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Abstract: The increasing frequency of global drought events poses a significant threat to the stability
of grassland ecosystems’ functionality. The Inner Mongolian grasslands stand out as one of the
world’s most drought-prone regions, facing elevated drought risks compared to other biomes. An
in-depth comprehension of the impact of drought on grassland ecosystems is paramount for their
long-term sustainability. Using the Standardized Precipitation Evapotranspiration Index (SPEI) from
1982 to 2018, this study identified various drought events within the Inner Mongolian grasslands,
encompassing moderate drought, severe drought, and extreme drought. The resistance of the vegeta-
tion to the different drought conditions, assessed through net primary productivity (NPP) as a metric
(reflecting its capacity to maintain its original level during drought periods), was examined. The
research findings indicated that the period from 2001 to 2018 witnessed a substantial increase in both
the frequency and the extent of drought events compared to the period from 1982 to 2000, particularly
concerning severe and extreme droughts. The areas most severely impacted by extreme drought were
the Xilingol League and the Alxa League. From 1982–2000 to 2001–2018, under moderate drought
conditions, vegetation resistance exhibited a minor decrease in the central and eastern regions but
experienced a slight increase in the western region. In contrast, under severe drought conditions,
the western region saw a significant decrease in vegetation resistance. Remarkably, under extreme
drought conditions, the western region showed a substantial increase in vegetation resistance, while
the central and eastern regions experienced a slight decrease. Across all three drought conditions, as
precipitation levels declined, the resistance of the meadow–steppe–desert ecosystems demonstrated a
high–low–high distribution pattern. The temperate desert steppe exhibited a minimal vulnerability to
drought, boasting resistance levels exceeding 0.9. Notably, extreme drought had the most pronounced
impact on the temperate meadow steppe, temperate steppe, and temperate desert steppe, particularly
within the temperate meadow steppe category. Given these findings, the authorities responsible for
grassland management should prioritize regions characterized by frequent drought occurrences and
low drought resistance, such as Ulanqab City, the Xilingol League, and the western part of Hulun
Buir City. Safeguarding steppe ecosystems is of paramount importance for stabilizing vegetation pro-
ductivity and land carbon sinks, especially under the anticipated exacerbation of climate conditions
in the future.

Keywords: drought; resistance; grassland; Inner Mongolia; standardized precipitation evapotranspiration
index; net primary production
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1. Introduction

Climate, as an important research field in global change, is directly related to the
sustainable development of society, economy, and ecology [1]. In the context of climate
change, drought has become one of the most severe natural disasters in the world, caus-
ing significant losses to ecosystems and human society [2,3]. Studying how vegetation
responds to drought events is a challenging task [4]. Drought can have an impact on the
functioning and stability of terrestrial ecosystems [5], especially grassland ecosystems [6].
Future climate change will increase the frequency and intensity of drought in most regions
globally, particularly in semi-arid areas under high water resource stress [7,8]. The sta-
bility of meadow grassland and steppe grassland ecosystems is susceptible to changes in
drought frequency and severity [9,10]. Therefore, it is of great significance to improve our
understanding of historical drought dynamics and their impact on grassland ecosystems,
especially in the Inner Mongolian grasslands, which are considered one of the ecosystems
most vulnerable to water resource stress [11].

The Inner Mongolian grasslands are one of the driest regions in the world, and
droughts frequently occur in this grassland ecosystem [12]. Currently, precipitation control
experiments have been used to simulate extreme droughts, and a substantial amount of
research has been conducted on the resistance of grasslands [13–15]. Previous studies
analyzed the impact of different drought types on Net Primary Productivity (NPP) using
data from six different grassland sites and meteorological stations through the Standardized
Precipitation Index (SPI) analysis [16]. Although the effects of different drought levels on
vegetation resistance have been observed at the site scale, it is still necessary to assess the
characteristics of resistance under different droughts occurring over a long period at the
regional pixel scale. This assessment is of great value for understanding the impact of
future drought events of the same magnitude on vegetation. The characteristics of drought
events simulated in controlled experiments differ from those occurring naturally, making it
important to use existing drought indices to identify historical drought events and evaluate
their impact on grassland resistance [17,18]. Ecosystem stability refers to the ability of
an ecosystem to maintain balance and functional integrity, such as the ability to sustain
production under drought conditions, which is known as ecosystem resistance [19].

The advantages of remote sensing technology in long time-series and large scale
can be used to assess the resistance of vegetation under historical drought states [20].
NPP has often been used to evaluate plant growth, and insufficient precipitation has a
great impact on NPP in grasslands. Therefore, NPP can be used as a suitable index to
evaluate the impact of drought on grasslands’ productivity [16], and it is necessary for
analyzing the impact of different drought levels, at the regional scale, in long time-series,
on the resistance of different grassland types. Many drought indices have been used to
represent climatic conditions, such as the Standardized Precipitation Evapotranspiration
Index (SPEI), the SPI, the Standardized Terrestrial Water Storage Index (STI), and the Palmer
Drought Severity Index (PDSI) [17,21–23]. The SPEI is a simple and physically relevant
drought index calculated based on the difference between potential evapotranspiration and
precipitation, which is better than the drought index calculated using only temperature and
precipitation for reflecting the water stress of ecosystems [24]. Therefore, the SPEI values of
different time-scales can be used to quantify large-scale and long-term drought, especially
in semi-arid and arid regions [25,26].

Grassland accounts for about 40% of China’s total land area [27]. The grassland coverage
in Inner Mongolia accounts for 55.4% of the total area [28] and 20% of China’s total grassland
area [29]. Grasslands play an extremely important economic role for the population from
this region. Gaining a deeper understanding of the functions of and threats to grasslands
is of great significance for the sustainable development of grasslands and for coping with
climate change. The latest research shows that the Inner Mongolia Autonomous Region was
the area in China most affected by drought during 1991–2018, considering factors including
the affected area, livestock numbers, crop yields, economy, etc. [30].
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In this study, we used the NPP and SPEI data to assess the ecological stability of
different grassland types in Inner Mongolia, China, during 1982–2018. Therefore, the
purposes of this study are the following: (1) to assess the spatiotemporal distribution
characteristics of different drought types (moderate drought, severe drought, and extreme
drought) during 1982–2018; (2) to investigate the spatial distribution characteristics of
resistance under different drought types; and (3) to examine the resistance characteristics
of different grassland types under different types of droughts.

2. Materials and Methods
2.1. Study Area

Located in northern China, the Inner Mongolia grasslands (97◦12′E~126◦04′E,
37◦24′N~53◦23′N) have a high biodiversity and important ecological functions (Figure 1).
They are part of the Eurasian grasslands and a major production base of animal husbandry
resources in China. From west to east, there are mainly three types of grassland ecosystems:
desert, steppe, and meadow. There are seven main grassland types, and the average annual
precipitation is as follows, from low to high: temperate desert (TD, 180 mm), temperate
steppe desert (TSD, 193 mm), temperate desert steppe (TDS, 210 mm), temperate steppe
(TS, 299 mm), lowland meadow (LM, 357 mm), temperate meadow steppe (TMS, 383 mm),
and upland meadow (UM, 404 mm). However, in recent years, climate change and the
intensification of human activities have led to the deterioration of ecological environments,
grasslands’ degradation and desertification, and the occurrence of grassland droughts,
which have seriously affected grass-based husbandry [31]. In order to reduce the change in
grassland type caused by climate fluctuation and human activities, the unchanged grass-
lands from 1980 to 2020 were selected for research. The land use/land cover data with a
spatial resolution of 1 km were obtained from the Resource and Environment Science and
Data Center, of the Institute of Geographic Sciences and Natural Resources Research, at the
Chinese Academy of Science.
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Figure 1. Geographical maps of Inner Mongolia showing various administrative divisions and the
distribution of different grassland types.

2.2. SPEI Data

SPEI is calculated by estimating the “climate water balance”, which measures the
deviation between precipitation and potential evapotranspiration. The SPEI is then adjusted
to a probability distribution to convert the origin values to comparable normalized units in
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space and time [32].To identify extreme drought events, the SPEI data [4,23,33] were obtained
from the global SPEI dataset, which was provided by the Climatic Research Unit of the
University of East Anglia (http://sac.csic.es/spei/database.html accessed on 18 April 2022).
The SPEI was calculated based on monthly precipitation and potential evapotranspiration.
This data provided SPEI timescales between 1 and 48 months, with a half-degree spatial
resolution and a monthly temporal resolution. The growing season of grassland vegetation
in Inner Mongolia extends from April to September, which is also the period with the highest
proportion of precipitation throughout the year. We used a 6-month time-scale SPEI-06 of
September to determine the drought type, because the SPEI-06 of September was calculated
based on the data from April to September, which could best investigate growing-season
drought. The SPEI data of April–September over 30 years (1982–2018) were chosen for the
analysis. Based on its SPEI value, the climate of each year was classified into four categories
(Table 1): extreme drought (SPEI ≤ −2), severe drought (−2 < SPEI ≤ −1.5), moderate
drought (−1.5 < SPEI ≤ −1), and near normal (−1 < SPEI ≤ 1) [26,34,35].

Table 1. List of climate categories.

Category SPEI

Extreme drought SPEI ≤ −2
Severe drought −2 < SPEI ≤ −1.5

Moderate drought −1.5 < SPEI ≤ −1
Near normal −1 < SPEI ≤ 1

2.3. NPP Data

NPP was selected as an indicator of grassland vegetation growth conditions. The
annual NPP remote sensing data were derived from the Global Land Surface Satellite
(GLASS) product suite (http://www.glass.umd.edu/ accessed on 18 April 2022) at a spatial
resolution of 0.05 degrees. The annual NPP data of 1982–2018 were downloaded and
resampled at a spatial resolution of 1 km using ArcGIS.

2.4. Calculation Method of Grassland Drought Resistance

Resistance is defined as the ability of an ecosystem to maintain production under
drought conditions [19].The ratio of the NPP during extreme drought periods to the NPP
during multiple years of normal growth (−1 < SPEI≤ 1) was calculated using the following
equation to control the confounding effect of the conditions in the previous year:

RES =
NPPdrought

NPPnormal

where RES represents the resistance under drought; NPPdrought represents the NPP in the
drought year; and NPPnormal represents the average NPP during multiple years of normal
growth (1982–2018) (−1 < SPEI ≤ 1).

2.5. Research Framework

The research framework of the key indicators’ computation and statistical analysis is
displayed in Figure 2.

http://sac.csic.es/spei/database.html
http://www.glass.umd.edu/
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3. Results
3.1. Spatiotemporal Characteristics of Different Droughts from 1982 to 2018

Figure 3 illustrated the spatial distribution of moderate drought, severe drought, and
extreme drought frequency during 1982–2000. During 1982–2000, the regions affected by
moderate drought, severe drought, and extreme drought accounted for 94.68%, 58.22%,
and 23.45%, respectively. During 1982–2000, moderate drought was observed in 91.83%
of the regions, occurring one–four times. Areas experiencing more than four instances of
moderate drought were primarily concentrated in the eastern part of the Xilin Gol League,
in Bayan Nur City, in the Alxa League, and in Erdos City. Severe drought occurrences
were mainly limited to one or two instances during the years from 1982 to 2000, with
areas lacking severe drought being mainly distributed in the eastern region. Extreme
drought, during the 1982–2000 period, was observed in only 23.45% of the areas, primarily
occurring once or twice. These extreme drought events were concentrated in Chifeng City
and Tongliao City in the southeast, as well as in Bayan Nur City and Erdos City in the west.
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drought during 1982–2000.

Figure 4 illustrates the spatial distribution of the frequency of moderate drought,
severe drought, and extreme drought during 2001–2018. During 2001–2018, there was a
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gradual expansion in both the extent and frequency of drought. During this timeframe, the
proportion of areas experiencing moderate drought one–five times was 93.06%. Notably, the
frequency of one–three times decreased, while the frequency of four–five times increased.
The areas with a frequency of four–five times were primarily concentrated in the Xilin Gol
League, in the central and southwestern regions of Hulun Buir City, in Bayan Nur City,
and in the western Alxa League. There was a significant increase in the frequency of areas
experiencing severe drought two–five times, accompanied by a notable expansion in the
extent of severe drought. The areas with a frequency of four–five times were predominantly
found in the southwest of the Xilin Gol League and in Ulanqab City. In stark contrast,
97.29% of the areas experienced extreme drought during 2001–2018, with the frequency of
areas mainly experiencing extreme drought two–four times reaching 85.55%, significantly
higher than that observed during 1982–2000. The areas with a frequency of four and
five extreme drought events were primarily situated in the Xilin Gol League and in the
Alxa League.
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Figure 5 shows the annual proportion of areas affected by moderate drought, severe
drought, and extreme drought. Before the year 2000, the proportion of areas experiencing
moderate drought, severe drought, and extreme drought was relatively small. Extreme
drought events were recorded in 1982 (4.53%), 1991 (12.09%), and 1999 (1.29%). In the years
with severe drought affecting over 5% of the total area, notable occurrences took place in
1982 (8.71%), 1989 (10.40%), 1991 (7.77%), and 1999 (12.81%). There were 11 years with
an area proportion of severe drought measuring less than 1%. The extent of moderate
drought began to increase gradually from 1989 onwards, with proportions exceeding 25%
in 1989 (25.03%), 1997 (47.66%), and 1999 (54.3%). Before the year 2000, areas experiencing
moderate drought below 10–20% were noted in 1982 (12.29%), 1986 (13.94%), and 1995
(12.43%). Since 2000, there has been a significant expansion in the scope of drought. The
average annual area affected by drought increased from 14.54% to 45.59%, marking a more
than threefold increase. Specifically, the average annual area affected by moderate drought
increased from 10.85% to 16.86%; the average area affected by severe drought increased
from 2.69% to 13.55%, and the average area impacted by extreme drought rose from 1.00% to
15.18%. The increases in severe drought and extreme drought were particularly significant.
Severe drought affected more than 20% of the total area in 2000 (33.29%), 2001 (22.29%),
2005 (21.69%), 2009 (33.17%), 2015 (25.92%), and 2017 (32.90%). The area affected by extreme
drought after 2000 exhibited an initial increase, followed by a sharp decrease, reaching its
peak in 2010, when more than two-thirds of the total area were impacted.
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3.2. Spatial Distribution Characteristics of Resistance under Different Drought Types
3.2.1. Resistance under Moderate Drought

The temporal and spatial distribution of resistance under moderate drought from
1982 to 2000 (Figure 6(a1)) revealed lower resistance levels in the central part, primarily
concentrated in the western Xilingol League, while resistance was higher in eastern and
western Inner Mongolia. Figure 6(a2) shows the resistance changes with the latitude. It
became evident that high-latitude regions exhibited greater resistance, with all the ar-
eas north of 45.2◦N having resistance values exceeding 0.9, indicating a lesser impact
from moderate drought. The resistance gradually decreased from 45.2◦N to 42◦N, then
demonstrated an increasing–decreasing–increasing trend from 42◦N to 38.5◦N. South of
38.5◦N, the resistance dropped from 0.91 to 0.53. Figure 6(a3) shows the resistance changes
with the longitude. The resistance in the western regions of the moderately arid grass-
lands fluctuated significantly from 1982 to 2000, primarily in the Alxa League, while the
eastern regions exhibited smaller fluctuations. Declining trends were noticeable between
103◦E–108.5◦E and 110◦E–113◦E, whereas an increasing trend was mainly observed be-
tween 113◦E and 126◦E, with resistance values exceeding 0.9 beyond 116◦E, indicating
minimal impact from moderate drought.

Figure 6(b1) shows the temporal and spatial distribution of the resistance to moderate
drought from 2001 to 2018. It was similar to the resistance distribution from 1982 to 2000, but
the resistance decreased in the central and eastern regions while increasing in the western
regions. Resistance changing with the latitude (Figure 6(b2)) revealed a noticeable decrease
in the resistance in high-latitude regions and a significant increase in low-latitude areas.
The areas south of 41.8◦N generally had resistance values above 0.9, and the areas north of
49.9◦N mostly exhibited resistance values greater than 0.9, with both regions experiencing
minimal vegetation impact from moderate drought. Between 49.9◦N and 48.5◦N, there was
a decreasing trend, and, between 48.5◦N and 42.8◦N, the resistance fluctuated between 0.8
and 0.9, with the lowest values occurring between 42.1◦N and 42.7◦N, where the resistance
ranged from 0.7 to 0.8. Figure 6(b3) shows the resistance changes with the longitude. The
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fluctuation pattern of the resistance to the moderate drought from 2001 to 2018 mirrors that
of 1982–2000. The numerical values of the resistance in the central and eastern regions were
lower compared to 1982–2000. East of 110◦E, the resistance sharply decreased, with the lowest
values occurring between 111◦E and 113.4◦E, ranging from 0.65 to 0.7. The areas east of 118◦E
had resistance values above 0.9, indicating minimal impact from moderate drought.
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Figure 6. Spatial distribution of grassland resistance under moderate drought in Inner Mongolia dur-
ing 1982–2000 and 2001–2018. (a1–a3) show spatial distribution of resistance, resistance characteristics
in different longitude gradients, and resistance characteristics in different longitude gradients during
1982–2000, respectively. (b1–b3) show spatial distribution of resistance, resistance characteristics in
different longitude gradients, and resistance characteristics in different longitude gradients during
2001–2018, respectively. The red dots and grey lines in (a2,a3,b2,b3) show average resistance at
latitude/longitude and error bar (±1 standard error).
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3.2.2. Resistance under Severe Drought

The spatial distribution of resistance during 1982–2000 under severe drought
(Figure 7(a1)) revealed areas with lower resistance situated in the northwestern part of the
Xilingol League and in the southwestern part of Hulun Buir City. Resistance changing with
the latitude (Figure 7(a2)) indicated that high-latitude regions exhibited a higher resistance,
with all the areas north of 50.5◦N having resistance values greater than 0.9, indicating a
lesser impact from severe drought. The resistance decreased from 0.94 to 0.67 from 50.5◦N
to 49.5◦N, while the resistance mostly fluctuated between 0.7 and 0.9 from 42.2◦N to 49.5◦N.
From 42.2◦N to 38◦N, the resistance gradually rose from 0.75 to 1.2, but, south of 38◦N, the
resistance fluctuated dramatically, showing a decline. Figure 7(a3) shows the resistance
changes with the longitude. It is evident that the resistance under severe drought fluctuated
significantly west of 110.4◦E, with a resistance mostly above 0.9. Between 110.5◦E and
120◦E, the grassland resistance ranged from 0.7 to 0.85, and, east of 120◦E, the resistance
increased, particularly east of 123◦E, where the resistance could reach above 0.95.

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 19 
 

 

1. Introduction 
Climate, as an important research field in global change, is directly related to the sus-

tainable development of society, economy, and ecology [1]. In the context of climate 
change, drought has become one of the most severe natural disasters in the world, causing 
significant losses to ecosystems and human society [2,3]. Studying how vegetation re-
sponds to drought events is a challenging task[4]. Drought can have an impact on the 
functioning and stability of terrestrial ecosystems [5], especially grassland ecosystems [6]. 
Future climate change will increase the frequency and intensity of drought in most regions 
globally, particularly in semi-arid areas under high water resource stress [7,8]. The stabil-
ity of meadow grassland and steppe grassland ecosystems is susceptible to changes in 
drought frequency and severity [9,10]. Therefore, it is of great significance to improve our 
understanding of historical drought dynamics and their impact on grassland ecosystems, 
especially in the Inner Mongolian grasslands, which are considered one of the ecosystems 
most vulnerable to water resource stress [11]. 

 
The Inner Mongolian grasslands are one of the driest regions in the world, and 

droughts frequently occur in this grassland ecosystem [12]. Currently, precipitation con-
trol experiments have been used to simulate extreme droughts, and a substantial amount 
of research has been conducted on the resistance of grasslands [13–15]. Previous studies 
analyzed the impact of different drought types on Net Primary Productivity (NPP) using 

Figure 7. Spatial distribution of grassland resistance under severe drought in Inner Mongolia during
1982–2000 and 2001–2018. (a1–a3) show spatial distribution of resistance, resistance characteristics in



Remote Sens. 2023, 15, 5045 10 of 17

different longitude gradients, and resistance characteristics in different longitude gradients during
1982–2000, respectively. (b1–b3) show spatial distribution of resistance, resistance characteristics in
different longitude gradients, and resistance characteristics in different longitude gradients during
2001–2018, respectively. The red dots and grey lines in (a2,a3,b2,b3) show average resistance at
latitude/longitude and error bar (±1 standard error).

Figure 7(b1) shows the spatial distribution of the resistance under severe drought
during 2001–2018. It is evident that Ordos City and Chifeng City exhibited a significant
decrease in resistance compared to 1982–2000, while central regions showed a slight increase
in resistance. Resistance changing with the latitude (Figure 7(b2)) indicated that the areas
north of 44◦N exhibited a noticeable increase in resistance compared to 1982–2000, with
resistance values mostly above 0.9. The areas south of 44◦N showed a significant decrease
in resistance compared to 1982–2000, with resistance mostly ranging from 0.75 to 0.85
between 43.7◦N and 40◦N, and a decrease from 0.74 to 0.58 between 40◦N and 38.8◦N.
Figure 7(b3) shows the resistance changes with the longitude. It was observed that most of
the areas below 103◦E and between 105◦E and 110.7◦E exhibited a significant decrease in
resistance compared to 1982–2000, while the areas above 110.7◦E showed varying degrees
of increase in resistance compared to 1982–2000. The regions above 119.4◦E could have
resistance values above 0.9, indicating minimal impact from severe drought.

3.2.3. Resistance under Extreme Drought

The spatial distribution of the resistance under extreme drought during 1982–2000
(Figure 8(a1)) revealed that the areas experiencing extreme drought were relatively small.
The regions with the lowest resistance were located in the western parts of the Bayannur
and Erdos cities, while Chifeng City exhibited a higher resistance. Figure 8(a2) shows the
resistance changing with the latitude under extreme drought. It is evident that low-latitude
areas (less than 39.1◦N) generally had resistance values below 0.7. The region between
39.2◦N and 46.4◦N showed a resistance mostly fluctuating between 0.7 and 0.9. Figure 8(a3)
shows the resistance changing with the longitude under extreme drought. There was a
decreasing trend in resistance between 101◦E and 109.4◦E, where the resistance decreased
from 1.23 to 0.59. Between 114.4◦E and 123.3◦E, there was a gradual decrease in resistance,
with values dropping from 1.11 to 0.75.

The spatial distribution of the resistance under extreme drought during 2001–2018
(Figure 8(b1)) revealed that the resistance was higher in the western and eastern regions,
while most of the areas in the central region exhibited a lower resistance. Figure 8(b2)
shows the resistance changing with the latitude. The low-latitude areas showed a significant
increase in resistance compared to 1982–2000, with resistance values exceeding 0.7. There
was a decreasing trend between 37.6◦N and 38.7◦N, while an increasing trend was observed
between 38.7◦N and 39.5◦N. The region from 39.5◦N to 46◦N exhibited a gradual decline
in resistance, with values decreasing from 1.05 to 0.68. The resistance in the 46◦N to 48◦N
range initially increased and then decreased, stabilizing between 48.1◦N and 49.6◦N at
0.7–0.75. Beyond 49.7◦N, the resistance gradually increased to 0.97. The high-latitude
regions were less affected by extreme drought. Figure 8(b3) shows the resistance changing
with the longitude under extreme drought. The areas below 107◦E experienced relatively
significant fluctuations in resistance, with the resistance ranging between 0.8 and 1.2.
Between 107◦E and 111◦E, the resistance initially increased to 1.04 and then decreased to
0.7. The region between 111◦E and 119.4◦E showed a minimal variation in the resistance,
fluctuating between 0.7 and 0.8. Beyond 119.4◦E, the resistance exhibited a gradual increase
over time.
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Figure 8. Spatial distribution of grassland resistance under extreme drought in Inner Mongolia during
1982–2000 and 2001–2018. (a1–a3) show spatial distribution of resistance, resistance characteristics in
different longitude gradients, and resistance characteristics in different longitude gradients during
1982–2000, respectively. (b1–b3) show spatial distribution of resistance, resistance characteristics in
different longitude gradients, and resistance characteristics in different longitude gradients during
2001–2018, respectively. The red dots and grey lines in (a2,a3,b2,b3) show average resistance at
latitude/longitude and error bar (±1 standard error).

3.3. Resistance Characteristics in Different Grassland Types under Different Droughts

Figure 9 depicts the resistance characteristics of seven grassland types to different
drought intensities during 1982–2000. The grassland types are arranged from left to right,
with an average annual precipitation gradually decreasing from 404 mm to 180 mm. It
was observed that, as the annual precipitation decreased, the resistance of these grassland
types decreased, from being at its highest in the UM to being at its lowest in the TDS, with
a gradual increase in the TD. Among the types, the TDS (0.76, resistance) and the TSD
(0.78) were significantly affected by moderate drought, with four types (UM, TMS, LM,
and TD) showing resistance values above 0.9, thus indicating a high capacity to withstand
moderate drought. Under severe drought, the TD exhibited the highest resistance at 0.93,
while the TDS had the lowest resistance at 0.78, with the other types showing resistance
values between 0.8 and 0.9. Even under extreme drought, the TD maintained a resistance
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above 0.9, while the TDS and TSD exhibited a lower resistance, dropping below 0.7. The
TD consistently maintained a resistance above 0.9 across all three drought types, showing
minimal sensitivity to drought. The LM, TS, TDS, and TSD exhibited the lowest resistance
under extreme drought conditions. The TDS and TSD displayed a higher resistance under
severe drought conditions compared to moderate and extreme drought. The LM and TS
experienced a decreased resistance as drought severity increased. The UM, TMS, and
TD, on the other hand, maintained resistance levels under extreme drought conditions
even slightly higher than those under severe drought conditions. Looking at the standard
deviation of the resistance fluctuation for each type, it was observed that, as the annual
precipitation decreased, the fluctuation in resistance gradually decreased.
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Figure 9. Average resistance of seven grassland types under different drought types during 1982–2000.

Figure 10 depicts the resistance characteristics of seven grassland types to different
drought intensities during the period from 2001 to 2018. Across the three drought types,
arranged in a gradient of decreasing precipitation from high to low, the trend in resistance
change was consistent with that observed from 1982 to 2000, characterized by an initial de-
crease, followed by an increase. The TDS (0.78) was notably affected by moderate drought,
while types with a resistance exceeding 0.9 included the highest precipitation-dependent
UM and the lowest precipitation-dependent TD. Under severe drought conditions, the
TDS (0.75) and TSD (0.73) exhibited a significant impact, with the UM and TMS showing
a resistance above 0.9. Additionally, the UM and TMS exhibited a higher resistance com-
pared to the moderate and extreme drought. Extreme drought significantly affected the
UM and TMS, causing a noticeable decline in resistance. The LM and TS showed a slight
decrease in resistance under severe drought conditions. However, the two desert types
that tended towards arid conditions, namely, the TSD (0.86) and the TD (0.95), displayed
the highest resistance under extreme drought. The meadow-type resistance ranged from
0.83 to 0.86, while the three steppe types exhibited the lowest resistance, ranging from
0.75 to 0.8. In terms of resistance fluctuation, similarly to the period from 1982 to 2000, as
the annual precipitation decreased, the resistance fluctuation increased, as indicated by a
higher standard deviation.
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4. Discussion
4.1. Characteristics of Drought Occurrence

The IPCC report had indicated a significant increase in the extent and intensity of
global-scale droughts in recent decades, with a particular rise in extreme drought events [36].
In our study, we used the 1982–2018 SPEI dataset to extract annual occurrences of moderate,
severe, and extreme drought events. The study period was divided into two intervals,
1982–2000 and 2001–2018. The results revealed that, during the second period, both the
range and frequency of all the drought types were greater than those in the first period.
Particularly striking was the increase in the occurrence range of extreme drought, soaring
from 23.45% to 97.29%, along with a rise in frequency, from one–two events to two–four
events. This finding was in alignment with the conclusions drawn in the IPCC report.

Previous research had also indicated the intensification of drought in Inner Mongolia,
with this trend beginning around 1997 [37]. Our results further corroborated this trend
by revealing that the drought area exceeded 40% in 1997, whereas it had been below 40%
before 1997, thereby highlighting 1997 as a pivotal year for drought. Another study focusing
on Inner Mongolia’s drought from 1982 to 2013 had highlighted a prolonged period of
drought from 1999 to 2011 [38]. Our segmentation analysis with the mid-point year 2000
closely aligned with this timeframe.

The regions with the highest frequency of all three drought types were predominantly
concentrated in the central and western regions, mainly characterized by desert and steppe
landscapes. These areas, being arid and semi-arid in nature, were inherently susceptible to
all three drought types, which is consistent with the findings of previous drought research
in Inner Mongolia [31]. Research conducted in Tongliao City, in Inner Mongolia, had
suggested a periodic intensification of drought in semi-arid sandy areas from 2007 to 2021,
which is in line with our findings [38]. Another study had identified regions with high
drought intensity in Inner Mongolia, especially during spring and summer, primarily
located in the western and central-western areas [37]. Our drought research primarily
focused on the growing season SPEI, covering spring and summer, aligning well with the
results of previous research. Furthermore, the study suggested that the significant increase
in temperature since 1990 in Inner Mongolia may be one of the reasons for the expansion of
drought in terms of both extent and intensity [37].
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4.2. Characteristics of Resistance in Different Grassland Types

The ability of different plant species to respond to varying levels of drought varied [39].
As drought intensified, there was a general trend of decreasing resistance for five types of
meadow and steppe, except for the desert. Extreme drought significantly impacted plant
growth, with the exception of TD, which was consistent with previous research conducted
from 1982 to 2012 [40]. The TD, as one of the regions with the least precipitation in the
study area and a high frequency of drought occurrence, generally maintained a resistance
level above 0.9 under the influence of all drought types in both time periods (except for
0.87 under severe drought in 2001–2018). This could be attributed to the high probability
of drought in this region, where vegetation primarily consisted of drought-resistant plant
species and the vegetation had adapted to drought conditions.

Experimental results from Inner Mongolia suggested that the decline in aboveground
biomass caused by extreme drought was mainly due to a reduction in non-dominant
species. Many weeds had simpler taproots compared to dominant grasses in the Poaceae,
which might have contributed to better drought tolerance [41]. The TD and TSD had
fewer species, with dominant species having a significant biomass and well-developed
root systems, making them more resistant to extreme drought. This was likely one of the
reasons for their resilience.

Soil moisture conditions in loamy soils were higher than in sandy soils, resulting
in a higher NPP. This higher NPP led to increased litter cover, which, in turn, enhanced
the soil’s physical properties by increasing the soil’s organic matter content. This formed
a positive feedback loop. Moreover, a thicker litter layer and higher soil organic carbon
effectively prevented soil moisture evaporation and plant transpiration loss. Under drought
conditions, higher soil water retention and lower evapotranspiration in loamy soils resulted
in soil moisture levels remaining around 20%, similar to the control plots in the sandy soils
under equivalent annual precipitation conditions in Hulun Buir [41]. In the eastern region,
dominated by meadows and steppe, the meadows exhibited higher coverage and soil
moisture levels than the steppe. The results indicated that, under varying drought types,
meadows had a higher resistance compared to steppe; this was consistent with previous
research findings [41].

4.3. Factors Influencing Resistance under Drought

The response of fraction vegetation coverage and abundance to drought stress in-
dicated that plant species’ resistance was species-specific [39]. Previous studies had
mostly shown that, under conditions of insufficient water supply, vegetation coverage de-
creased [42], leading to a decline in NPP, especially in arid and semi-arid regions [43]. Water
was a critical resource for plant growth in semi-arid grasslands and a primary limiting
factor for plant growth [44,45]. In different grassland type, extreme drought had varying
impacts on aboveground NPP [46], which was consistent with the findings of this study.
When external conditions lacked water, plants wilted or even died. Many previous research
reports had indicated that changes in community coverage and abundance due to drought
were closely related to changes in soil moisture [47]. This study assessed vegetation re-
sistance under moderate drought, severe drought, and extreme drought conditions and
found that the areas with the highest and lowest precipitation were meadows and deserts,
respectively, with significantly higher resistance compared to steppe, which fell between
the two. Under drought conditions, soil moisture in the humid grassland ecosystems was
higher than in the arid grassland ecosystems, which may have contributed to a higher
resistance to drought [46,48]. The higher resistance of the meadow ecosystems in eastern
Inner Mongolia may have been closely related to soil moisture. The significantly higher
frequency of extreme drought events in the temperate meadow steppe from 2001–2018
compared to 1982–2000 could have been due to the repeated occurrence of extreme drought
in these areas, resulting in a decrease in soil moisture, especially when extreme drought
events occurred consecutively for two years, potentially leading to a cumulative drought
effect and a reduced resistance with the increasing duration of extreme drought [49]. How-
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ever, the TD, which received the least annual precipitation, remained unaffected by the
intensity of drought and maintained a high resistance. This could have been attributed to
the adaptation of plants in the drought-prone grassland ecosystem, where plant resistance
to drought may have been higher compared to wetter grassland ecosystems [50].

In this study, the resistance of the TDS, TSD, and TD under the extreme drought
conditions from 2001 to 2018 showed some improvement compared to the period from 1982
to 2000. This could also be indicative of a gradual recovery of the vegetation. Following the
peak of drought, especially extreme drought, in 2010, there has been a trend of weakening,
and, since 2011, China has implemented grassland subsidy policies in Inner Mongolia, with
a cumulative investment of 45.5 billion yuan over the past decade. Proper grazing manage-
ment, grassland protection, and ecological restoration may contribute to better vegetation
growth. Over the past two decades, extreme high-precipitation and extreme drought have
been on the rise. Coupled with an increased attention to grassland management in the
sector, this might enhance the grassland vegetation’s ability to withstand extreme climatic
risks. This study also has some limitations as it focused on two distinct time periods. Due
to the significant climate fluctuations after 2000, it was not possible to explore the details of
resistance between years. Further research is needed to address this issue in the future.

5. Conclusions

We investigated the spatial and temporal characteristics of moderate drought, severe
drought, and extreme drought in the Inner Mongolian grasslands from 1982 to 2018, as
well as the spatial pattern of vegetation resistance during these drought periods. The
differences in resistance among different grassland types were also analyzed. The results
showed that both the area and intensity of drought have significantly increased since
1997, with the most severe occurrence of extreme drought happening in the Xilingol
League and in the Alxa League. Under the three drought types, the resistance of the
meadow–grassland–desert showed a high–low–high distribution as precipitation decreased.
The warm desert was minimally affected by the three droughts, with resistance reaching
above 0.9. Extreme drought had the greatest impact on the temperate meadow steppe,
the temperate steppe, and the temperate desert steppe, mainly distributed in Ulanqab
City, in the Xilingol League, and in the western part of Hulun Buir City. This leads
us to conclude that the semi-arid grassland ecosystem is most susceptible to drought
events, especially the temperate meadow steppe and the temperate steppe, and that the
resistance in 2001–2018 has decreased compared to 1982–2000. Given the expected increase
in severity and duration of future droughts, our research findings may help identify the
most vulnerable vegetation areas in Inner Mongolia, enabling relevant measures to be taken
by government departments to address climate change.
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