
Citation: Schulien, J.A.; Code, T.;

DeGasperi, C.; Beauchamp, D.A.;

Tonus Ellis, A.; Litt, A.H. Annual and

Interannual Variability in the Diffuse

Attenuation Coefficient and Turbidity

in Urbanized Washington Lake from

2013 to 2022 Assessed Using

Landsat-8/9. Remote Sens. 2023, 15,

5055. https://doi.org/10.3390/

rs15205055

Academic Editors: Jacek Lubczonek,

Paweł Terefenko, Katarzyna Bradtke

and Marta Wlodarczyk-Sielicka

Received: 8 September 2023

Revised: 6 October 2023

Accepted: 11 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Annual and Interannual Variability in the Diffuse Attenuation
Coefficient and Turbidity in Urbanized Washington Lake from
2013 to 2022 Assessed Using Landsat-8/9
Jennifer A. Schulien 1,* , Tessa Code 2,3, Curtis DeGasperi 4, David A. Beauchamp 2, Arielle Tonus Ellis 3

and Arni H. Litt 3

1 Schulien Consulting, Issaquah, WA 98027, USA
2 U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA; tcode@uw.edu (T.C.);

fadave@usgs.gov (D.A.B.)
3 School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA;

ate89@uw.edu (A.T.E.); arni@uw.edu (A.H.L.)
4 King County Water and Land Resources Division, Seattle, WA 98104, USA; curtis.degasperi@kingcounty.gov
* Correspondence: jennifer@schulcon.com

Abstract: Water clarity, defined in this study using measurements of the downwelling diffuse
light attenuation coefficient (Kd) and turbidity, is an important indicator of lake trophic status and
ecosystem health. We used in-situ measurements to evaluate existing semi-analytical models for
Kd and turbidity, developed a regional turbidity model based on spectral shape, and evaluated the
spatial and temporal trends in Lake Washington from 2013 to 2022 using Landsat-8/9 Operational
Land Imager (OLI). We found no significant trends from 2013 to 2022 in Kd or turbidity when both the
annual and full datasets were considered. In addition to the spring peak lasting from April through
June, autumn Kd peaks were present at all sites, a pattern consistent with seasonal chlorophyll a and
zooplankton concentrations. There existed no autumn peak in the monthly turbidity dataset, and the
spring peak occurred two months before the Kd peak, nearly mirroring seasonal variability in the
Cedar River discharge rates over the same period. The Kd and turbidity algorithms were thus each
more sensitive to different sources of water clarity variability in Lake Washington.

Keywords: water clarity; lake; turbidity; Kd(PAR); Landsat

1. Introduction
1.1. Background

Water clarity directly influences and is affected by the spatiotemporal variability in
phytoplankton concentration, composition, and distribution. Additionally, rivers discharge
variable amounts of sediments and colored dissolved organic matter (CDOM), resulting
in optically complex underwater light fields. Several metrics of water clarity are routinely
measured for monitoring lake water quality, including the downwelling diffuse light
attenuation coefficient (Kd) and turbidity. Kd (m−1) describes the rate of light attenuation
with depth in the water column and allows for the quantification of the vertical distribution
of light at or over a specific wavelength rage (λ). Turbidity is defined by the International
Organization for Standardization ISO 7027 [1] using the measurement at 860 nm of 90◦

side-scattered light with respect to Formazin and is measured in Formazin Nephelometric
Units (FNU). The relationships between turbidity, Kd, and other water clarity metrics have
been discussed in detail [2,3]. Knowledge of the spatiotemporal variability in water clarity
is critical for understanding not only water quality trends but also behavioral patterns at
higher trophic levels [4–6].

Over the last decade, numerous studies have applied empirical, machine learning,
and semi-analytical algorithms for retrieving metrics of optical clarity from remote-sensing
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reflectance (Rrs; sr−1) or surface reflectance (ρw; unitless). Both the National Aeronautics
and Space Administration (NASA) and European Space Agency (ESA) use empirical
algorithms, derived using oceanic and coastal datasets, that utilize the blue-to-green ratios
of Rrs and in-situ measurements to calculate Kd(490). Neural networks have also been used
to derive algorithms predicting Kd(λ) from Rrs(λ) [7,8], but as for empirical algorithms,
they are applicable only within the range of data used for model development. In the
context of freshwater research, the authors of [9] found that a Random Forest machine
learning algorithm performed better than 13 previously published empirical algorithms
for predicting water clarity in 397 lakes in the northeastern United States. Alternatively,
the authors of [10], with their findings revised by [11], applied radiative transfer equations
in the Hydrolight software to develop semi-analytical algorithms that derive Kd(λ) as a
function of inherent optical properties (IOPs) and the solar zenith angle (θ).

IOPs are often calculated from Rrs using the quasi-analytical algorithm (QAA) [12],
which was derived using the wavelengths of light measured by historical ocean satellite
sensors (e.g., moderate-resolution imaging spectroradiometer, MODIS) which collect data
at large spatial scales (1 km resolution) appropriate for large-scale ocean studies. The
authors of [13] modified the QAA for use with the Landsat-8 Operational Land Imager
(OLI) data (30 m resolution) and mapped water clarity in an estuary near Xiamen City,
China. This work allowed for the application of IOP-based algorithms to the Landsat time
series, which measures at spatial scales relevant for research of inland water bodies.

Since then, several studies have applied IOP-based algorithms for calculation and
evaluation of water clarity trends in lakes across the globe. The authors of [14] applied the
QAA to Landsat-5 Thematic Mapper (TM) and Landsat-8 OLI data to evaluate water clarity
trends in Lake Taihu, China from 1984 through 2019. The authors of [15] tested multiple
QAA-based algorithms for calculating Kd in Lake Villarrica, Chile to evaluate long-term
trends in water clarity. The authors of [16] also used the QAA to calculate IOPs which were
used with contrast theory to evaluate water clarity trends in more than 270 lakes and ponds
across the continental United States.

For calculation of turbidity in coastal and estuarine environments, the authors of [17]
developed an IOP-based algorithm using in-situ turbidity and ρw(λ) measurements. This
model performed well (R2 = 0.949 at 665 nm) in the southern North Sea, where turbidity
ranged from 0.65 to 83.63 FNU, with a 17.98 FNU mean turbidity concentration. The
authors of [18] built on this research by expanding the range of turbidity values over which
this algorithm was evaluated and applied. For freshwater applications, empirical models
for predicting turbidity have also been developed for analysis of large-scale water clarity
patterns [19,20]. Herein, we (1) evaluated existing semi-analytical models for Kd(PAR) [10]
and turbidity [17], (2) developed a regional turbidity model based on spectral shape, and
(3) evaluated the spatial and temporal trends in Lake Washington from 2013 to 2022 using
Landsat-8/9 OLI.

1.2. Study Area

Lake Washington, which is located east of Seattle, is the second largest natural lake
in Washington state. The lake was glacially formed, with a mean and maximum depth
of 33 m and 65 m, respectively. There are two major inlet tributaries: the Cedar River at
the southern end and the Sammamish River at the northern tip. River inflow peaks from
December through February, while the lowest flows are observed July through September.
The lake outlet is a man-made ship canal that connects Lake Washington to Puget Sound,
and lake retention time is 2.4 years [21].

The limnology of Lake Washington has been extensively studied since the 1950s. The
recovery of lake optical clarity and water quality was highly publicized [21], and bimonthly
monitoring of water quality continues today. Mean annual nitrate, ammonium, and
inorganic phosphorus concentrations are 220 µg L−1, 25 µg L−1, and 9.1 µg L−1, respectively,
making the lake phosphorus limited [22]. The lake experiences annual diatom blooms from
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March to June when chlorophyll a concentrations average 10 µg L−1, but excluding the
spring bloom period, chlorophyll a concentrations remain below 4 µg L−1 [22].

Lake Washington has experienced a precipitous decline in sockeye salmon Oncorhynchus
nerka over recent decades. Once the largest sockeye run in the lower 48 states, the sockeye
fishery declined in the 1980s [23] and was closed in 2006. Predation mortality on juvenile
sockeye salmon, primarily by other fish in the lake, has been implicated as the primary cause
for the population decline [24]. Fish are visual predators, so an understanding of the visual
environment is critical for understanding and predicting fish behaviors and function of lake
food webs. For example, changes in water clarity directly impact the encounter rate between
predator and prey, which can be modeled as a function of the distance predators visibly
respond to prey, termed the reaction distance [25–29]. These studies have revealed that
reaction distance declines exponentially with declining water transparency once turbidity
exceeds 1.5 FNU (1.5 NTU). Piscivorous fishes also exhibit maximum reaction distances at
light intensities above approximately 20 lux declining precipitously with decreasing light
intensities below that threshold distance [25,26,29]. Therefore, an understanding of the
spatiotemporal variability in the underwater optical environment could have significant
implications for understanding the mechanisms driving the declines in juvenile salmon
survival and identifying effective restoration and recovery strategies in the Lake Washing-
ton Basin.

In pelagic habitats, different fish species will occupy different depths as functions
of their unique combinations of physiological responses to thermal stratification [30,31],
foraging strategies [5,32,33], and behavioral and morphological adaptations to predation
risk [34–36]. However, these dynamics are not solely influenced by thermal or optical
factors. The ecology of Lake Washington has been significantly impacted by the presence of
Eurasian milfoil (Myriophyllum spicatum), hereafter referred to as milfoil, an invasive aquatic
plant that established dense macrophyte beds in the majority of littoral habitats down to
depths of approximately 5 m over recent decades [37]. Its presence significantly alters
the environment beneath the water surface, affecting the penetration of light in nearshore
regions and creating microhabitats that significantly alter the distribution of native aquatic
species [38,39] via diel and depth-specific variability in hypoxia [40,41]. The growth of
milfoil varies both seasonally and interannually, further adding to the complexity in the
visual environment used by different fish species and life stages in Lake Washington.

2. Materials and Methods
2.1. Datasets
2.1.1. In-Situ Kd

As part of its water quality monitoring program, King County collects measurements
of Kd (photosynthetically active radiation, PAR [400–700 nm]) at three sites across the
lake twice monthly from March through November and monthly from December through
February (Figure 1b). Data collection was conducted in accordance with the Recommended
Guidelines for Sampling Marine Sediment, Water Column, and Tissues in Puget Sound [42]
and the Standard Operating Procedure for water clarity field measurements [43]. A LI-
193SA (LI-COR, Inc., Lincoln, NE, USA) spherical underwater sensor attached to a SBE
25-Plus Sealogger CTD (Sea-Bird Scientific, Bellevue, WA, USA) was used to collect water
column data, and a QSR-2200 (Biospherical Instruments Inc., San Diego, CA, USA) sensor
was placed above the deck of the Sound Guardian to obtain surface PAR, which was used to
standardize the in-water measurements. Measurements were recorded at a rate of 2 Hertz
and interpolated to final values that represent 0.5 m depth increments. Measurements
collected in the upper 2 m were removed from the analysis because data were consistently
unrealistic (e.g., negative), and the surface water column (0–2 m) was assumed to be uniform
and equal to Kd calculated from the 2–2.5 m depth layer. Light profiles were measured
within +/− 4 h of the Landsat-8/9 overpass time at every site.
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Figure 1. (a) Map of Pacific Northwest with Lake Washington bounded in the red box. (b) Lake
Washington’s 20 m, 40 m, and 60 m bathymetric contours mapped with the independent dataset (blue
diamonds), King County (green triangles), and University of Washington (UW, Madison Park) sites.
The King County buoy is indicated by the red star. Data are collected at the southern site and the
buoy by both King County and as part of this research (independent dataset). King County and UW
both collect data at Madison Park. The scale bar shows distance in miles. (c) Mapped Landsat-8 OLI
spectral shapes corresponding to (d) collected on 20 April 2015. (d) Mean surface reflectance for three
spectral shapes observed at the King County buoy.

The layer-averaged diffuse attenuation coefficient, Kd(PAR; m−1), was calculated
as follows:

Kd =
1

z2 − z1
×ln

Ed(z1)

Ed(z2)
(1)

where Ed(z) is the downwelling irradiance measured using the LI-193SA at depth z. We
accounted for the vertical structure in Kd and calculated the overall surface reflectance,
including the signal contribution down to two optical depths according to [44]. Data
collected at solar zenith angles greater than 80◦ were removed from the analysis.

2.1.2. In-Situ Turbidity

King County collects daily measurements of turbidity from a water quality profiling
buoy (Figure 1b) [45]. Surface data collected using a YSI EXO2 sensor (YSI Inc., Yellow
Springs, OH, USA) from 2018 to 2022 and within +/− 4 h of Landsat-8/9 overpass time
were used for model development. The instrument records turbidity between 0 and
4000 FNU, with an accuracy of 0.3 FNU or +/− 2% of the reading, whichever is greater.
The majority of these data were not collected concurrently with Ed(z), so data collected in
the upper 1 m were averaged for this analysis (i.e., no correction was made to account for
the signal coming from below the surface).

Turbidity data were also independently collected as part of this project from 2021
to 2022 using a YSI 6600V2 sonde at four sites across the lake coincident with satellite
overpass days (Figure 1b). The instrument records turbidity between 0 and 1000 NTU, with
an accuracy of 0.3 NTU or +/− 2% of the reading. YSI’s turbidity sensors have historically
followed the ISO 7027 method, so here NTU is comparable to FNU [46]. The sonde was
submerged for a few minutes before data collection, allowing the sensors to reach the
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ambient temperature. As for the King County turbidity dataset, surface measurements
only were used.

2.1.3. In-Situ Surface Reflectance

An ASD field spectrometer (Malvern PANalytical, Boulder CO) equipped with an
8◦ foreoptic for the selected wavelength rage of 400–900 nm was used to measure in-situ
surface reflectance, ρw(λ). Spectra were measured at 85 total stations on four separate days
(6 July 2023, 15 August 2023, 16 August 2023, 8 September 2023). These data were used to
qualitatively assess and control the OLI data before model evaluation and development.
Radiance data were collected using the ‘above-water method’ with zenith and azimuth
angles equal to 35–40◦ and 135◦, respectively [47]. Ten spectra were acquired and averaged
for each radiance measurement at every station. Spectra were normalized using calibrated
a Spectralon (Labsphere, North Sutton, NH, USA) white panel. Surface reflectance was
calculated from Rrs as follows:

ρw(λ)

π
= Rrs(λ) =

Lw(λ)

Ed(λ)
=

Lwater(λ)− rskyLsky(λ)

πLp(λ)/ρp(λ)
(2)

where Lw(λ) is the water-leaving radiance, Ed(λ) is the downwelling irradiance, Lwater(λ)
is the upwelling radiance from the water, Lsky(λ) is the sky radiance, Lp(λ) is the white
reference panel radiance, ρp(λ) is the white reference panel reflectance, and rsky is the
specular reflectance of skylight at the air–water interface. This value ranges from 0.022 for
calm weather to 0.025 for a wind speed of up to 5 m s−1 [48]; we used a constant value of
0.0245 in this paper.

2.1.4. Landsat-8/9

Landsat-8/9 OLI surface reflectance data were provided by U.S. Geological Survey
(USGS) [49]. Collection-2 Level-2 data were downloaded, so atmospheric corrections
had already been applied [50]. The OLI sensor onboard the Landsat-8/9 satellites has
a 30 m spatial resolution and collects measurements at five bands in the visible range,
listed as 443 nm, 483 nm, 561 nm, and 655 nm [51,52]. The authors of [13] used Rrs(λ) of
equivalent Landsat-8/9 bands for a set of hyperspectral Rrs(λ) measured in oceanic and
coastal environments to identify the center wavelengths for the first four Landsat-8/9 bands
as 443 nm, 481 nm, 554 nm, and 656 nm, respectively. We adopted the representative satellite
bands determined by [13] for consistency between algorithms.

Out of roughly 225 OLI images taken between 2018 and 2022 (Paths 46 and 47 overpass
Lake Washington), 68 had cloud-free pixels corresponding to the daily King County buoy
turbidity measurements. Three spectral shapes were identified in the OLI ρw(λ) dataset at
the buoy (Figure 1d). Spectral shape one was the most frequently observed shape (62% of
pixels). Spectral shape one pixels had a characteristic peak at Band 3; Band 3 (554 nm) was
greater than Band 1 (443 nm) and Band 5 (865 nm). For pixels identified as spectral shape
two, Band 5 was greater than Band 3 which was greater than Band 1. For spectral shape
three pixels, Band 1 was greater than Band 3 which was greater than Band 5. For model
evaluation and development, we qualitatively assessed and controlled the data using the
in-situ surface reflectance spectra collected using the ASD spectroradiometer. Briefly, pixels
of spectral shape two and pixels with Band 4 (656 nm) greater than Band 2 (481 nm) were
removed from both the Kd(PAR) and turbidity analyses. Satellite and in-situ data were
matched and all data analyses were performed using Matlab 2021b (MathWorks, Inc.,
Natick, MA, USA).

2.1.5. Additional Datasets

In order to understand the sources of variability to the water clarity metrics consid-
ered, we utilized chlorophyll a, Cedar River flow, and zooplankton abundance datasets.
Daily chlorophyll a measurements are collected from the King County buoy, which uses
a YSI EXO2 sonde that calculates concentrations in mg m−3 [45]. Chlorophyll a at 0852 is
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measured fluorometrically according to King County Standard Operating Procedure [53].
Cedar River discharge rates, in ft3 s−1, were downloaded from the USGS National Water
Information System web portal [54].

Zooplankton are collected by the University of Washington’s Schindler Laboratory
twice monthly when the lake is stratified (early spring–autumn) and once a month during
winter months when the lake is mixed (mid-autumn–winter). Samples are collected using
a Clarke–Bumpus sampler that allows for quantitative sampling in different strata of the
water column. Samples are collected at an oblique angle through each stratum (10–0 m,
20–10 m, and 58–20 m) assuring that it cuts across Langmuir cells, reducing the effect
of small-scale patchiness. The nets used include a #10 (130 µ) net and a #20 (73 µ) net.
The samples are then collected and preserved in 95% ethanol in the field. All samples
included in this study are collected at the Madison Park station located over one of the
deepest trenches of Lake Washington (about 63 m) and only the #10 10–0 m data are used.
Aberrant concentrations were matched against the corresponding #20 10–0 m sample to
ensure measurement accuracy.

Zooplankton samples are processed using volumetric sub sampling methods. Samples
are drained of ethanol and diluted to a precise volume of tap water. The volume used
to dilute the sample is dependent on the concentration of zooplankton. Replicate 5 mL
subsamples are collected with a wide mouth automatic pipette and delivered to grooved
open trays adapted from [55]. Specimens in the sample are identified and enumerated to
species level, and data are entered into the Lake Washington Microsoft Access database
(data publicly available upon request). The database is updated as new data are collected
and reviewed for quality assurance as needed during the year.

2.2. IOP-Based Algorithms for Deriving Kd and Turbidity
2.2.1. QAA-v6 Lee-Kd(PAR) Algorithm

For calculation of IOPs from Rrs, we used the quasi-analytical algorithm (QAA-v6) [56].
The QAA-v6 utilizes a Rrs(656) threshold value (0.0015 sr−1) under which the algorithm
utilizes Band 3 (554 nm) as the reference. Above the threshold value, Band 4 (656 nm) is the
algorithm reference band.

The King County Kd(PAR) data were used to evaluate, for use in Lake Washington,
the semi-analytical algorithm derived by [10]. Kd(PAR; m−1) is computed as

Kd(PAR) = K1 +
K2√

1 + zp
(3)

where zp is the light penetration depth, which was set to 10 m, and K1 and K2 are calculated
as a function of the solar zenith angle, θ, absorption at 490 nm, a(490), and backscatter at
490 nm, bb(490):

K1 = [χ0 + χ1

(
a(490))0.5 + χ2bb(490)

]
(1 + α0sin(θ)) (4)

K2 = [ζ0 + ζ1a(490) + ζ2bb(490)](α1 + α2cos(θ)) (5)

where χ0 (m−1), χ1, χ2, ζ0 (m−1), ζ1, ζ2, α0, α1, α2 are constants and set to −0.057, 0.482,
4.221, 0.183, 0.702, −2.567, 0.090, 1.465, −0.667. We used a(481) and bb(481) for the Kd(PAR)
calculation since OLI does not have a 490 nm band.

2.2.2. Nechad Turbidity Algorithm

Turbidity (T) was calculated using the semi-analytical algorithm [17]:

T =
ATρw

1− ρw/C
+ BT (6)



Remote Sens. 2023, 15, 5055 7 of 19

where AT(655; FNU) and BT(655; FNU) were set equal to 235.32 and 0.33, respectively,
to match Landsat-8/9 Band 4. C(655; FNU), set to 16.86 × 10−2, was calibrated using
absorption and scattering data as described in [57]. No regional parameterization of these
coefficients could be performed because knowledge of the dissolved component of the
underwater light field is required, and the QAA requires a satellite band at 412 nm for this
calculation, which is not measured by OLI.

2.3. Derivation of Regional Models for Turbidity

We used the turbidity measurements collected at the King County buoy for deriving a
regional model. No correlation was observed between ρw(656) and in-situ turbidity, and
there was a highly significant positive linear relationship between the model errors and
ρw(656). We therefore evaluated the correlation coefficients between spectral shape features
and in-situ turbidity to determine which feature was most predictive of in-situ turbidity
concentrations for the spectral shapes identified. We evaluated the following spectral shape
features for predicting turbidity: (a) the height of Band 3 relative to a baseline drawn from
Band 2 to Band 4 and (b) the differences between reflectance values. Normalized reflectance
values could not be used as a predictor variable because of the high proportion of pixels
with negative values. We used linear least-squares regressions (Matlab 2021b; ’fitlm’) to
solve for model slope and y-intercept.

2.4. Performance Metrics

We used root-mean-squared error (RMSE), mean absolute error (MAE), and bias to
assess the performance of the Kd(PAR) and turbidity algorithms. The performance metrics
were calculated as follows:

RMSE =

√
1
N

ΣN
i=1(yi − ym)

2 (7)

MAE =
1
N

ΣN
i=1|yi − ym| (8)

bias =
1
N

ΣN
i=1(yi − ym) (9)

2.5. Trend Statistics

We used the Matlab function ‘Mann–Kendall’ [58] to evaluate whether a significant
temporal trend in the satellite-derived Kd(PAR) and turbidity datasets existed. To create
datasets equally spaced in time, which is necessary for accurate trend analysis (16 days),
we used the ‘interp1’ function in the Matlab 2021b software.

3. Results
3.1. In Situ Surface Reflectance

An independent dataset of 85 in situ surface reflectance spectra were collected with an
ASD spectroradiometer on 6 July 2023, 15 August 2023, 16 August 2023, and 8 September
2023. All spectra collected in the pelagic were of spectral shapes one and three (Figure 2a).
Two spectra, collected near the shoreline where milfoil was visible from the surface, were of
spectral shape two. Mats of the milfoil can become quite large and detach themselves from
the substrate, collecting on structures such as the buoy and bridges. This could explain
the presence of this spectral shape in the lake center. Spectral shape two pixels are also
observed when wispy, light clouds are present over the lake (e.g., 26 September 2015, 24
October 2019). These observations led us to exclude pixels of spectral shape two from the
analyses. In the in situ surface reflectance data, surface reflectance at Band 4 was never
larger than at Band 2, so pixels with Band 4 greater than Band 2 were also removed from
the analyses.
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Figure 2. (a) Measurements of in-situ surface reflectance (unitless) from 400 to 900 nm. Spectral shape
one spectra are shown in blue and spectral shape three spectra are shown in green. (b) OLI surface
reflectance at the King County Buoy. Data shown in panels (a,b) are independent.

3.2. Performance of Semi-Analytical Models
3.2.1. QAA-v6 Lee-Kd(PAR)

Data collected from three sites (n = 16) containing concurrent measurements of Kd(PAR)
and OLI surface reflectance were used to evaluate the performance of the IOP-based
algorithm derived by [10]. We found that using the QAA-v6 for clear water (554 nm
reference band) for calculation of the input IOPs yielded the Kd(PAR) values closest to the
in-situ measurements. Previous research has also found that using a threshold value does
not apply to inland lakes [59]. The RMSE, MAE, and bias were calculated as 0.19 m−1,
0.15 m−1, and 0.083 m−1, respectively, and the model errors were not correlated with
Rrs(656) (Figure 3b).
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Figure 3. (a) In-situ Kd(PAR) compared to QAA-v6 Lee Kd(PAR). The 1:1 relationship is indicated by
the black line, and data are shown as a function of spectral shape classification. (b) In-situ Kd(PAR)
compared to Kd(PAR) modeled for spectral shapes one and three. The 1:1 relationship is indicated by
the black line, and data are shown as a function of surface reflectance at 656 nm.

3.2.2. Nechad Turbidity

Data collected from the King County buoy (n = 34) and independently as part of
this project (n = 11) containing concurrent measurements of turbidity and OLI ρw(656)
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were used to evaluate the performance of the Nechad algorithm. For direct comparison
to our regional model, model performance was evaluated both with and without spectral
shape three pixels. When both spectral shapes one and three are included in the analysis
at the buoy (n = 43), the RMSE, MAE, and bias were 0.78 FNU, 0.60 FNU, and 0.25 FNU,
respectively. When spectral shape three was removed from the analysis (as for the regional
turbidity algorithm), the model performance improved, and the RMSE, MAE, and bias
decreased to 0.64, 0.51, and 0.11, respectively (Figure 4b). When both spectral shapes one
and three are retained in the independent turbidity dataset (n = 16), the RMSE, MAE, and
bias are equal to 5.7 FNU, 2.8 FNU, and −2.4, respectively. Unlike at the King County buoy,
the model performance decreases when spectral shape three pixels are removed from the
analysis (Figure 4d; RMSE = 6.9 FNU, MAE = 4.0 FNU, bias = −3.6 FNU).Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22 
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Figure 4. (a) Surface reflectance at 656 nm (ρw(656)) plotted against in-situ turbidity at the King
County buoy. Data are shown as a function of spectral shape. The Nechad model is shown by the
black line and the dashed line is a vertical line drawn at 0. (b) In-situ turbidity compared to modeled
turbidity at the buoy for spectral shape one. Data are plotted as a function of ρw(656). The black
line shows the 1:1 relationship. (c) Where data were collected independently, surface reflectance
ρw(656) plotted against in-situ turbidity with data shown as a function of spectral shape. The Nechad
model shown in the black line and the dashed line is a vertical line drawn at 0. (d) In-situ turbidity
compared to modeled turbidity at the independent sites for spectral shape one with data shown as a
function of ρw(656).

3.3. Regional Turbidity Algorithm

We derived a regional turbidity model based on spectral shape to improve turbidity
predictions for Lake Washington. The difference between ρw(481) and ρw(656) had the
highest correlation to in-situ turbidity for pixels with spectral shape one (Figure 5a; Table 1).
We fit a least-squares linear model to these data:

Turbidity = intercept + slope× (ρw[481]− ρw[656]) (10)
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Figure 5. (a) Regional empirical turbidity model using OLI surface reflectance at 656 nm and 481 nm
for deriving turbidity plotted as a function of month for spectral shape one. Spectral shape two was
identified as pixels containing visible milfoil, so no model was derived for this spectral shape. No
statistically significant model (α = 0.05) could be derived using spectral shape three pixels. (b) Model
residuals plotted as a function of month.

Table 1. Correlation coefficients for spectral features used for deriving turbidity model. Spectral
shape two (SS2) was identified as spectra resulting from the presence of visible macroalgae, so no
turbidity model was derived for pixels with this spectral shape.

B4-B1 B4-B2 B4-B3 B3-B2 B3-B1 B2-B1 Height B3

SS1 0.50 0.60 0.46 −0.026 0.072 0.20 −0.27
SS3 −0.080 −0.011 0.27 −0.25 −0.21 −0.15 −0.42

Coefficients and p-values for the model are presented in Table 2. RMSE, MAE, and
bias were calculated as 0.34 FNU, 0.27 FNU, and −3.4 × 10−16 FNU, respectively. No
relationship between the model residuals and ρw(656) was observed. The errors, on the
other hand, were related to month, with the largest residuals observed in March and
August. No statistically significant model could be derived for spectral shape three pixels,
so these data were removed from the turbidity analysis.

Table 2. Turbidity model statistics.

Spectral Shape RMSE MAE Bias N * p-Value

1 0.34 0.27 −3.4 × 10−16 34 0.00019
2 NA NA NA 15 NA
3 NA NA NA 9 NA

* Counted after removal of spectral outliers for spectral shapes one and three (i.e., OLI Band 4 > Band 2).

We used the turbidity dataset collected independently as part of this project to eval-
uate the empirical models derived using the buoy dataset (described above). The RMSE,
MAE, and bias were calculated as 0.47 NTU, 0.42 NTU, and −0.15 NTU, respectively, an
improvement over the Nechad algorithm (Figure 6). No relationship between the model
residuals and ρw(656) was observed. There was also no error pattern between sites; the
algorithm performed equally at all sites.

To better understand the limitations of our turbidity model, we compared seasonal
patterns in turbidity calculated from monthly medians using the 2018–2022 in-situ dataset
and modeled turbidity from 2013 to 2022. The model failed to capture the March peak
and overestimated turbidity in the summer and autumn (Figure 7a,b). We also found that
absolute differences between modeled and measured turbidity at the buoy were positively
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correlated with chlorophyll a-to-turbidity ratios (Chl:T) except for in March, when model
errors were the greatest, and in September, when Chl:T was the greatest (R = 0.63; Figure 7c).
The full turbidity dataset is presented in Figure 8.Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
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Figure 7. (a) Measured and modeled monthly median turbidity concentrations; (b) chlorophyll
a-to-turbidity ratios (Chl:T; red dots) from the King County buoy plotted over absolute differences
between measured and modeled turbidity; (c) absolute differences between measured and modeled
turbidity related to buoy chlorophyll a-to-turbidity ratios with March and September turbidity values
excluded. The dotted red line shows the linear fit.
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Figure 8. Turbidity at the buoy from 2013 to 2022. The buoy data are shown in the black dots. The
in-situ and modeled turbidity data collected at the independent sites are shown in green squares and
red triangles, respectively. The filled blue diamonds are the Landsat-8/9-based turbidity values that
were used for model development, and the empty blue diamonds are the satellite-based turbidity
values where no in-situ data were available.

3.4. Spatiotemporal Water Clarity Variability

Landsat-8/9 OLI data were extracted from 2013 to 2022 at the four King County
sites and used to evaluate annual and seasonal spatiotemporal variability in Kd(PAR) and
turbidity. There were no significant trends at any of the King County sites in Kd(PAR) or
turbidity (Mann–Kendall p > 0.05 for all sites) from 2013 to 2022 when the full and annual
datasets were analyzed. Seasonal Kd(PAR) at the King County sites followed a similar
pattern to each other; there exists a large spring peak at all sites (Figure 9a–c). At 0826 and
0852, elevated concentrations persist from May through June. The Kd(PAR) peaked at 0831,
the site closest to the mouth of the Cedar River, begins in April and lasts through June.
Additionally, Kd(PAR) peaks are present in the autumn (October) at all three sites. These
autumn peaks, apparent in all Kd(PAR) datasets, are absent from the seasonal turbidity
pattern, which nearly mirrors the seasonal variability in the Cedar River discharge rates
over the same period (Figure 9d).

As for Kd(PAR), zooplankton abundances at Madison Park peaked in May through
June, one month after the peak in chlorophyll a (Bosmina spp. peak in April with the onset
of the spring bloom followed by high production of Daphnia in May–June) (Figure 10).
In the autumn, zooplankton are most abundant in October, a pattern that becomes more
pronounced when only the dominant group, Daphnia spp., is considered. No autumn
chlorophyll a peak at 0852 (Madison Park) was present, though concentrations remain
elevated through October. The chlorophyll a data collected from the buoy, however, indicate
that phytoplankton concentrations in the autumn are the greatest in October. No time lag,
thus, was present between autumn peaks of phytoplankton and zooplankton.

Example seasonal patterns showing the spatial variability in Kd(PAR) across the lake
are presented in Figure 11. Kd(PAR) variability predominantly resulting from the Cedar
River discharge is presented in Figure 11a, while biologically driven processes are driving
Kd(PAR) variability in Figure 11b,c. Including a seasonal component to the model could
potentially improve the model predictability by accounting for the seasonally different
sources of variability (phytoplankton vs. fluvial) to the turbidity measurement.
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Figure 9. Monthly median chlorophyll a measurements, shown in red diamonds, collected at the buoy
with monthly median Kd(PAR) values, shown in black circles, at (a) 0826 and (b) 0831; (c) monthly
median chlorophyll a, shown in red triangles, and Kd(PAR) measurements, shown in black circles,
at 0852; (d) monthly median Cedar River discharge rates at Renton, WA, shown in blue triangles,
plotted with turbidity data collected at the King County buoy, shown in black circles.Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22 
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Figure 10. Median monthly zooplankton group (Daphnia spp., other Cladocera, Bosmina spp., cope-
pods) abundances from 2013 to 2022 collected at Madison Park. A representative from each seasonally
dominant group is pictured (Daphnia pulicaria (1.0–2.8 mm), Bosmina sp. (0.3–0.8 mm), Leptodiaptomus
ashlandi (0.3–1.5 mm)).
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Figure 11. Spatial patterns in Kd(PAR) mapped for (a) 16 March 2020, when Kd(PAR) variability
was primarily driven by the Cedar River; (b) 20 April 2015, when the spring phytoplankton bloom
was the primary source of changing water clarity; (c) 26 August 2015, when the autumn bloom was
driving the water clarity changes.

4. Discussion

We used in-situ measurements to evaluate existing semi-analytical models for Kd(PAR)
and turbidity, developed a regional turbidity model based on spectral shape, and evaluated
the spatial and temporal trends in Lake Washington from 2013 to 2022. The MAE was
0.15 m−1 for the QAA-v6 Lee Kd(PAR) algorithm, a 31% error (mean in-situ Kd(PAR) equal
to 0.49 m−1) for OLI pixels with spectral shapes one and three. This error is significant when
Kd is used to model irradiance at depth. For example, at 10 m there is more than a fourfold
difference in modeled irradiances given Kd equal to 0.49 m−1 ± 0.15 m−1. The differences
between irradiances calculated at 20 m increases to twentyfold. Thus, for application to
fisheries research in Lake Washington, which requires knowledge of the light field at the
depths at which the fishes are found, the QAA-v6 Lee Kd(PAR) algorithm does not achieve
the required accuracy.

The error observed in the QAA-v6 Lee Kd(PAR) algorithm, however, is within the
range observed by [60], which utilized more than 1000 radiometric comparisons from both
inland and coastal waters to examine the quality of derived aquatic reflectance values (ρw)
from Landsat. For inland water observations, the median errors in ρw(560) and ρw(664)
ranged from 20 to 30%, which yielded 25–70% uncertainties in derived chlorophyll a
and total suspended solids (TSS) products. Additionally, the authors of [15] calculated
a 93.9% mean absolute percent error when using the QAA-v6 Lee Kd(PAR) algorithm
in a Chilean lake. Using the QAA-v5 algorithm, however, significantly increased model
performance in their study and suggests a path forward to improve model predictability in
Lake Washington.
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Despite the uncertainty in the QAA-v6 Kd(PAR) product, a common seasonal pattern
existed among all sites across the lake. At Madison Park (also King County site 0852),
Kd(PAR) peaked in May through June, coincident with the peak in total zooplankton
abundances. Further, Daphnia spp., which are particularly effective phytoplankton grazers
compared to other zooplankton and have been found to improve transparency in Lake
Washington [61], are most abundant in June, which is coincident with the significant de-
crease in chlorophyll a. This implies that zooplankton production was stimulated by the
spring phytoplankton bloom, but the zooplankton were not capable of grazing down the
phytoplankton to increase transparency until June, when Daphnia spp. become the domi-
nant members of the zooplankton community. The autumn Kd(PAR) peak was observed in
October at all sites, which is also coincident with maximum autumn zooplankton concen-
trations. This lends confidence to our results and suggests that the variability in Kd(PAR) is
driven by biological processes (i.e., phytoplankton and zooplankton production).

We also used in-situ measurements and Landsat OLI data to develop a regional
model for deriving turbidity concentrations that performed within the expected range
of error (83% mean absolute error). Model errors increased as the relative proportion of
chlorophyll a increased (R = 0.63), except in March and September, when the errors were
decoupled from the chlorophyll a-to-turbidity ratio. Changes in particle type from seasonal
phytoplankton succession and model uncertainty are likely, at least partially, responsible
for the observed error.

Beginning in the summer and lasting through autumn, a shift in phytoplankton com-
munity structure has previously been observed. The authors of [22] observed a significant
change in the phytoplankton community structure with the onset of summer (and stratified
conditions), characterized by a shift from predominantly diatoms to chlorophytes and
cyanophytes. Cryptophytes also increased in relative proportion. This shift in phyto-
plankton groups was accompanied by a shift in bulk pigments, which impacts the surface
reflectance spectral shape. The primary pigments characteristic of diatoms are chlorophyll
c2 and fucoxanthin, which have absorption peaks at (in vivo) 450 nm and (in acetone)
468.3 nm, respectively [62]. Chlorophytes, on the other hand, are characterized by the
presence of chlorophyll b and lutein, which have characteristic absorption peaks at (in vivo)
480 nm and (in acetone) 476.3 nm, respectively. Cyanophytes and cryptophytes are charac-
terized by the pigments zeaxanthin and alloxanthin, respectively, which have absorption
peaks at 480.9 nm and 483.5 nm [62]. Overall, this suggests that the absorption of light at
OLI Band 2 (481 nm) could potentially be greater in the summer/autumn, which would
result in reduced surface reflectance (ρw~Rrs~bb/a+bb). This reduction in ρw(481) would
result in a smaller than predicted difference between Band 2 and Band 4 (predictor variable)
for a given turbidity concentration, assuming that most of the variability is being driven by
changes in Band 2 (chlorophyll b has the second, smaller absorption peak at Band 4, for
example, so this assumption is not strictly true). Alternatively, when diatoms dominate
the phytoplankton community, a larger than predicted difference between Bands 4 and 2
would be observed (with a shift to a greater proportion of chlorophyll c2 and fucoxanthin).
In addition, since the difference between Bands 2 and 4 and turbidity are inversely related
(Figure 5a), this would lead to an underestimation of in-situ turbidity in the spring and an
overestimation in the summer/autumn.

This hypothesis is consistent with our observations that modeled turbidity was un-
derestimated in the spring when chlorophyll a concentrations peaked (and diatoms domi-
nated the phytoplankton community) and overestimated in the summer/autumn when
chlorophyll a concentrations were also elevated (and chlorophytes, cyanophytes, and cryp-
tophytes became more abundant) (Figure 7a). This further emphasizes how incorporating
seasonality into the turbidity model would likely improve model performance. This was
attempted as part of this research, but there were not enough satellite–in-situ matchups for
the derivation of a seasonally-dependent model.

Turbidity at the buoy peaks in March, two months before Kd(PAR) peaks at 0852
and one month before chlorophyll a concentrations become elevated. Further, no autumn
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increase in turbidity is observed. These results suggest that the turbidity measurement is
more sensitive to changes in water clarity associated with river flow, while the Kd(PAR)
measurement is more sensitive to changes in biological processes (i.e., phytoplankton
production and zooplankton abundance).

Accurate measurements or estimates of different optical properties of a water body
are critical for understanding biotic processes such as the foraging behaviors of both
planktivores and piscivores in aquatic ecosystems. Estimates of Kd and surface light
enable estimates of how light at depth affects the reaction distance of a predator to prey
fishes. In addition to how turbidity affects light at depth, the backscattering between
predators and prey reduces the reaction distance exponentially as turbidity increases
above 1.5 FNU, given the ambient light at depth [5,32]. Thus, mapping regional and
depth-specific light and turbidity becomes the necessary first step toward mapping the
spatiotemporal dynamics of predation risk or foraging success across a water body or
watershed. These applications could become powerful tools for identifying and prioritizing
restoration efforts that effectively target predation or feeding bottlenecks caused by habitat
anomalies or human perturbations that affect underwater light or turbidity in ways that
reduce survival or growth of valuable aquatic species.

In our study, we primarily focused on using two of the observed spectral shapes
in the OLI dataset to calculate turbidity and Kd(PAR). However, we observed the third
spectral shape that could not be directly evaluated for water clarity. This spectral shape,
identified as spectral shape two, was observed only twice (out of 85 total spectra) using
the ASD spectroradiometer where milfoil was clearly visible from the lake surface near the
shoreline. Eurasian milfoil significantly alters the aquatic environment. It often forms dense
canopies at the water surface that significantly reduce water clarity and light penetration.
Additionally, the milfoil causes changes in water chemistry that can lead to significant
variations in the dissolved oxygen concentration [40,63], thus making the habitat unsuitable
for salmonids and other fishes. The distribution of Northern Pikeminnow (Ptychocheilus
oregonensis), a sockeye predator, shifts further offshore beyond dense nearshore stands
of Eurasian milfoil, further increasing predation on and reducing the success of juvenile
sockeye [64].

Across Washington, the presence of Eurasian milfoil has been documented in nearly
150 lakes and major rivers [38]. Historically, various management approaches have been
employed to control the spread of this invasive plant, including chemical treatments,
mechanical removal, and manual control efforts such as diver-assisted suction harvesting
(DASH) and harvesting machines [65]. Our findings have the potential to significantly
contribute to these ongoing management efforts by offering valuable insights into the
large-scale spatial and temporal distributions of Eurasian milfoil. This comprehensive
understanding of milfoil dynamics could help to inform and refine the strategies employed
for its control and mitigation across the affected lakes and rivers in Washington and globally.

5. Conclusions

In this study, we evaluated the QAA-v6 Lee Kd(PAR) algorithm and developed a
regional turbidity algorithm using coincident in-situ measurements and Landsat-8/9 OLI
surface reflectance data at multiple sites in Lake Washington. These algorithms were
applied to a decade-long dataset spanning from 2013 to 2022 to investigate spatiotemporal
patterns in water clarity. No trend in Kd(PAR) or turbidity was observed at any of the King
County sites when the annually averaged and full datasets were considered.

Our research identified distinct sensitivities between the Kd(PAR) measurement to
biological variability and the turbidity measurement to changes in water clarity linked
to river flow. These insights have implications for future monitoring and management
efforts, as they highlight the need for tailored approaches when addressing water quality
challenges associated with these distinct sources of variability.

Looking ahead, our ongoing data collection efforts, combined with information on
nighttime light distributions and fish behaviors, will play a crucial role in understanding



Remote Sens. 2023, 15, 5055 17 of 19

the mechanisms contributing to regional declines in juvenile salmon populations due
to predation by visually feeding predators in the Lake Washington basin. This research
not only advances our understanding of the dynamics of this unique ecosystem but also
contributes to broader discussions surrounding the conservation and sustainability of
freshwater resources in the face of evolving environmental pressures.
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