degradation models have been proposed, none have demonstrated superior
generalization ability, indicating the need for further research in this area.
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R
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            HR                                         first order                         second order                             LR

Figure 6. Higher-order models for image degradation are typically created by iteratively applying
first-order degradation.

2.4. Traditional Super-Resolution Reconstruction Model

Currently, there exists a multitude of model types for image super-resolution recon-
struction. Some of them are displayed chronologically in Figure 7. In this section, we have
chosen three conventional reconstruction models (SRCNN [53], VDSR [37], and EDSR [38])
to showcase.
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Figure 7. Super-resolution reconstruction modeling time flow diagram.

SRCNN is a single-image super-resolution reconstruction method [53]. This method
employs an end-to-end network model to generate high-resolution images from low-
resolution inputs. SRCNN has a straightforward architecture that exceeds the previous
methods for super-resolution reconstruction. The structure of SRCNN’s network is divided
into three primary components, as shown in Figure 8. The first part is the image feature
extraction layer. The image’s characteristics are obtained through convolutional neural
networks and activation functions, with the results saved as vectors. The second part is
the nonlinear mapping layer. This step aims to convolve and activate the feature maps of
the feature extraction layer, which effectively deepens the network and enhances model
learning. The third part is the network reconstruction layer. It carries out image smoothing
through local averaging and implements image reconstruction through convolution.

LR        

feature extraction        non linear 
mapping            reconstruction         

HR

Figure 8. The SRCNN [53] model comprises three important components: image feature extraction,
nonlinear mapping layer, and network reconstruction.
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VDSR [37] increases the depth of the network, building on the architecture of SRCNN.
It employs deep neural networks to make predictions and applies residual learning to recon-
struct images with super-resolution. VDSR uses residual learning and an elevated learning
rate to expedite the model’s training process. It demonstrates superior reconstruction
performance compared to SRCNN.

In recent years, deep learning techniques have significantly improved image super-
resolution reconstruction. However, there is still scope for improvement in certain aspects
of the network structure. The EDSR model [38] is an adaptation of SRResNet. It eliminates
the batch normalization (BN) layer to streamline the network architecture and reduce the
consumption of storage and computational resources. The BN layer can destroy the original
contrast information of the image and ignore the absolute difference between image pixels.
This may affect the quality of the reconstructed image. Hence, the BN layer is frequently
omitted in tasks related to super-resolution.

3. State of the Classification of Super-Resolution GAN Models
3.1. Super-Resolution Model Classification

Some of the conventional super-resolution reconstruction models outlined in Section 2
have some drawbacks, and their rendered reconstructions frequently contain artifacts and
other phenomena. GAN has important applications in various research areas, especially
in computer vision. GAN has great significance in the field of image super-resolution
reconstruction. However, only some articles summarize the application of GANs in SR.
Therefore, we mainly introduce the super-resolution reconstruction models based on GAN.

The super-resolution models are divided into two categories: non-blind super-resolution
reconstruction models and blind super-resolution reconstruction models, depending on
whether the degraded kernel is presumed familiar and employed in the images used for
training. In particular, some non-blind super-resolution reconstruction models include
SRGAN [54], ESRGAN [55], USRGAN [56], SPGAN [57], etc. The blind super-resolution
reconstruction models mainly include CinCGAN [58], Kernel GAN [59], BSRGAN [50],
REAL-ESRGAN [52], etc. A summary of these models is presented below.

3.2. Non-Blind Super-Resolution Reconstruction Models
3.2.1. Natural Images

While the conventional SR reconstruction approach has produced satisfactory results,
it fails to fully restore texture details in the reconstructed images at high magnification
ratios. Since the emergence of GANs in fields like computer vision, they have rapidly
garnered attention from both academia and industry due to their potential applications.

For example, Ledig et al. [54] applied GAN to address the super-resolution problem
and developed the SRGAN model. This framework is the first model capable of deducing
realistic natural images at a 4× magnification ratio. Its innovations are as follows: (1) it
uses GAN for super-resolution reconstruction. (2) A new perceptual loss replacement for
MSE-based content loss is proposed. (3) It proposes a new image quality evaluation index.
The structure of the SRGAN model consists of a generative network trained by perceptual
loss and a discriminative network, as shown in Figure 9.

While SRGAN is capable of achieving reconstruction, it falls short of refining the
texture details of the image. There are still artifacts that remain. To enhance the visualization
and improve the image quality, Wang et al. [55] extensively explored the three essential
elements of SRGAN: network design, adversarial loss, and perceptual loss. They enhanced
it to create ESRGAN (enhanced super-resolution generative adversarial network).
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Figure 9. SRGAN [54] incorporates both generator and discriminator components in its structure,
enabling it to achieve high-quality 4× image reconstruction.

The residual-in-residual dense block (RRDB) architecture is proposed and employed
in ESRGAN. Densely linked elements enhance overall feature integration and facilitate
optimal texture recovery. Its residual block structure is shown in Figure 10.

To enhance the realism of textures in generated images, the authors in [60] presented
an improved version of the ESRGAN model, called ESRGAN+. Their solution introduced a
residual block between each pair of layers in the RRDB architecture and applied random
Gaussian noise to enhance the results.
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Figure 10. The residual block structure of ESRGAN [55].

Single-image super-resolution reconstruction methods based on learning have better
effectiveness and efficiency than traditional model-based methods, but they usually lack
flexibility. To address this issue, Zhang et al. [56] devised an end-to-end trainable unfolding
network (USRGAN) through the fusion of model-based and learning-based techniques. It
inherits the flexibility of the model-based approach while preserving the advantages of the
learning-based approach.

To reduce memory consumption, the authors in [61] suggested an approach for com-
pressing network framework via GAN-based multi-scale feature aggregation, known as
MFAGAN. It enhances training stability and optimizes memory usage using knowledge dis-
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tillation and hardware-aware evolutionary searches. However, it did not yield satisfactory
visual outcomes.

To improve image resolution, especially perceptual quality, G-GANISR was proposed
in [62]. This architecture comprises a generator and a discriminator with distinct loss func-
tions. It generates new results based on quantitative and qualitative measurements. It im-
proves the performance of SISR with a gradual growth factor. For instance, Zhang et al. [63]
proposed RankSRGAN to optimize the generator on the perceptual metric.

There are certain similarities between natural imagery and remote sensing imagery,
therefore several of the aforementioned super-resolution reconstruction techniques utilized
for natural imagery can be applied to remote sensing imagery. It is possible to seek
to generate more realistic texture details by adding residual layers and random noise.
The process of knowledge distillation and hardware-aware stabilization has the potential
to create remote sensing images that are more realistic.

3.2.2. Face Images

The result of the SR image method based on MSE appears excessively smooth, poten-
tially resulting in the loss of certain textural details. GAN-based SR can achieve higher
perceptual quality. Nonetheless, artifacts may manifest during image reconstruction, posing
a potential threat to the integrity and clarity of the resulting images.

In their study, Zhang et al. [57] utilized the supervised pixel GAN (SPGAN) technique
to carry out super-resolution reconstruction on facial images. Using multiple scaling factors
of LR images makes it possible to obtain high-quality facial images while eliminating any
potential artifacts.

Another solution, known as GLEAN [64], takes advantage of prior knowledge from a
pre-trained GAN to generate realistic textures. GLEAN only needs to perform a single for-
ward pass to generate the enlarged image. The magnification factor can reach a maximum
of 64×. In [65], a GAN neural network architecture was employed to reconstruct facial im-
ages. Within the framework of GAN, an initial residual neural network is used to enhance
the caliber of the generated images and establish stability throughout the training process.

Face images often have low resolution and may be obscured. To capture high-
resolution facial images without any obstruction, Cai et al. [66] proposed a deep gen-
erative adversarial network called FCSR-GAN and utilized it for enhancing facial details to
enhance facial recognition accuracy.

While it is possible to achieve high perceptual quality in reconstructed face images by
including information like landmarks and identity, obtaining this additional information
can be challenging in various situations. The authors in [67] focused on obtaining useful
information from face images. A face image reconstruction method is proposed that uses
edge information to enhance the results.

The resolution of the face image determines the accuracy of face recognition. The au-
thors in [68] proposed a super-resolution reconstruction method for face images using
wavelet transformation and super-resolution generative adversarial network, which meets
the face recognition requirements for high-resolution faces. They first utilized wavelet trans-
form to extract texture features from facial images. Next, they used generative adversarial
networks (GANs) to acquire prior knowledge. The accomplishment of super-resolution
reconstruction is made possible by utilizing a deep learning model called SRGAN.

While the GAN prior has significantly improved realism, prior art methods still suffer
from local structural and color inconsistencies. The authors in [69] designed a pooling-based
decomposition (PD). The application of PD elevates the performance of state-of-the-art
super-resolution and enhances the speed of training convergence by a significant margin
of 2–10 times. The method put forward in this research helps to address the issue of color
inconsistency between the original image and the reconstructed remote-sensing image. It
also hastens model convergence and shortens training time.

Face images and remote sensing images contain rich visual information that can be
used for recognition and classification tasks. Remote sensing images can be edge-enhanced
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and wavelet-transformed to create realistic textures and extract actual image data. Similarly,
we can use multi-scale LR images in the super-resolution reconstruction of remote sensing
images to eliminate the artifact problem in the reconstructed images.

3.2.3. Medical Images

The demand for high-resolution medical images has been steadily increasing in recent
years. The research on enhancing image clarity using super-resolution reconstruction
techniques for low-resolution medical images has recently become a topic of great interest.
The GAN-based approach produces a higher level of perceptual quality.

To minimize computing and storage costs, Ma et al. [70] introduced the PathSRGAN
technique. This is a progressive multi-supervised super-resolution model based on GAN.
With the development of artificial intelligence, SR reconstruction technology has gradually
become an effective means to improve the spatial resolution of medical images. LMISR-
GAN employs relativistic averaged GANs to enhance the quality of medical imaging.

Both medical and remote sensing images are used for data acquisition through specific
equipment. They all consist of pixels, and each pixel contains information on a specific
location. Therefore, relativistic mean generative adversarial networks can be ported and
applied to super-resolution reconstruction on remote sensing images.

3.3. Blind Super-Resolution Reconstruction Models

Blind SR reconstruction seeks to achieve super-resolution reconstruction of LR images
with unknown degradation types [71]. Due to its practical significance, the subject has at-
tracted considerable attention from both professionals and scholars. Blind super-resolution
reconstruction models can be classified as explicit or implicit modeling, depending on
whether the degradation information is parameterized.

3.3.1. Explicit Modeling

Explicit modeling is estimating the degradation of characteristics based on a priori
knowledge, including noise, downsampling, fuzzing, etc. Bell-Kligler et al. [59] proposed
the Kernel GAN, an internal GAN specifically designed for image processing. Realistic LR
images are a crucial step in the process of SR reconstruction. Unsupervised Kernel GAN
is a deep learning approach that uses an SR-Kernel with unknown estimation. It offers
significant practical advantages.

Bicubic interpolation downsampling can lead to artifacts in LR-HR images and affect
the trained network’s ability to reconstruct real-world LR images accurately. To enhance
current methods for SR reconstruction, Ren et al. [72] introduced the RealSRGAN model.
The whole process consists of three components: gathering real-world data to generate SR,
training various GANs, and combining the prediction results of the trained models.

It is widely recognized that if the model’s sub-pixel degradation model does not match
the actual image, its performance may suffer adverse effects or even produce negative
effects. While the above two models incorporate the fuzzy kernel, they do not consider the
influence of other sources of noise and compression. Therefore, they are still insufficient at
representing the full range of possible image degradation.

To solve this problem, a more practical super-resolution degradation model (BSRGAN)
for deep-blind images was proposed by Zhang et al. [50] in 2021. BSRGAN addresses
fuzziness, downsampling, and noise problems by randomly disrupting their order through
a follow-up permutation strategy. It expands the fuzzy and noise space, enhancing the
model’s capacity to generalize. Wang et al. [52] proposed the REAL-ESRGAN model, which
uses synthetic data exclusively for training. This model extends the classical “first-order”
image degradation to a “higher-order” image degradation model to obtain data closer to the
real degradation. Real-ESRGAN uses the RRDB generator, which is an ESRGAN generator
for enhanced image quality. The discriminator is a U-Net with spectral normalization (SN).
Incorporating SN can enhance training stability.
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3.3.2. Implicit Modeling

In reality, image deterioration can be complex and unpredictable. A simple combi-
nation of several degradations does not fit the realistic image degradation well. Implicit
modeling uses GAN to learn the distribution of existing low-resolution image data to obtain
degraded models. Implicit modeling uses additional information to learn data distribution
without relying on explicit parameters.

In actual situations, the kernel of image downsampling is unknown and may be
affected by some level of noise and blurring. The image obtained by bicubic downsampling
is challenging to simulate the degradation of the real scene.

For example, Yuan et al. [58] were inspired by the use of image-to-image transla-
tion and developed a cycle-in-cycle (CinCGAN) architecture based on cycle-GAN [73]
to generate HR outputs. The conventional approach to obtaining LR involves manual
downsampling through a series of bicubic steps. However, the real world often contains
motion, compression, camera noise, and other complex and variable situations.

A degradation GAN model with two processing steps was proposed on paper [74].
The first stage uses different unpaired datasets. The second phase uses the previous step’s
results to educate the GAN model with matched data. The degradation of the GAN model
treats L2 loss as the primary loss and GAN loss as the secondary loss.

Moreover, Zhou et al. [75] introduced an unsupervised super-resolution approach
known as FS-SRGAN. This approach consists of two phases: domain transformation and
super-resolution. Among them, the color-based domain mapping network can mitigate
the color drift during the domain transformation and significantly improve the generaliza-
tion ability.

Deep neural networks have shown promising performance in tasks involving the
reconstruction of high-resolution images. However, real-world image degradation is
often too complex for deep learning methods to address effectively. To address this issue,
Zhao et al. [76] presented a double-loop network. Specifically, the degradation process
from HR to LR is simulated by a GAN network in the first recurrent network. Specifically,
degrading HR images to LR is simulated by utilizing a GAN network in the initial, recurrent
network. Afterward, the network is reconstructed using the images generated during the
super-resolution (SR) training phase. During the second iteration, the training process
of the reconstruction and degradation networks is stabilized by incorporating real-world
low-resolution images.

4. GAN Models for Remote Sensing

In Section 3, we categorized GAN models into two main classes according to whether
the fuzzy kernel is known or not. In this section, we will concentrate on utilizing the
GAN model for remote sensing image-based super-resolution reconstruction modeling.
In addition, we will discuss the influence of noise in remote sensing imagery and the
various fields in which remote sensing imagery can be applied.

4.1. The Effect of Noise in Remote Sensing Images

Noise in remote sensing images can have a significant impact on the accuracy and
quality of the data that are obtained. Here are several effects caused by noise in remote
sensing images:

(1) Reduced spatial resolution: Noise in an image can blur the details, resulting in a
loss of clarity and fine-grained information. Identifying and analyzing smaller features or
objects can become challenging due to reduced spatial resolution.

(2) Decreased spectral accuracy: Noise can negatively affect the accuracy of spectral
data recorded by remote sensing sensors. In applications that heavily depend on precise
spectral measurements, like land cover classification or vegetation analysis, this issue can
result in inaccurate or deceptive data interpretations.

(3) Loss of information: The noise has the potential to obscure or distort important
details within an image, ultimately making it more challenging to extract meaningful and
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accurate data from it. The reliability of analysis and decision-making processes based on
remote sensing imagery can be affected.

(4) Reduced contrast and dynamic range: Noise can cause random fluctuations in pixel
values, resulting in reduced contrast and dynamic range. This can pose a challenge when
trying to differentiate between various features or detect subtle changes in the environment.

(5) Increased uncertainty: One challenge that arises from noise in remote sensing
data is increased uncertainty. The presence of noise can impact the reliability of any
derived products or analyses. Inaccurate measurements, misinterpretations, and potentially
erroneous conclusions can result from this.

4.2. GAN-Based Super-Resolution Reconstruction Model for Remote Sensing Images

In remote sensing, including object detection and classification, land surveying,
and disaster monitoring [77], high-resolution imagery is a crucial component that con-
tributes to the success of these applications. In recent years, researchers have shown great
interest in high-resolution remote sensing images [32,78–81]. Incorporating GAN into the
SR process can produce high-quality images with superior perceptual characteristics. Ad-
vanced image characteristics generate greater image complexity, producing a reconstructed
image that is more closely aligned with human visual perception. HR remote sensing
imagery plays a crucial role in statistical analyses of spatial variations in land cover and
land utilization.

For example, Xiong et al. [82] proposed an enhanced version of SRGAN, known as
ISRGAN, which features a modified loss function and network architecture. This upgraded
model demonstrates enhanced stability in the training process and superior generalization
capability. As deep learning advances, its use in remote sensing image processing is also
on the rise. However, there are still problems, such as blurred edges, excessive smoothing,
and artifacts.

To address these concerns, Xu et al. [83] proposed an enhanced GAN framework
with self-attention and texture refinement, known as TE-SAGAN. The model generator
exhibits the ability to extract features and increases the stability of the training process.
The structure of its generator is depicted in Figure 11. TE-SAGAN implements a unified
loss function to improve training efficiency and eliminate imperfections.
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Figure 11. The generator architecture for TE-SAGAN [83].

In addition, Guo et al. [84] conducted research on low-resolution images (obtained
from aerial photography) that are representative of real-world scenarios. The authors
introduce a new dense GAN approach for SR reconstruction of actual aerial imagery
called NDSRGAN to address issues such as texture details that become distorted during
reconstruction. The generation network is shown in Figure 12.
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Figure 12. The generator architecture of NDSRGAN [84].

LR images are fed into the first convolutional layer to obtain the original feature map.
Then, the feature map is fed into the dense network. The discriminative network of the
model is illustrated in Figure 13. A dense multi-layer network is used to link the remaining
dense blocks. The discriminative network employs a matrix average generator to discern
real images at a local level.
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Figure 13. The discriminator architecture of NDSRGAN [84].

As remote sensing images reflect diverse features and information in different regions,
one paper proposed a novel SD-GAN [85] to learn the mapping between LR and HR. This
model employs paired discriminators to assess image quality and minimize the production
of inaccurate textures. EnlightenGAN [86] employs heuristic blocks to facilitate convergence
towards a dependable network output. The generator structure is shown in Figure 14. It
uses self-supervised hierarchical perception to address artifacts. While GAN has made
significant advancements in image SR reconstruction, the resulting images may still exhibit
artifacts and an absence of high-frequency information. TWIST-GAN [87] combines wavelet
transform, and GAN transforms to obtain high-quality remote sensing images.
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Figure 14. The generator architecture of EnlightenGAN [86].

Obtaining LR-HR image pairs in real-world scenes can be challenging, which limits
the applicability of some previously proposed methods. Wang et al. [88] presented an
unsupervised learning framework known as Enhanced Image Prior (EIPGAN). Random
noise is fed into the GAN network to enable SR reconstruction of remote sensing imagery.
Then, the reference image is used as the previous image. Finally, the noise is refreshed,
and the information is transmitted from the reference image.

Due to the inherent limitations of remote sensing technology, only a limited number
of high-resolution images are available for training deep neural networks. A GAN network
was introduced in a paper [89]. The generator acquires the SR image and subsequently
downsamples it to create the LR image. The downsampling results are subsequently
utilized to train the discriminator, thereby enhancing the spatial resolution of remote-
sensing images.

Acquiring HR remote-sensing images is a key issue in GIS. Convolutional neural
networks encounter challenges when trying to model larger scales. Jing et al. [90] sug-
gested the SWCGAN model, which combines the strengths of the Swin Transformer and
convolutional layers. The Swin Transformer layer is combined with convolutional layers to
construct a generative network capable of producing HR images.

Despite the widespread use of deep learning methods for image super-resolution,
they still have limitations when restoring high-frequency edge details in images contam-
inated with noise. A study [91] presented edge-enhanced generative adversarial net-
work architectures. EEGAN mainly consists of ultra-dense subnetworks (UDSNs) and
edge-enhanced subnetworks (EESNs). The satellite image reconstruction performance is
improved more robustly.

Recently, Zhao et al. [92] presented an SR model called the second-order adversarial at-
tention generator network (SA-GAN), which is based on real-world remote sensing imagery.
The generator network of SA-GAN utilizes a second-order channel attention mechanism
and a region-level nonlocal module to effectively leverage the a priori knowledge in LR
images. In addition, SA-GAN employs region-aware loss to mitigate the generation of
artifacts. The region perception proposed by the SA-GAN model offers new insight into
how to address the artifact problem, which is frequently caused by the reconstruction
impact of remote sensing images based on GAN model.

4.3. The Applications of SR Based on Remote Sensing

SR has a wide range of applications in remote sensing. The scientific and technological
field of remote sensing involves using sensors on platforms such as satellites and aircraft
to gather geospatial data about the Earth’s surface. Here are several examples of remote
sensing-based super-resolution applications:

(1) Feature classification and object detection: Super-resolution enhances the spatial
detail of an image, resulting in improved accuracy for feature classification and object



Remote Sens. 2023, 15, 5062 19 of 34

detection. Object detection in high-resolution images can facilitate the identification of
various elements, such as buildings, pools, vehicles, and more.

(2) Agricultural management: The utilization of super-resolution technology holds
great promise in enhancing the monitoring of crops and land use. Converting low-
resolution remote sensing images into high-resolution images allows for the accurate distinc-
tions of different crop species, detection of infestations and diseases, and precise application
of fertilizers. This technology allows for accurate and efficient agricultural management.

(3) Disaster monitoring and emergency response: Super-resolution technology is
crucial in disaster monitoring and emergency response. High-resolution imagery can be
used to accurately assess the extent of damage caused by natural disasters such as floods
and forest fires. This allows relevant organizations to quickly take appropriate rescue and
recovery measures.

(4) Environmental monitoring: The use of high-resolution remote sensing imagery
facilitates the implementation of ecological remote sensing monitoring missions. It is
effective for monitoring water quality, tracking harmful algal blooms, and assessing coral
reef health.

(5) Urban planning and land management: Super-resolution methodologies can help
urban planners better understand the characteristics and patterns of urban environments.
The use of high-resolution imagery allows for more accurate assessment of urban structures,
transportation systems, vegetation coverage, and other factors that inform urban expansion
and land governance.

5. Datasets and Evaluation Metrics
5.1. Datasets

Data serves as the input for deep learning. The quantity and quality of data are crucial
to the training of models, as well as their ability to achieve accuracy and generalization.
Accurate data can accelerate model training and enhance the precision and generalization
of the model. The main datasets commonly used in the SR reconstruction of natural images
are DIV2K [93], Flickr2K [94], BSD300 [95], BSD500 [96], and ImageNet [97], etc. Set5 [98],
Set14 [99], BSD100 [95], and Urban100 [100] are commonly used as benchmark datasets.

RealSR [101] is primarily utilized for validation to assess model effects and en-
able prompt parameter adjustments. Remote sensing image datasets, AID [102], WHU-
RS19 [103], and NWPU-RESUSC45 [104], have been extensively used for image super-
resolution reconstruction. The datasets commonly used in super-resolution reconstruction
tasks (natural and remotely sensed images) are summarized in Table 1, giving a brief
description of the datasets.

The DIV2K dataset is widely used in super-resolution reconstruction tasks. It includes
a total of 1000 photographs, with 800 designated for training, 100 selected for testing,
and an additional 100 images for validation purposes.

Flickr2K consists of 2650 PNG images primarily classified as people, animals, and land-
scapes. Set5 and Set14 are widely recognized test sets for evaluating the super-resolution
reconstruction algorithms, capable of assessing the true learning capability of the network.

The AID dataset for remote sensing imagery includes 10,000 images of 30 scenes.
The WHU-RS19 dataset, which was released by Wuhan University in 2011, consists of
remote sensing images acquired from Google satellite imagery. The dataset comprises
19 distinct categories of scenes, such as beaches, residential areas, and deserts. Each image
is 600 × 600 pixels.
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Table 1. Commonly used natural and remotely sensed image datasets for super-resolution recon-
struction tasks.

Dataset Format Number Resolution Category

DIV2K [93] PNG 1000 (1972, 1437) people, scenery, animal, decoration, etc.
Flickr2K [94] PNG 2650 (2048, 1080) people, animal, flower, etc.
BSD300 [95] JPG 300 (435, 367) animal, scenery, decoration, plant, etc.
BSD500 [96] JPG 500 (432, 370) animal, scenery, decoration, plant, etc.

T91 [26] PNG 91 (264, 204) fruit, people, flower, etc.
Set5 [98] PNG 5 (313, 336) baby, butterfly, bird, head, woman

Set14 [99] PNG 14 (492, 446) pepper, zebra, coastguard, foreman, etc.
BSD100 [95] JPG 100 (481, 321) animal, scenery, plant, etc.

Urban100 [100] PNG 100 (984, 797) building, architecture, scenery, etc.
AID [102] JPG 10,000 (600, 600) airport, desert, farmland, pond, etc.

WHU-RS19 [103] JPG 1005 (600, 600) beach, bridge, forest, parking, etc.
UCAS-AOD [105] PNG 910 (1280, 659) car, airplane

RSC11 [106] TIF 1232 (512, 512) denseforest, grassland, roads, etc.
NWPU-RESISC45 [104] PNG 31,500 (256, 256) commercial area, harbor, island, etc.

RSSCN7 [107] JPG 2800 (400, 400) parking lots, residential areas, lakes, etc.
UC Merced [108] PNG 2100 (256, 256) farmland, bushes, highways, overpasses, etc.
SIRI-WHU [109] TIF 2400 (200, 200) agriculture, industrial, river, etc.

ITCVD [110] JPG 135 (5616, 3744) vehicles, buildings, etc.
DIOR [111] JPG 23,463 (800, 800) stadiums, bridges, dams, ports, etc.
DOTA [112] PNG 2806 (800, 4000) swimming pool, bridge, plane, ship, etc.

The NWPU-RESUSC45 contains 31,500 optical remote sensing images with a pixel
size of 256 × 256. It covers 45 scene categories: airports, basketball courts, palaces, etc.
The RSC11 remote sensing image dataset [106] contains 11 categories, including dense-
forests, grasslands, overpasses, and roads, with about 100 in each group, giving a total
of 1232.

Besides the datasets mentioned in the Table 1, Manga109 [113], OutdoorScene [114],
VOC2012 [115], and CeleA [116] can also be utilized for SR reconstruction.

Hyperspectral resolution remote sensing is a technique that involves continuously
capturing remote images of features using narrow and continuous spectral channels. Hy-
perspectral images possess a significant level of spectral resolution and encompass a
vast amount of valuable information, encompassing both radiometric and spatial aspects.
The following collection comprises multiple datasets consisting of hyperspectral remote
sensing images:

• Washington DC dataset [117]: The Washington DC data refer to an aerial hyperspectral
image acquired by the HYDICE sensor. The data size is 1208 × 307. Categories of
features include roofs, streets, graveled roads, grassy areas, etc.

• The Berlin–Urban–Gradient dataset [118] contains HyMap hyperspectral imagery at
different resolutions and simulated EnMap hyperspectral imagery. The real MyMap
data contain 111 bands. The dataset with a spatial resolution of 3.6 m has dimensions
of 6895 × 1803, and the data with a spatial resolution of 9 m is 2722 × 732.

• Airborne hyperspectral datasets [119] contain 128 bands ranging from 343 to 1018
nanometers. There are 19 categories of features, all-encompassing in both urban and
rural areas.

5.2. Evaluation Metrics

The quality assessment of reconstructed images can be divided into two main cat-
egories: based on human senses and based on image quality [120], i.e., subjective and
objective assessments. Subjective evaluation relies on a human observer to evaluate the
quality of the image qualitatively. This approach is based on statistical significance, which
is in line with practical requirements. However, it is important to note that there are certain
limitations: (1) personal preferences have a significant influence on evaluation results;
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(2) the evaluation process demands substantial labor and resources. It cannot be automated
and inefficient. In contrast, image quality assessment is considered to be more objective.
Therefore, image quality evaluation is frequently utilized in practical applications.

Image quality evaluation metrics can reflect the reconstruction effect of the model.
In this section, we introduce some image quality evaluation methods.

5.2.1. Peak Signal-to-Noise Ratio (PSNR)

Currently, PSNR [121] is commonly used to evaluate image and video processing.
It calculates the degree of image distortion with the help of mean square error (MSE).
A higher value indicates that the distorted image is more similar to the reference image,
meaning better picture quality. The calculation formulas are as follows.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2, (11)

PSNR = 10 · log10(
MAX2

I
MSE

), (12)

where I and K represent the reference and distorted images, respectively, both M × N.
MSE is the outcome of comparing the differences between each pixel of the two images.
The MAX peak signal is typically represented by a value of 255 when using 8 bits per pixel.
PSNR is a quantitative measure of image quality that considers the sensitivity to errors. It
does not consider the optical properties of the human eye, so the assessment results may
differ from human visual perception.

5.2.2. Structural Similarity (SSIM)

SSIM [121] (structural similarity index) is a full-reference metric used for evaluating
the quality of an image. This metric measures both the extent of distortion and the degree
of similarity of an image. It is a thorough assessment of visual representation in terms of
luminosity, disparity, and form, respectively, and is more in line with the perception of the
human eye. The value range of SSIM is [0, 1]. Higher values lead to less image distortion,
defined as follows:

SSIM = [l(x, y)]α[c(x, y)]β[s(x, y)]γ, (13)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, (14)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (15)

s(x, y) =
σxy + c3

σxσy + c3
, (16)

where α, β, and γ are weighting parameters that represent the share of three different
features in the SSIM measure: brightness, contrast, and structure, respectively. l(x, y)
represents the brightness comparison, c(x, y) is the difference comparison, and s(x, y) is
the texture comparison. µx and µy represent the average of x and y, respectively. σx and
σy represent the standard deviations of x and y, respectively. σxy denotes the covariance
between x and y. c1, c2, and c3 are constants that can prevent system errors caused by
denominators equaling zero.
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5.2.3. Mean Opinion Score (MOS)

The mean opinion score (MOS) [122] is a metric for evaluating images that measure
the perceived quality of the reconstructed image. The evaluator assesses the quality of the
image based on objective factors rather than personal perception.

MOS =

k
∑

i=1
nici

k
∑

i=1
ni

, (17)

where ci denotes each type of score and ni is the number of people scoring each type of
score. MOS is affected by various factors, including emotions, motivations, preferences, etc.
These factors can contribute to the production of truly equitable evaluation results.

In addition to the evaluation metrics mentioned above, there are many other evalua-
tion criteria [123–125], including learned perceptual image patch similarity (LPIPS) [126].
Perceptual loss is used to assess the dissimilarity between two images. The LPIPS value
decreases as the similarity between two images increases; conversely, the magnitude of
the difference increases as the LPIPS value increases. The natural image quality evaluator
(NIQE) [127] is an objective evaluation metric. It uses natural landscape elements as features
to evaluate test images and predicts their quality based on these “quality-aware” features.

6. Comparison and Analysis of State-of-Art Models on Remote Sensing Image

In the field of remote sensing imagery, super-resolution is a serious discomfort. Many
factors can affect image quality, including the atmosphere and imaging equipment.

Remote sensing images typically showcase diverse landscapes, such as airports, forests,
farmlands, and buildings. A remote-sensing image contains various scene components and
abundant textural and structural information. In the domain of remote sensing, images
with a high level of resolution hold significant value. HR can efficiently identify objects and
analyze environmental situations. Applying super-resolution reconstruction to remote sens-
ing images can significantly improve the accuracy of environmental monitoring [128,129],
object recognition [130–132], and scene classification [133], etc.

To more visually show the reconstruction of the models mentioned in Sections 3 and 4,
this section presents five different models, namely bicubic, SRGAN, ESRGAN, RankSR-
GAN, and BSRGAN. The selected models have been chosen to showcase visualization
effects and demonstrate their practical applications on remote sensing images. We trained
the above-mentioned model and evaluated its performance on the RSC11 and AID datasets.
The RSC11 dataset has an image resolution of 512 × 512, while the AID dataset has a
resolution of 600 × 600.

6.1. Comparison and Analysis of Remote Sensing Image Models Using the Same
Degradation Method

Since different reconstruction models have different methods of image degradation,
the initial step is to standardize variables and apply BSR degradation consistently. We
demonstrate the super-resolution reconstruction results of the five models using the RSC11
remote sensing dataset in Table 2. The analysis shows that the GAN reconstruction tech-
nique yields better image metrics than the bicubic method. The SRGAN model achieved
the best performance metrics among them. The effect is shown in Figures 15–17.

In Figures 15–17, (a) is a low-resolution image degraded by BSR. And figure (b)
represents the original high-resolution image. The results from (c) to (g) represent the effect
graphs of reconstruction using bicubic, SRGAN, ESRGAN, RankSRGAN, and BSRGAN
models, respectively.
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Table 2. Results of PNSR and SSIM for each model on each category of the RSC11 dataset.

Bicubic SRGAN ESRGAN RankGAN BSRGAN
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

denseforest 25.77/0.5288 26.66/0.5080 25.38/0.4106 24.73/0.3894 25.19/0.4398
grassland 24.22/0.4355 26.28/0.4577 26.05/0.4361 25.35/0.3971 27.57/0.5507

harbor 17.46/0.4169 18.76/0.4264 17.92/0.3649 17.89/0.3349 17.78/0.4094
highbuildings 19.52/0.4423 21.87/0.5612 20.62/0.4759 21.35/0.5056 20.68/0.5790
lowbuildings 18.72/0.3568 20.87/0.4777 20.11/0.4470 20.34/0.4177 20.07/0.4969

overpass 19.54/0.3797 21.43/0.4586 20.44/0.3893 20.39/0.3669 20.58/0.4502
railway 19.93/0.3703 22.45/0.4697 21.43/0.4186 21.51/0.3928 21.71/0.4905

residentialarea 19.76/0.4064 20.61/0.4398 19.96/0.3981 19.50/0.3514 19.55/0.4186
roads 19.94/0.4115 22.31/0.5031 21.25/0.4420 21.37/0.4325 21.12/0.4866

sparseforest 23.10/0.3627 24.67/0.3813 23.37/0.3041 23.60/0.3236 24.61/0.3806
stroagetanks 18.90/0.3764 20.62/0.4538 19.75/0.4053 19.96/0.3944 19.76/0.4629

As depicted in Figure 15, the BSRGAN model produces highly detailed reconstructions
that offer superior definitions compared to the other four models. The images reconstructed
by the bicubic and SRGAN models produced low-quality and blurred results. They solely
concentrate on the scores of evaluation indicators, disregarding the realistic representation
of individuals.

  图10       RSC11 high buildings     HR                           Bicubic           
SRGAN                              
          ESRGAN                   RankGAN        BSRGAN             

              (b)                                    (c)                                   (d)

            (e)                                    (f)                                   (g)

(a)

Figure 15. Comparison of the effectiveness of different SR methods for × 4 super-resolution re-
construction applied to the highbuildings category within the RSC11 dataset. (a) LR, (b) HR,
(c) bicubic [16], (d) SRGAN [54], (e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].

Figure 16 displays an image selected from the low buildings category within the RSC11
dataset as a representative example. The bicubic super-resolution results exhibit a faint
appearance and lack intricate details in terms of the reconstruction outcomes. The recon-
struction results indicate that the performance of bicubic super-resolution is inferior. This
method produces faint images that lack detailed information. The SRGAN, ESRGAN,
and RankSRGAN algorithms offer more accurate information in the reconstructed results
compared to the bicubic algorithm. However, it is worth noting that some noise and
artifacts may be present around the edges. The BSRGAN model produces superior visual
outcomes, although it does exhibit some degree of excessive smoothing.
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图11

                 (b)                                               (c)                                               (d)

              (e)                                              (f)                                                (g)

(a)

Figure 16. Comparison of the effectiveness of different SR methods on × 4 super-resolution re-
construction applied to the ‘lighbuildings’ category within the RSC11 dataset. (a) LR, (b) HR,
(c) bicubic [16], (d) SRGAN [54], (e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].

As illustrated in Figure 17, Figure (b) shows that the reconstruction effect of the bicubic
method has obvious checkerboard artifacts. The color brightness of the reconstructed image
using BSRGAN is more similar to that of the actual HR image. The noise in the recon-
structed image is minimal, and the details within the graph are more distinct compared to
alternative algorithms.

图12

                 (b)                                               (c)                                               (d)

              (e)                                              (f)                                              (g)

(a)

Figure 17. Comparison of the effectiveness of different SR methods on × 4 super-resolution recon-
struction applied to the RSC11 dataset ‘residentialarea’ category. (a) LR, (b) HR, (c) bicubic [16],
(d) SRGAN [54], (e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].
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6.2. Comparison and Analysis of Remote Sensing Image Models Using the Different
Degradation Method

Table 3 shows the reconstruction metrics achieved by the five models on the AID
dataset using various degradation techniques. The reconstruction algorithm based on GAN
outperforms the traditional bicubic algorithm in 31 categories of the AID dataset.

Table 3. Results of PNSR and SSIM for each model on each category of the AID dataset.

Bicubic SRGAN ESRGAN RankSRGAN BSRGAN
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Airport 18.71/0.3662 26.27/0.7180 25.20/0.6576 25.14/0.6300 22.08/0.5507
BareLand 19.22/0.3204 32.18/0.8011 29.33/0.6849 31.48/0.7075 27.00/0.6718

BaseballField 20.92/0.4611 27.74/0.7553 26.27/0.6673 26.82/0.6721 23.51/0.6194
Beach 19.83/0.4054 29.54/0.7762 28.41/0.7258 29.38/0.7273 25.23/0.6835
Bridge 21.29/0.4974 28.35/0.7729 26.95/0.7192 27.14/0.7174 23.80/0.6497
Center 18.38/0.3911 24.51/0.6750 23.86/0.6310 23.74/0.6018 20.51/0.5095
Church 18.03/0.3816 21.88/0.5924 21.66/0.5557 21.19/0.5113 19.01/0.4103

Commercial 19/15/0.4390 25.36/0.6962 23.80/0.6023 23.58/0.5699 20.80/0.4654
DenseResidential 17.85/0.3779 22.24/0.6044 21.20/0.5189 21.17/0.5010 18.49/0.3568

Desert 18.52/0.2883 32.87/0.8360 31.89/0.7989 34.66/0.8186 30.47/0.8014
Farmland 21.98/0.4387 30.89/0.7701 29.47/0.7099 29.93/0.7037 26.92/0.6669

Forest 22.56/0.4284 26.56/0.6031 22.69/0.3757 24.41/0.4678 22.80/0.3242
Industrial 18.12/0.3761 24.70/0.6790 23.43/0.5999 23.32/0.5743 20.24/0.4531
Meadow 23.32/0.4351 30.56/0.6824 28.06/0.5241 28.50/0.5345 28.36/0.5984

MediumResidential 19.83/0.4032 24.86/0.6316 23.66/0.5457 23.99/0.5327 21.00/0.4270
Mountain 20.82/0.4369 27.01/0.6874 24.40/0.4992 24.85/0.5176 22.16/0.4137

Park 20.07/0.4404 26.03/0.6894 24.06/0.5691 24.22/0.5508 21.73/0.4647
Parking 17.25/0.3817 22.67/0.7014 21.93/0.6512 21.96/0.6079 18.35/0.4941

Playground 20.36/0.4458 27.97/0.7531 26.39/0.6833 27.22/0.6921 23.27/0.6163
Pond 21.80/0.4966 27.79/0.7419 26.22/0.6679 26.64/0.6734 24.13/0.6180
Port 19.06/0.4847 24.64/0.7510 23.71/0.7195 23.60/0.6937 20.60/0.6256

RailwayStation 18.99/0.3883 25.72/0.6822 24.29/0.5935 24.22/0.5732 21.17/0.4388
Resort 18.91/0.4112 25.38/0.6890 23.74/0.5930 24.18/0.5872 20.98/0.4875
River 21.64/0.4448 28.26/0.7058 25.94/0.5785 26.57/0.5881 24.38/0.5355

School 19.06/0.4367 24.58/0.6774 23.06/0.5773 23.27/0.5669 20.18/0.4503
SparseResidential 21.27/0.3773 24.71/0.5649 22.95/0.4223 23.24/0.4302 21.73/0.3343

Square 18.90/0.4124 26.08/0.7068 24.59/0.6290 25.08/0.6186 21.17/0.5121
Stadium 18.69/0.4245 24.97/0.7011 24.19/0.6520 24.15/0.6320 20.70/0.5352

StorageTanks 18.71/0.3871 24.20/0.6511 23.49/0.5915 23.30/0.5620 20.55/0.4821
Viaduct 19.57/0.4066 25.47/0.6656 24.13/0.5750 24.17/0.562 21.24/0.4380

Three images were selected from the reconstruction results of the AID test dataset to
demonstrate the effect. For a better view of the reconstruction effect, we zoomed in on the
local details of the reconstructed image. The results are shown in Figures 18–20.

Figure 18 depicts the impact of using the SR approach with × 4 integration on the AID
dataset. It can be seen by local scaling that the ESRGAN model has the best reconstruction
effect compared to other models. The reconstruction generated by the BSRGAN model
seems overly polished and lacks substantial textural nuances.

As demonstrated in Figure 19, the bicubic, SRGAN, and RankSRGAN algorithms have
limitations in effectively processing noise, and the reconstructed images are blurry with
severe artifacts. The reconstructed image displays a degree of blurriness. The ESRGAN
algorithm enhances image reconstruction by providing vibrant colors. The edge definition
is more complex and closely matches the original image.
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(a)

(b)       (c)              (d)

(e)       (f)              (g)

Figure 18. The outcomes of various super-resolution techniques in × 4 reconstructions for the
Beach group of the AID dataset. (a) Original figure, (b) HR, (c) bicubic [16], (d) SRGAN [54],
(e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].

              (b)                                         (c)                                         (d)

          (e)                                         (f)                                         (g)

(a)

Figure 19. The outcomes of various super-resolution techniques in × 4 reconstructions for the
bridge group of the AID dataset. (a) Original figure, (b) HR, (c) bicubic [16], (d) SRGAN [54],
(e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].

Figure 20 features an image representative of the Square category in the AID dataset.
By zooming in locally, we can observe that the ESRGAN model produces a reconstruc-
tion effect that closely resembles the original image. The edge texture of the road and
lawn is preserved. Ringing artifacts appear in the SRGAN model reconstruction results.
The reconstructed image produced by BSRGAN displays certain limitations in terms of
spatial details.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 20. The outcomes of various super-resolution techniques in × 4 reconstructions for the
Square group of the AID dataset. (a) Original figure, (b) HR, (c) bicubic [16], (d) SRGAN [54],
(e) ESRGAN [55], (f) RankSRGAN [63], (g) BSRGAN [50].

7. Current Challenges and Future Directions

We presented recent research updates on GAN-based super-resolution reconstruction
techniques and related applications. It can be seen that this technique has been tremen-
dously developed. However, there are still many pressing problems and challenges in the
field of image super-resolution reconstruction. The resolution of the image is crucial to the
success of image applications, especially when using remote sensing imagery. Compared
with natural images, remote sensing images are characterized by complex information,
wide range, diverse application scenarios, and are affected by external factors such as atmo-
spheric conditions. The difficulties of image super-resolution reconstruction are discussed
in this section, along with possible future developments. We believe that these directions
will motivate more people to participate in image super-resolution reconstruction research,
promote the development of remote sensing image processing technology, and contribute
to the progress of remote sensing.

7.1. Challenges of Super-Resolution and Major Concerns

Throughout the process of capturing images, it is important to acknowledge that cer-
tain factors, such as hardware limitations and atmospheric conditions, can occasionally lead
to the production of blurred or low-resolution images. These outcomes are inherent and
cannot be entirely eliminated. The observed phenomenon of low recognition accuracy has
been found to have a detrimental impact on the successful completion of subsequent tasks.

Super-resolution reconstruction refers to the computational methods and techniques
employed to enhance the resolution of an image. This process involves the utilization of
algorithms and computational models to generate a higher-resolution version of the original
image. The primary objective of super-resolution (SR) in the context of remote sensing
images is to enhance the precision of low-level visual tasks, particularly object detection,
through the utilization of high-resolution (HR) images. Nevertheless, it is imperative
to consider certain ethical and security concerns associated with the utilization of GAN
models in conjunction with super-resolution reconstruction methodologies.

(1) Data privacy: GAN requires a large amount of training data, which may include
sensitive information. It is vital to ensure proper data management and protection to
prevent any potential privacy breaches or misuse of personal data.

(2) Error message and false information: It has been observed that GANs possess
the capability to generate images that are remarkably realistic in appearance, despite
being entirely synthesized. The potential implications of this phenomenon revolve around
the dissemination of inaccurate or deceptive information, which could potentially lead to
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adverse social consequences and decreased public confidence. Efforts should be undertaken
to establish and enforce measures aimed at mitigating the potential misuse of GANs for the
purpose of producing and distributing fraudulent visual content.

(3) Safety and security: The implementation of expansive network infrastructures
in pivotal sectors like healthcare or transportation necessitates the meticulous evaluation
of potential safety and security hazards. The potential for malicious manipulation of
GAN-generated images by actors with nefarious intentions is a matter of concern. Such ma-
nipulation has the potential to deceive or inflict harm upon the system in question. In order
to uphold the dependability and authenticity of reconstructed images, it is imperative to
incorporate robust security measures and rigorous testing protocols.

7.2. Future Directions

With the continuous evolution of deep learning, an increasing number of super-
resolution reconstruction algorithms are being developed based on this technology. Many
research results have been achieved, and various fields hope that super-resolution recon-
struction can have deeper and wider applications in the field of image processing. There
are still outstanding problems to be solved in remote sensing image processing, which
remains the prevailing focus of the future development of super-resolution reconstruction.

(1) Remote sensing images are known for their complex backgrounds, unique shooting
angles, wide surveillance ranges, instantaneous imaging, real-time transmission, and other
notable features. In practical situations, images may undergo various types of degrada-
tion, and acquiring image pairs for training is extremely difficult. Thus, in the case of
degenerate models, one can select a matching model for a particular situation and perform
unsupervised learning.

(2) Currently, the evaluation criteria for super-resolution images are predominantly
comprised of two objective metrics: PSNR and SSIM. However, it is important to note that
the quantitative index alone may not fully capture the true impact of image reconstruction.
There could be discrepancies between the index’s results and how humans visually interpret
the images. The evaluation method based on subjective factors requires significant material
and human resources. Therefore, an appropriate strategy for evaluating reconstructed
images is urgently needed.

(3) The operational efficiency of an algorithm is an important indicator for evaluating
the quality of the algorithm. While current reconstruction algorithms can produce high-
quality images, the processing time required for algorithms tends to increase as image
magnification levels rise. And it consumes a lot of memory resources. To meet practical
requirements, the model needs further refinement to improve operational effectiveness
while maintaining the quality of the reconstructed image. Undoubtedly, this is a crucial
area for future research.

(4) Numerous super-resolution models exist, and the image SR reconstruction models
may vary across different research studies. When researching remote sensing image
reconstruction, it is essential to consider the distinct characteristics of the image and the
potential for real-world deterioration. With this approach, it becomes feasible to devise a
reconstruction framework that is highly compatible with remote-sensing images.

(5) A sensor is a device that collects, detects, and records the energy emitted by electro-
magnetic waves from an object or phenomenon. Remote sensing relies heavily on sensors,
making them an indispensable component of the technique. The capability of remote sens-
ing is determined by the performance of the sensor. Combining data from various sensors,
such as cameras, LiDAR, and radar, can be challenging due to their different characteristics
and measurement techniques. A major challenge in sensor registration is the difference in
sensor modalities. Another challenge that arises is the temporal synchronization of sensor
data. In order to address these challenges, researchers have the opportunity to develop
more sophisticated sensor fusion algorithms. To achieve precise alignment and fusion of
sensor data, various techniques are employed, including feature matching, point cloud
registration, probabilistic filtering, and deep learning.
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8. Conclusions

This paper provides an overview of the super-resolution image reconstruction tech-
nique that utilizes generative adversarial networks, along with its basic principles and
relevant studies. It includes frequently used datasets for both natural and remote sensing
images, metrics for evaluating the quality of reconstructed images, operational principles
of GAN networks, and commonly used loss functions, among others. In addition, this
study presents the reconstruction impacts of several models on both natural and remotely
sensed imagery. Despite the significant advances in image super-resolution techniques,
certain challenges still need to be addressed, particularly in relation to suboptimal re-
construction outcomes. In conclusion, we will provide a concise overview of upcoming
methodological trends and approaches. These may involve the development of image qual-
ity assessment metrics that are in line with human visual perception, as well as the creation
of enhanced super-resolution reconstruction models for improved efficiency. We aim to
deepen the researchers’ comprehension of GAN techniques for image SR reconstruction,
specifically emphasizing remote sensing images. And thus, we hope to promote progress
and development.
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