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Abstract: The moderate resolution imaging spectroradiometer (MODIS) calculates the leaf area index
(LAI) for each pixel without incorporating the temporal correlation information, leading to a higher
sensitivity for the LAI that produces uncertainties in observed reflectance. As a result, an increased
noise level is observed in the timeseries, making the data discontinuous and inconsistent in space
and time. Therefore, it is important to identify and handle the outliers during the post-processing
of MODIS data. This study proposed a method to identify the MODIS LAI outliers based on the
analyses of temporal patterns, including the interannual and seasonal changes in the LAI. The
analysis was carried out utilizing the data from 278 global MODIS LAI sites and the results were
verified against the measurement obtained from 52 ground stations. The results from the analyses
detected 50 and 92 outliers based on 1.5σ and 1.0σ standard deviations, respectively, of the difference
between the MODIS LAI and ground measurements; correspondingly, 46 and 65 outliers, respectively,
were identified by incorporating temporal patterns during the post-processing of the data. The
validation results exhibited improved values of the coefficient of determination (R2) after eliminating
the MODIS LAI outliers identified through the interannual and seasonal patterns. Specifically, the R2

between the ground measurement LAI and MODIS LAI increased from 0.51 to 0.54, 0.88, and 0.90
after eliminating MODIS LAI outliers when considering the interannual patterns, seasonal patterns,
and both the interannual and seasonal patterns, respectively. The results from the study provided
valuable information and theoretical support to improve MODIS LAI post-processing.

Keywords: MODIS LAI; outliers; temporal patterns; inter-quartile range; post-processing

1. Introduction

The leaf area index (LAI), defined as one-half of the total green leaf area per unit
ground surface area [1], is the primary interface for the exchange of fluxes of energy, mass
(e.g., water, nutrients, and CO2) and momentum between the land surface and the plan-
etary boundary layer. Since the LAI is an essential and a vital parameter in terrestrial
ecosystems to characterize the structure and function of vegetation [1], it has been used in a
variety of applications including plant photosynthesis modeling [2], calculation of potential
evapotranspiration [3], biomass estimation [4], carbon source–sink studies [5], forest moni-
toring [6], vegetation phenology studies, extraction of plant biophysical parameters [7], and
terrestrial ecosystem modeling at global and regional scales [8–10]. Spaceborne remote sen-
sors with great spatiotemporal resolutions and larger area coverage capabilities provide an
effective means to regularly monitor the changes at larger scales [11]. Several LAI products
have been developed using the observations obtained from various earth observing satel-
lites, including the Global Change Observation Mission–Climate (GCOM-C) [12], satellite
products for change detection and carbon cycle assessment at the regional and global scales
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(CYCLOPES) [13], NOAA-CDR-AVHRR-LAI [14], Copernicus Global Land Service LAI
(CGLS-LAI) [15,16], ECOCLIMAP [17], MERRA-2 M2T1NXLND [18], GLOBCARBON [19],
and MODIS [20–22]. The MODIS LAI products are widely used by researchers due to their
higher spatiotemporal resolutions and greater temporal coverage [23]. The MODIS LAI
algorithm retrieves the results using a lookup table inversion strategy based on the theories
of the three-dimensional radiative transfer and the stochastic radiative transfer [20,24]. The
operational algorithms include the main algorithm and the backup algorithms, which are
based on the radiative transfer equation and the empirical relationship between canopy
LAI and normalized difference vegetation index (NDVI) [21]. However, the remote sensing
vegetation indices (VI) are often contaminated by long-term continuous clouds, shadows,
snow, aerosols, and other artifacts significantly affecting the quality as well as the quantity
of the data.

Several researchers have proposed various methods to improve and quality and
quantity of the LAI products. These methods can be roughly categorized into three general
groups: (1) the time-domain local filter methods, (2) the frequency-domain denoising
methods, and (3) the function-based methods. Examples of time-domain local filter methods
include the best index slope extraction (BISE) algorithm [25], the moving-average method,
and the changing-weight filter [26]. However, the BISE algorithm requirements are too
subjective and the effectiveness of the algorithm is often limited by individual skills and
experienced strategies, e.g., how to determine the optimal sliding cycle VI acceptable
percentage threshold and the regrowth percentage of the VI. Moreover, moving averages
are likely to overestimate the non-growing season vegetation information if the curves
are too smooth and, if sliding values are used as true values, the final fitted curves will
deviate from the true information and result in the non-growing season information being
overwritten. In addition, the changing-weight filter was intended to preserve the amplitude
and shape of the VI timeseries, where a rule-based decision and a mathematical morphology
algorithm are employed to identify the local maximum or minimum values and a three-
point changing-weight convolution filter is employed to generate the new VI timeseries.
However, the reconstruction results are not stable or reliable, with irregular fluctuations
when successive atmospherically contaminated values occur. The approaches following
the frequency-domain methods involve the Fourier-based fitting methods [27], wavelet
transform methods [28], and harmonic analysis of timeseries (HANTS) methods [29]. The
VI curves obtained by the use Fourier-based fitting methods are quite smooth. However,
they are not suitable for irregular or asymmetric VI data since this method is critically
dependent on symmetric sine and cosine functions. For non-smooth processes, the Fourier
transform has limitations, one of which is that it is only possible to obtain which frequency
components a signal contains in general but there being no knowledge of the moment
when each component appears. Additionally, a small hormonic will lead to failing to
capture quick changes in vegetation time-series. In contrast, a large harmonic will lead
to emphasizing too much regional signal and over fluctuating. Furthermore, wavelet
analysis replaces the infinite length trigonometric basis with a finite length decaying
wavelet basis. Lu et al. [28] proposed a wavelet transform method to generate high-quality
terrestrial MODIS products. However, it also reduced some reasonable high values, which
limits its practical usage. Similarly, the HANTS method selects only the most significant
frequencies in the time profiles and uses a least-square curve fitting procedure based on
the harmonic components. However, it tends to overestimate the maximum NDVI values
in the plateau of a timeseries and underestimates NDVI values when meeting several
successive atmospherically contaminated values [30]. The other approaches, such as the
asymmetric gaussian [31], general regression neural network [32], Whittaker smoother [33],
weighted Whittaker smoother with dynamic parameter (wWHd) [34], Savitzky-Golay (S-G)
filtering [35–37], and double logistic [38] methods follow the function-based methods. For
S-G, it faces an ineluctable issue for its key parameter of half-width of the smoothing
window and an integer specifying the degree of the smoothing polynomial [39]. The
wWHd method, which is more stable and can capture a gradual change in vegetation even
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for seriously contaminated vegetation timeseries. However, the wWHd is insensitive to
the percentage of suitable points used to determine the critical weight and the minimum
weight under different levels of random gaps, so it’s uncertain when used in large-scale
applications. In addition, the S-G, double-logistic (D-L), and asymmetric Gaussian function
results may be misled by outliers, thus inevitably producing wrong peaks [34]. Moreover,
these methods often ignore the identification of outliers when processing the MODIS
data. By not removing outliers, any processing method will incorporate anomalous LAI
values [34]. Although MODIS products provide a quality control (QC) documentation to
explain the LAI value retrieved by retrieval algorithm, it is often too arbitrary to determine
outliers based on QC documentation. The MODIS LAI algorithm primarily relies on a
lookup-table-based procedure that utilizes the spectral information from the MODIS red
(648 nm) and near-infrared (858 nm) bands. The success of the main algorithm is ensured
within a specific range, i.e., where the distribution of values remains free from saturation.
In such cases, the final value is determined by taking the mean value (QC < 32). Although
this approach allows for the removal of points with poor performance and retrieval of LAI
values without saturation and cloud interference, some reasonable values are also lost at
the same time. Moreover, the poor performance of the MODIS LAI values retrieved using
the main algorithm was also reported for certain types of landcover including evergreen
needleleaf forests (ENFs), evergreen broadleaf forests (EBFs), and deciduous needleleaf
forests (DNFs). Additionally, the quantity of the data was also affected by the presence of
clouds, particularly over the EBFs located in tropical regions [40]. However, a strict regular
pattern between the MODIS LAI and QC values cannot be observed. Additionally, the
sudden spikes and valley peaks were also observed with both the back-up algorithm and
the main algorithm in the presence of clouds or saturation of the MODIS LAI timeseries
data, suggesting that the QC documentation was not sufficient to identify all the outliers in
the dataset [36]. Therefore, it is important to explore new methods to identify and remove
the outliers during the post-processing of MODIS data.

Typically, MODIS utilizes 4-day or 8-day maximum composite datasets and chooses
the best available pixel values from multiple acquisitions of its Aqua and Terra sensors. This
temporal composition approach allows reduction of the errors produced by the atmospheric
factors and sensor variations. However, in the case of the LAI, MODIS retrieves daily LAI
values for individual pixels without incorporating any temporal data; the lack of any
temporal context in the retrieval process produces uncertainties in the results, eventually
leading to increased noise levels in the timeseries [41,42]. Several studies [26,37] have
reported the presence of outliers and a negative bias in the MODIS-derived LAI curves,
and this may be attributed to atmospheric and technical challenges. Although utilization of
the prior information to remove uncertainties and fill the data gaps is a common approach
employed by the spatial data scientists [43], few similar studies have been conducted to
improve the quality of the MODIS LAI. Several kinds of dynamic temporal data such as
the landcover, phenological characteristics of vegetation, and interannual and seasonal
changes may be utilized to improve the quality and the quantity of the MODIS LAI during
the retrieval and post-processing stages. For instance, the LAI value in one pixel is similar
for the same land type in the same DOY (day of the year) interannually. Therefore, the
LAI deviation distance from the multi-year average can be important information for
outlier judgment. In addition, the start of the season (SOS) and the end of the season
(EOS) within a growing season (GS) are two commonly used metrics for assessing plant
phenology and represent the patterns of vegetation photosynthetic activity and green leaf
area annually [44–46]. These changes are reflected in the LAI curve as well, i.e., an ideal
LAI curve decreases or increases monotonically with the changing seasons. Some specific
landcover types such as EBFs located in the Amazon tropical forest have a specific LAI
distribution pattern. The LAI over this region remains consistently high throughout the
year [47]. The differences in the MODIS LAI over two different landcover types during
the same period of time often produces outliers in the data [34,48]. In the light of these
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challenges, the interannual and seasonal variation data for various land types can serve as
effective information to identify and remove the outliers in the MODIS LAI dataset.

This study proposed a method to identify outliers in the MODIS LAI dataset during
the post-processing stage through incorporating temporal dynamic information including
the interannual and seasonal variations. Specifically, the objectives of this study are as
follows: (1) To detect MODIS LAI outliers by including interannual and seasonal patterns
in post-processing and (2) to test whether the method of identification of outliers can
improve the quality of MODIS LAI. The results obtained from this study are also validated
against 433 measurements collected from 52 global ground stations. Section 2 includes the
description of methodology and datasets utilized in the study, and the results are described
and discussed in Sections 3 and 4, respectively.

2. Materials and Methods
2.1. MODIS Datasets

MODIS LAI product: The LAI data in this study were sourced from the standard
collection 6 MODIS LAI/FPAR product suite (MCD15A3Hv6) and was provided at a 500 m
spatial resolution and 4-day temporal resolution with sinusoidal equal-area projection [49].
The global dataset (including the real-time updates) covered a temporal period from July
2002 to January 2022. Generally, the dataset included 92 composites per year, some of the
data were missing due to technical issues. The missing data were produced using linear
interpolation techniques.

MODIS phenology product: The phenology data were obtained the from the MODIS
product MCD12Q2 (version 6.1) and had a spatial resolution of 500 m and a projection of
sinusoidal equal-area. The reference data product had a temporal coverage from 2001 to
2021. It utilized the MODIS albedo product of MOD43B4 [50] to calculate the enhanced
vegetation index (EVI) values to invert vegetation phenological timing. Specifically, the
sliding window consisting of five consecutive time-phase EVI values was used to judge
the continuous rising and falling intervals. When the extreme value and amplitude of the
interval meet the given threshold conditions, the rising and falling interval is judged to be a
growth cycle process and the one-year timeseries curve records, at most, two growth cycles.
For each growth cycle, the piecewise logistic function was used to fit and the extreme
point of curvature change was used to determine the beginning of growth, the midpoint of
continuous EVI increase, the maturity, the peak, the midpoint of continuous EVI decrease,
and the end of growth. Up to two growth cycles were recorded during a year [51]. The
vegetation indices data could be retrieved from satellite observations and successfully
applied to estimate canopy greenness, calculating vegetation phenology metrics at the
landscape scale [52–54]. The detailed MCD12Q2 product information is introduced by the
basic information about sample points in Supplementary Material Information S1.

MODIS Land Cover Map: The land cover data were obtained from the annual MODIS
product MCD12Q1, which had a spatial resolution of 500 m and a temporal coverage
from 2001 to 2021. In this product, the land cover types were obtained primarily from
the supervised classification of the MODIS Terra and Aqua reflectance data, with addi-
tional subsequent processing of the supervised classification results, combined with a
priori knowledge and auxiliary information, to further refine the category-specific land
types. In this study, the MODIS International Geosphere-Biosphere Programme (IGBP)
landcover classification scheme [55] was utilized. The spatial distribution of the landcover
classification is displayed in Figure 1. The distribution of random samplings of MODIS
LAI is introduced by the basic information about sample points in Supplementary Material
Information S1.
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2.2. Ground Measurements LAI Data Collection

The ground-based LAI measurements that were utilized to validate our results were
obtained from several sources, including from the Validation of Land European Remote sens-
ing Instruments (VALERI, http://w3.avignon.inra.fr/valeri/, accessed on 12 August 2023),
the Implementing Multi-scale Agricultural Indicators Exploiting Sentinels, (IMAGINES, http:
//www.fp7-imagines.eu/, accessed on 12 August 2023), the Bigfoot (https://daac.ornl.gov/,
accessed on 12 August 2023), the FLUXNET Canada (https://daac.ornl.gov/FLUXNET/g,
accessed on 12 August 2023), the FLUXNET America (https://fluxnet.org/, accessed on
12 August 2023), the AsiaFlux (http://asiaflux.net/, accessed on 12 August 2023), and the
Chinses Ecosystem Research Network (CERN, http://cernbio.ib.cas.cn/, accessed on 12 August
2023) projects. Moreover, the LAI measurements provided by some previous publications were
also used in the study. More description about the datasets is provided in the following:

The VALERI and the Bigfoot LAI datasets: The VALERI program, started in the year
2000, is mainly supported by the Centre National d’Études Spatiales (CNES) and Institute
National de la Recherche Agronomique (INRA), France. It performs global veracity checks
on land remote sensing data products including LAI, FPAR, and FCover. The project
incorporates a secondary sampling strategy based on elementary sampling units (ESU) for
spatial scale conversion [42]. The Bigfoot project, supported by NASA’s terrestrial ecology
program, established the measurement sites in the United States (US) to validate the MODIS
land products (e.g., land cover, LAI, FPAR, and NPP), and it remained operational from 1999
to 2003. It also employed a secondary sampling approach similar to that of the ESU in the
VALERI program to obtain the measurements [56]. The VALERI project utilized a sample of
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3 km × 3 km, whereas the Bigfoot project had a comparatively larger size, i.e., 5 km × 5 km.
The scale of the ESU depended on the strategy adopted for scaling up and the resolution
of the imagery, which typically ranged from 20 to 30 m. Moreover, the sampling method
within the ESU varied based on the type of vegetation and the measuring instrument. For
instance, for uniform and dense vegetation such as broadleaf and coniferous forests, the
square mode was used and the LAI-2000 plant canopy analyzer instrument was utilized to
obtain the measurements. The LAI-2000 plant canopy analyzer incorporated a “fisheye”
optical sensor to measure the transmitted light from five angles above and below the canopy
and used the canopy radiation transfer model (gap rate) to calculate the LAI. Additionally,
the hemispherical canopy photography used a fisheye lens with a field angle closer or equal
to 180◦, and this method projected the entire hemisphere on the horizontal plane of the
image. Conversely, for areas with a lower canopy height, including grassland, crops, and
shrubs, the cross mode was proffered. Furthermore, the tracing radiation and architecture
of canopies (TRAC) LAI detector instrument was utilized for sparse and discontinuous
vegetation as it had a more intensive transect sampling mode with measurements at regular
intervals along the transect. In addition, the LAI measurement map corresponds to the
map derived from the determination of a transfer function between the reflectance values
of the SPOT image acquired during (or around) the ground campaign and biophysical
variable measurements; the derived biophysical variable maps consider zenith angle, cover
fraction and tree height, etc. The sampling of each ESU (for information: a transect in
the GPS file is composed of x ESUs) is based at least on twelve elementary images from
above the understorey and from below the canopy. For each ESU, all the single point
measurements were averaged to obtain a true representative value for the LAI. The number
of the single point measurements (generally 12 for VALERI and 5 for Bigfoot) primarily
depended on the scale of the ESU and the height of the vegetation canopy. In this study, we
collected and utilized 46 effective measurements from 10 sites from both the VALERI and the
Bigfoot projects.

IMAGINES: Since 2013, several field campaigns have been carried out to collect
ground data for validating the satellite-derived biophysical products of the Copernicus
global land service. The in situ measurements were acquired by the Earth Observation
Laboratary (EOLAB) and local teams following the guidelines proposed by the Committee
on Earth Observation Satellites Land Product Validation Group [57,58]. The ground-based
measurements collected over the main vegetation types were upscaled by the EOLAB using
high-resolution satellite imagery provided by the Satellite pour l’Observation de la Terre
(SPOT) and LANDSAT 8 to generate high-resolution reference maps of several variables,
including LAI, FPAR, and FCover. The EOLAB followed the protocols established by
the VALERI project to generate the Ref. maps [59]. These reference maps are available
to download from the IMAGINES website (http://www.fp7-imagines.eu/, accessed on
12 August 2023). In this paper, 70 measurements obtained from 10 sites were utilized to
validate our results.

FLUXNET LAI data: The FLUXNET data that were used in this study were col-
lected from several sources including FLUXNET-Canada, AsiaFlux, ChinaFlux (CERN),
and FLUXNET-America (Harvard Forest station). FLUXNET-Canada, established by the
FLUXNET-Canadian Research Network (FCRN) and the Canadian Carbon Program op-
erated from 1993 to 2014. The data provided by the FCRN were obtained from mea-
surements and simulations carried out by the site investigators. The in situ LAI data
were measured using various instruments including the TRAC LAI detector, the LAI-2000
plant canopy analyzer, and the LI-3121 area meter. We collected 55 measurements from
six FLUXNET-Canada sites to utilize in our study.

AsiaFlux was established with the aim to develop an easy-to-use open database
providing the essential characteristics of the material exchanges (e.g., CO2 and water)
between individual sites (ecosystems) and the atmosphere. In this study, 100 measurements,
mostly acquired using the hemispherical canopy photography approach, were obtained
from 13 AsiaFlux sites and used for validation purposes.

http://www.fp7-imagines.eu/
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CERN, with its 42 ecosystem research stations, covers the major vegetation types in
China and has been providing observations for a long time. We collected 74 measurements
from six CERN sites and used them in our study. The measurements were carried out
following the grading and upscaling ground measurements method proposed in a previ-
ous study [57]. Moreover, the LAI surface measurements from the Harvard Forest Flux
Observatory (42.538◦N, 72.171◦W), located in the Harvard Forest region of Massachusetts,
USA were also used in the study.

LAI data collection from previously published research: We collected 55 measurements
from previous publications and used them in the study. The details of these measurements
are given in the following: Li et al. [60] evaluated the global product of the crop and
grassland LAI in northern China against the LAI data measured from the fields of winter
wheat in Liaocheng and Jining cities located in Shandong Province. The researchers
collected the data through several campaigns at an image of size 1 km × 1 km. From these
sample sites, they selected nine specific points and calculated the average value, which
served as the validation reference data for their study.

Lu and Fan [61] conducted campaigns to obtain to field measurements fot the broadleaf
and the mixed forests in an experimental forest site located at the Northeast Forestry Univer-
sity Maoershan Academic Center (NFUMA) using a TRAC meter. Moreover, Pan et al. [62]
performed LAI measurements in 2017 and from early July to September 2018. They utilized
the LAI-2200C canopy analyzer to sample 114 consecutive measurements within the sample
plots, and the mean value of the sample plots was chosen as an accurate observation.

To deal with the insufficient LAI observation samples in tropical regions, the measure-
ments were collected from three published studies that had their study areas located in
these regions. Negrón et al. [47] measured the LAI based on hemispherical canopy photog-
raphy that utilized a CI-110 digital plant canopy imager in Tapajos national forest (TNF).
Pinto-Júnior et al. [63] used a photosynthetically active radiation sensor (model LI-190;
LICOR Bioscience, Lincoln, NE, USA) coupled with a datalogger to obtain ground-based
LAI measurements in a transitional forest located 50 km northeast of Sinop, Mato Grosso
(SMG), Brazil. In addition, Dube et al. [64] measured LAI under clear sky conditions for
both the dry and wet seasons using an LICOR-2200 plant canopy analyzer. The study was
carried out in the Kruger National Park (KNP) in South Africa.

The ground-based LAI measurements collected from all the sources were screened
and only the observations providing accurate geographical information and following the
optical observation approach were selected. Finally, a total of 433 measurements from
52 sites fulfilled the criteria, and these measurements were used in the study. The geo-
graphic locations of the sites are displayed in Figure 1 and more details are provided in
Table 1.

Table 1. Ground measurement LAI station information.

No. Name Country Lat (◦) Lon (◦) LC Database

0 Camerons Australia −32.6160 116.2756 EBF

VALERI

1 Chilbolton England 51.1642 −1.4306 Crops and forest
2 Demmin Germany 53.8919 13.2072 Crops and forest
3 Donga Benin 9.7697 1.7453 Grass
4 Jarvselja Estonia 58.2994 27.2603 Boreal forest
5 Larose Canada 45.3806 −75.2169 Mixed forest
6 Sonian Belgium 50.7683 4.4111 Forest
7 Turco Bolivia −18.2394 −68.1933 Shrub
8 Wankama Niger 13.6450 2.6353 Grass
9 Sevi USA 34.3509 −106.6899 Grass Bigfoot

10 Shandong China 35.4221 116.5292 Crops [60]
11 NFUMA China 45.3668 127.5915 Forest [61]

12 Nanjing China 32.0667 118.8512 Forest [62]
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Table 1. Cont.

No. Name Country Lat (◦) Lon (◦) LC Database

13 GDK Korea 37.74888 127.1492 Mixed forest

AsiaFlux

14 KBU Mongolia 47.2140 108.7373 Grassland
15 LSH China 45.2786 127.5783 Larch forest
16 MBF Japan 44.3842 142.3186 DBF
17 MMF Japan 44.3219 142.2614 Mixed forest
18 MSE Japan 36.0540 140.0269 paddy field
19 PDF Indonesia −2.3450 114.0364 Tropical forest
20 PSO Indonesia 2.9667 102.3000 Tropical forest
21 SKR Thailand 14.4924 101.9163 Tropical EBF
22 SMF Japan 35.2500 137.0667 Mixed forest
23 TKC Japan 36.1397 137.3708 EBF
24 YLF Russia 62.2550 129.2414 Forest (larch)

25 YPF Russia 62.2414 129.6506 Pine forest

26 TNF Tapajos −3.0170 −54.9707 Tropical forest [47]
27 SMG Brazil −11.4125 −55.3250 Semi-DBF [63]

28 KNP Kruger −24.0079 31.5489 Semi-arid savanna [64]

29 25 May Argentina −37.9390 −67.789 Forest

IMAGINES

30 Albufera Spain 39.2744 −0.3164 ENF
31 Barrax-LasTiesas Spain 39.0544 −2.1007 Crop
32 Capitanata Italy 41.4637 15.4867 Crop
33 Collelongo Italy 41.8500 13.5900 DBF
34 LaReina-Cordoba-2 Spain 37.7929 −4.8267 Crops
35 Merguellil Tunisia 35.5662 9.9122 Crops
36 Ottawa Canada 45.3056 −75.7673 Crops
37 South West-2 France 43.4471 1.14510 Crops
38 South West-l France 43.5511 1.0889 Crops

39 AB-Lethbridge Canada 49.70919 −112.9403 Grassland

FLUXNET-
Canada

40 AB-Western Canada 54.9538 −112.467 Mixed forest

41 BC-Campbell River
2000 Douglas-fir Canada 49.8705 −125.2909 ENF

42 ON-EPeatland-
MerBleue Canada 45.4094 −75.5187 Shrubs

43 Ontario Juvenile Canada 48.1330 −81.6280 Mixed forest
44 SK-1975 Jack Pine Canada 53.8758 −104.6453 ENF

45 Akesu China 40.6167 80.8500 Cropland

CERN

46 Changbaishan China 42.4000 128.1000 Forest
47 Dangxiong China 30.4690 91.0624 Grassland
48 Haibei China 37.6167 101.3167 Alpine meadow
49 Qianyanzhou China 26.7475 115.0667 EBF
50 Yanting China 31.2667 105.4500 Crop

51 Harvard USA 42.5380 −72.1710 Forest FLUXNET-
America

GDK, Gwangreung deciduous forest, Korea; KBU, Kherlenbayan Ulaan; LSH, Laoshan; MBF, Moshiri birch
forest; MMF, Moshiri mixed forest; MSE, Mase paddy flux site; PDF, Palangkaraya drained forest; PSO, Pasoh
Forest Reserve; SKR, Sakaerat; SMF, Seto mixed forest; TKC, Takayama evergreen coniferous forest; TNF, Tapajos
National Forest; SMG, Sinop Mato Grosso; KNP, Kruger National Park; LC, Land cover.

2.3. LAI Outlier Identifying Methods
2.3.1. Constructing LAI Residual Samples

We created random points on a global scale by using the sampling function given in the
ArcGIS software (versions: 10.7.0.10450) and obtained 261 sample points for single-growth
cycle vegetation and 17 sample points for double-growth cycle vegetation after excluding
invalid points (those located over glaciers and rocks). The locations of the sample points
are shown in Figure 1. Additionally, the type of sample is highlighted. The analyses of the
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study were carried out over the locations of these points. The seasonal and interannual LAI
residuals were calculated for the same types of landcover for each year from 2003 to 2021.
Further, multi-year average and multi-year detrend analyses were carried out using the
following set of equations:

Mresi
yr,j
mode,i = LAIyr,j

mode,i −
2021

∑
2003

LAImode,i (1)

Dresi
yr,j
mode,i = LAIyr,j

mode,i − (amode,i×yr, j + bmode,i) (2)

where Mresi
yr,j
mode,i and Dresi

yr,j
mode,i represent the residuals of the land type i and the year j

MODIS LAI distance form the multi-year average and multi-year detrend LAI, respectively,

LAIyr,j
mode,i is the MODIS LAI, and

2021
∑

2003
LAImode,i refers to the average LAI value for a specific

land type from 2003 to 2021. Moreover, amode,i and bmode,i represent the linear regression
fitting slope and the intercept, respectively.

The seasonal LAI residuals were calculated and the seasons were defined based on
the phenology of the vegetation during the start and end of the growing season, which
corresponded to the Greenup and Dormancy time nodes provided in the MODIS MCD12Q2
product. The vegetation changes were divided into the growing season (GS) and the
non-growing season (NGS). More details about the phenology nodes are provided in the
Supplementary Materials. The regression values were obtained through fitting the LAI
the GS using a quadratic polynomial equation. Finally, the seasonal LAI residual was
calculated using Equation (3) given in the following:

Sresi
yr,j = LAIyr,j − (a×(yr, j)2 + b×(yr, j) + c) (3)

where Sresi
yr,j is the seasonal residual, a is the coefficient of the quadratic term, b is the

coefficient of the first term, and c is the constant term of quadratic polynomial fitting.

2.3.2. Using the Inter-Quartile Range to Identify LAI Outliers According to LAI Residuals

This study used the inter-quartile range (IQR) method to determine LAI outliers [65].
The method of identifying outliers using the IQR is different from other classical methods,
such as the 3σ rule or the z-score method, which are primarily based on the assumption
that the data have a normal distribution. However, the actual data often do not strictly
obey the normal distribution. In addition, the 3σ rule or the z-score identify outliers based
on the mean and the standard deviation of the data. However, the instability of the mean
and standard deviation of the data may significantly affect the identification of the outliers.
Therefore, the application of these two methods is not suitable for non-normally distributed
data. On the other hand, the IQR is based on the actual data and identifies the outliers
based on the quartile and the IQR, owing to the fact that the quartile has a certain degree of
stability. As much as 25% of the data can be arbitrarily far away without greatly disturbing
the quartile. Consequently, identifying outliers using the IQR is relatively objective [66].
The IQR-based method detects the outliers using the following set of equations:

outliermax = Q75 + x1(Q75 − Q25) (4)

outliermin = Q25 − x2(Q75 − Q25) (5)

where Q25Q25 and Q75 are the first and third quantiles of the LAI residuals, respectively,
and x1 and x2 are interval parameters.

Optimizing the IQR interval parameters in denoising by including interannual dynam-
ics: We carried out sensitivity analysis to determine the optimal interval parameters (x1,x2).
The sensitivity analysis was based on the number and the accuracy rate of the denoising
points. Therefore, it was important to determine whether the denoising points identified
using Equations (4) and (5) were well aligned with the background value. Previous studies
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have often calculated the multi-year mean of the LAI and treated that as a background
value [67]. However, in this study, we utilized both the multi-year mean and the regression
values under the same land class as a background value. If the LAI value fluctuates sharply
within a complete GS and at the same time deviates from the background value, then the
LAI is an abnormal value. Similarly, during the NGS, if the LAI significantly increases or
decreases compared with the values of the preceding or succeeding periods and deviates
from the background value, then the LAI is also an abnormal value. In addition, the
normal Q–Q distribution diagram was plotted to validate the residuals obtained through
the multi-year mean (Mresi

yr,j
mode,i) and multi-year detrend methods (Dresi

yr,j
mode,i), and the

results displayed in Figure 2a,b indicate that although the residuals obtained using the two
methods deviated from the normal distribution, they demonstrated noticeable symmetry.
The results from methods such as the multi-year detrend, the multi-year mean, the inter-
section of multi-year detrend and multi-year mean (multi-year detrend+multi-year mean),
and the union of multi-year detrend and multi-year mean (multi-year detrend|multi-year
mean) showed that the number of denoising points gradually increased as the interval
parameter decreased. The number of denoising points when reducing the intervals (x1,x2)
from 1.5 to 0.5 using the four methods was observed as follows: multi-year detrend |
multi-year mean (1289 to 4211) > multi-year mean (1192 to 3120) > multi-year detrend
(783 to 3268) > multi-year detrend+multi-year mean (686 to 2177). Moreover, the number of
denoising points fluctuated smoothly in the 1.0~1.5 intervals; however, a sharp increment
was observed between the intervals 0.5 and 1.0 (Figure 2c). The correct rate increased from
0.5 to 1.1 and then decreased when the interval range was reduced from 1.1 to 1.5. At the
interval 1.1, the total number of denoising points was 1186 and 966. The highest accuracies
of 85.80% and 84.67% were achieved for the multi-year detrend and multi-year detrend |
multi-year mean methods, respectively (Figure 2d).

Optimizing the IQR interval parameters in denoising by including seasonal dynamics:
The normal Q–Q distribution diagram was constructed to verify the residual distribution
within the GS (Sresi

yr,j). The results showed that the seasonal LAI residuals deviated
from the normal distribution, particularly on the forward residuals side, and exhibited
an apparent asymmetry (Figure 3a). Similar results were observed for the double-growth
vegetation’s residual distribution in each growth cycle (Figure 3d,g). The asymmetry of
Sresi

yr,j and the presence of outliers in the LAI during in the GS (usually low outliers)
contributed to the asymmetry in the upper and the lower limit intervals (x1,x2) when
detecting the outliers using Equations (4) and (5).

In this study, the dynamic interval parameters method was used to determine the
appropriate upper and lower limit intervals. The method was based on two values, the
count of the remaining effective LAI points after denoising in the GS and the regression
correlation coefficient between these effective LAI points and their corresponding quadratic
fitting values. The results show that the optimal combination was achieved when the
upper limit interval was 1.5 and the lower limit interval was 0.3 for single-growth-cycle
vegetation. In this case, the average count of the effective LAI points in the GS was 30.69
and the correlation coefficient was 0.75 (Figure 3b,c). In addition, the optimal combination
was achieved when the upper and lower limit intervals were 1.5 and 0.2, respectively,
for the first and second GS within dual-growth-cycle vegetation. The average number
of effective LAI points in the first GS was 28.14, and the correlation coefficient was 0.73
(Figure 3e,f). Furthermore, for the second GS, the average count of effective LAI points was
27.57, and the correlation coefficient was 0.74 (Figure 3h,i).
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Figure 2. The normal Q–Q plot of residuals that were calculated through multi-year mean (a) and
multi-year detrend denoising (b). (c) The number of denoising points identified as the intervals
increase from 0.5 to 1.5. Correspondingly, (d) is the proportion of the correctly judged denoising
points to the total number.

Additionally, the tropical forests that had a greater vegetation coverage experienced
higher temperatures, levels of solar radiation, and precipitation and the LAI over these
regions was very high throughout the year. However, in some areas there was no clear
dividing point between GS and NGS, for example the samples No. 71, No. 86, etc. (Table S2).
Therefore, we proposed a more robust way to identify the outliers based on the LAI
threshold and distinguished seasonal patterns of the LAI for areas with and without
apparent non-growing seasons. In detail, we calculate the third quantile of the whole year
LAI (Q75) and divide the year into four phases consisting of three months. If there exists an
LAI tile that is greater than Q75 in each stage, then there is no obvious non-growing season
in this region and those LAI tiles that are less than the Q75 in each phase were considered
outliers. The detailed denoising results are introduced by the identification results of the
MODIS LAI noise points in random sample points in Supplementary Material Information S2.
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Figure 3. The normal Q–Q plot of Sresi
yr,j and the criteria for the reasonable upper and lower interval

parameters. Panels (a,d,g) represent the normal Q–Q plot of residuals for a single growth cycle
and the first and the second GSs of dual-growth-cycle vegetation. Panels (b,e,h) are the correlation
coefficients between the MODIS effective LAI points and contemporaneous polynomial fitting values
in the GS of a single growth cycle and the first and the second GSs of dual-growth-cycle vegetation,
respectively. Panels (c,f,i) suggest the numbers of MODIS effective points after eliminating the
outliers in the GS of a single growth cycle and in the first and the second GSs of dual-growth-cycle
vegetation, respectively.

2.4. Validating MODIS LAI Outliers and Evaluating the Effect of the MODIS LAI in Post-Processing
2.4.1. Outlier Identification in the MODIS LAI Dataset Using Ground-Based Measurements

Ground measurement (GM) LAI values were used to validate the outliers in the
MODIS LAI dataset. When calculating the difference between the MODIS LAI and GM
LAI records, the values that were significantly deviated from the GM LAI were treated
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as outliers. These outliers included both unusually high and exceptionally low values
compared with the GM LAI. We established the upper and the lower thresholds to identify
the outliers using the following set of equations:

Bi,max = deltai + sdd×M (6)

Bi,max = deltai − sdd×M (7)

where deltai represents the difference between the MODIS LAI and GM LAI, sdd is the
standard deviation in the delta set, and M stands for the multiple of sdd. When the Bi,max
was greater than 0 or Bi,min was less than 0, the corresponding MODIS LAI is regarded as
an outlier. In this study, we used 1.5σ and 1.0σ standard deviations to identify the outliers
in the MODIS LAI dataset.

2.4.2. Evaluation of the Effect of MODIS LAI in Post-Processing

We identified the outliers in the post-processing of LAI data based on interannual
and seasonal dynamics, and the results were validated against the GM LAI data. Several
evaluation indices including the correlation coefficient (R2), mean absolute error (MAE),
root mean square error (RMSE), and standard deviation (SD) were utilized to assess the
quality of the results. These indices were calculated using the following equations:

MAE(x, h) =
1
m

m

∑
i=1

∣∣∣h(xi)− yi
∣∣∣ (8)

RMSE(x, h) =

√√√√ 1
m

m

∑
i=1

(h(xi)− yi)
2

(9)

where yi and h
(

xi) represent the GM and the post-processing LAI measurements.

SD =

√√√√ 1
m

m

∑
i=1

(∆i − µ)
2

(10)

where ∆i indicates the difference between the post-processing LAI and GM LAI and µ is
the average value of ∆i.

2.5. Google Earth Engine Platform

Processing global scale satellite datasets requires huge memory and efficient comput-
ing. The Google Earth Engine (GEE) is an emerging cloud-based platform that gives access
to massive remote sensing datasets and efficiently processes them online. The GEE data
catalog provides several geospatial datasets including the observations from spaceborne
and airborne platforms, environmental variables, weather and climate forecasts, land cover,
topography, and socioeconomic datasets [68]. The MODIS products utilized in this study
were processed using the GEE.

3. Results
3.1. Outliers of MODIS LAI Based on Ground Measurements

Under the 1.5σ and 1.0σ standard deviations of the delta (sdd), a large difference
was observed in the count of identified outliers. By applying the 1.5σ standard deviation,
35 abnormally high and 15 abnormally low outliers were identified in the MODIS LAI
datasets and there was an R2 of 0.82 between the satellite and ground-based measurements
(Figure 4a). For the 1.0σ standard deviation, 54 high and 38 low outliers were detected in
the MODIS dataset and the R2 was improved to 0.89 (Figure 4b).
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3.2. Identification of the Outliers by Including Interannual Patterns of LAI

The timeseries comparison was carried out between the MODIS and the ground-based
LAI measurements over several stations and the results are displayed in Figure 5. For the
samples number 10, 11, 20, 41, 48, and 51, the multi-year mean denoising (MYMD) method
detected 20, 23, 36, 7, 29, and 25 noise points, respectively. Correspondingly, 23, 24, 35, 8, 37,
and 24 noise points were identified by the multi-year detrend denoising (MYDD) method
(Figure 5a–g). In total, 1126 and 1076 noise points were identified for all the stations under
based on the MYMD and the MYDD methods, respectively. Moreover, the growing season
denoising (GSD) detected 38, 28, 54, 50, 51,37, and 46 noise points, over the stations with
numbers 10, 11, 20, 40, 41, 48, and 51, respectively (Figure 5a–g). Overall, the GSD-based
method identified a total of 2084 noise points for all the stations. The results showed that
the Q75 threshold denoising (Q75TD) only worked for specific stations, i.e., 264 noise points
were identified for station number 20 (Figure 5c). More details including the count of noise
points over each station is provided in the Supplementary Material.

Figure 6 shows the validation of the MOIDS-derived LAI measurements against
433 samples obtained from 52 ground stations. The MYMD method identified 25 outliers,
of which, 3 that were located in the LSH and KBU sites were significantly overestimated and
4 over the stations located in Shandong, Yanting, and KBU were notably underestimated
compared with the ground-based measurements. The two datasets exhibited an R2 of
0.51 (Figure 6a). After removing the outliers, the correlation between the MODIS and
ground-based LAI measurements was improved (R2 = 0.53) (Figure 6b). The MYDD
method identified 18 outliers, among which 4 outliers were overestimated and 3 outliers
were underestimated compared with the ground-based measurements. The overestimated
outliers were observed over the LSH and the KBU stations. After removing outliers, the
MYDD method also showed an R2 of 0.53, which was similar to that for the MYMD
method (Figure 6c). In addition, a total of 29 outliers were identified in the MODIS LAI
dataset through employing the MYMD+MYDD method, out of which, 5 and 4 outliers were
significantly over and underestimated, respectively. The correlation coefficient between the
MODIS LAI after applying the MYDD+MYMD method and GM LAI was measured to be
0.54 (Figure 6d). Further details, including the identified outliers over each of the sites, are
listed in the Supplementary Materials.
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Figure 5. Timeseries plots of the MODIS LAI (black), multi-year detrend denoise (purple), multi-
year mean denoise (pink), growing season denoise (orange), Q75 threshold denoising (dark cyan),
and ground measurement LAI (red). (a–g) represent number 10, 11, 20, 40, 41, 48 and 51 ground
measurement LAI station.The outliers identified via multi-year detrend, multi-year mean, growing
season, and Q75 threshold denoising were marked with −0.5, −1.0, −1.5, and −2.0.
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Figure 6. Identification of LAI outliers by including interannual dynamics and the comparison with
the ground measurement LAI. Panel (a) represents the comparison of MODIS LAI and ground mea-
surement LAI; (b–d) shows the comparison of MODIS LAI after MYMD, MYDD, and MYMD+MYDD,
respectively, with ground measurement LAI. (The red cross represents the identified LAI outliers.
The red and cyan dotted lines represent 1.5 and 1.0 times sdd judgment intervals, respectively. Points
in the blue circle indicate that MODIS LAI is significantly larger than the ground measurements
LAI, and points in the red circle show that MODIS LAI is significantly smaller than the ground
measurements LAI.

Table 2 presents a comparison result between the number of MODIS LAI outliers
identified through different denoising methods when applying 1.5σ and 1.0σ sdd. Under
the 1.5σ standard deviation, the MYMD, MYDD, and MYMD+MYDD identified 8, 7, and
11 outliers, respectively. This corresponds to the proportions of identified outliers at 16%,
14%, and 22%, respectively. Among these, five, five, and eight outliers were instances
where the MODIS LAI significantly exceeded the GM LAI values. Such cases were found
at the SMG, Nanjing, LSH, Albufera, and MBF sites. Conversely, three, two, and three
outliers were detected where the MODIS LAI values were notably lower than the GM LAI
observed at the NFUMA and Harvard sites. In the case of 1.0σ sdd, the MYMD, MYDD,
and MYMD+MYDD detected 11, 9, and 14 outliers, with proportions of 11.96%, 9.78%, and
15.22%, respectively. The results included six, five, and nine outliers where the MODIS LAI
was significantly overestimated and five, four, and five outliers where the MODIS LAI was
underestimated compared with the GM LAI for the MYMD, MYDD, and MYMD+MYDD
methods, respectively. The overestimated results were observed at the Nanjing, LSH, MBF,
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SMG, SK-1975 Jack Pine, and Albufera sites and the underestimated results were found at
the NFUMA, LSH, Collelongo, and Harvard sites. More details about the validation results
are given in the Supplementary Materials.

Table 2. Comparing the number of MODIS LAI outliers identified by different denoising types with
the MODIS LAI outliers judged by 1.5 and 1.0 times sdd.

Denoising Steps
1.5 Times sdd 1.0 Times sdd

Total Outliers Identified Outliers Total Outliers Identified Outliers

Step1: MYMD 50 8 (16.00%) 92 11 (11.96%)
Step2: MYDD 50 7 (14.00%) 92 9 (9.78%)

Step3: MYMD+MYDD 50 11 (22.00%) 92 14 (15.22%)
Step4: GSD 50 33 (66.00%) 92 51 (55.43%)

Step5: Q75TD 50 19 (38.00%) 92 20 (21.74%)
Step6: GSD+Q75TD 50 38 (76.00%) 92 56 (60.87%)

Final (steps: 1–6) 50 46 (92.00%) 92 65 (70.65%)

3.3. Identification of Outliers by Including Seasonal Patterns of LAI
3.3.1. Identification of Outliers in Areas with Growing and Non-Growing Seasons

The outliers in the MODIS LAI were identified through incorporation of seasonal
dynamics and the results are displayed in Figure 7. The seasonal denoising method
identified 110 outliers, among them, 4 outliers were instances where the MODIS LAI values
were significantly overestimated and 49 outliers were underestimated compared with
the GM LAI measurements. The overestimated values were observed at the Donga and
Dangxiong sites. Moreover, the satellite-derived and ground-based LAI measurements
exhibited a good correlation, i.e., R2 = 0.78 (Figure 7).
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Furthermore, after applying 1.5σ and 1.0σ times sdds between the MODIS LAI and
GM LAI as the criteria, the GSD identified 33 and 55 outliers, respectively. The results
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obtained through this method showed that the MODIS LAI measurements were generally
underestimated compared with the GM LAI observations.

3.3.2. Identification of Outliers in Areas without Non-Growing Seasons

The Q75 threshold denoising method identified 23 outliers, and a general underestima-
tion was observed in the MODIS LAI values compared with the ground-based observations.
The two datasets exhibited an R2 of 0.67 (Figure 8a). Moreover, the combined utilization
of both the Q75 and season-based methods detected 122 outliers; upon removing these
outliers, a strong correlation (an R2 value of 0.88) was achieved between the satellite and
ground station measurements. (Figure 8b).
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In the case where outliers were defined by 1.5σ sdd, the Q75 TD and the GSD+Q75
TD methods could identify 19 and 38 outliers, respectively. The proportion of identified
outliers was 38.00% and 76.00%. Moreover, at 1.0σ sdd, the Q75 TD and GSD+Q75 TD
methods detected 20 and 56 outliers, with the proportions 21.74% and 60.87%, respectively.
The results obtained through these methods showed that the MODIS LAI values were
mostly overestimated compared with the ground-based measurements. Further details
including the validation results are given in the Supplementary Materials.

3.4. Identification of Outliers by Including Both Interannual and Seasonal Patterns of LAI

Considering both interannual and seasonal patterns for the LAI, a total of 133 outliers
were identified in the MODIS LAI dataset. After removing these outliers, a strong correla-
tion (with an R2 values 0.90) was exhibited between the MODIS and ground-based LAI
measurements (Figure 9).
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This method detected 46 and 65 outliers in the MODIS LAI dataset by applying
standard deviations of 1.5σ and 1.0σ, respectively. The results obtained from this method
showed that, relative to the ground station LAI measurements, the MODIS LAI values
were mostly underestimated; however, in some instances, overestimation in the MODIS
LAI measurements was also observed. More details about the validation results are given
in the Supplementary Materials.

The other evaluation indicators including the MAE, RMSE, and SD were also calculated
for each denoising method, and the results are given in Table 3. The MAE, RMSE, and SD
between the MODIS and GM LAI measurements were 1.01, 1.59, and 1.51, respectively. The
MAE, RMSE, and SD values decreased after eliminating LAI outliers detected based on the
interannual dynamics. Remarkably, the MAE, RMSE, and SD values between MODIS LAI
after eliminating outliers identified by including interannual and seasonal dynamics and
true LAI were 0.50, 0.68, and 0.68, respectively (Table 3).

Table 3. Evaluation results of MODIS LAI in post-processing.

Denoising Steps
Ground Measurement LAI

MAE RMSE SD

Original MODIS LAI 1.01 1.59 1.51
Step1: MYMD 0.97 1.56 1.48
Step2: MYDD 0.98 1.56 1.47

Step3: MYMD + MYDD 0.97 1.56 1.47
Step4: GSD 0.63 1.02 1.02

Step4: Q75 TD 0.83 1.23 1.22
Step5: GSD+Q75 TD 0.55 0.78 0.78

Final (Steps: 1–6) 0.50 0.68 0.68
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4. Discussion
4.1. Post-Processing Is Important to Improving the MODIS LAI Database

The processing of MODIS LAI outliers is the first and the most critical step. The
MODIS LAI outliers are mainly produced by the following factors: firstly, the uncertainty
of land surface classification; secondly, the ambiguity of land surface reflectance data;
and thirdly, the uncertainty of the MODIS algorithm [22] (e.g., with saturation, the main
algorithm may quickly bring higher LAI values in the MODIS observations and the backup
algorithm can lead to both lower and higher values in most situations [36]). MODIS out-
liers can be identified by incorporating temporal dynamics into the post-processing stage.
Considering the MODIS LAI interannual change is helpful for MODIS LAI outlier recogni-
tion [37]. Significantly higher (such as those on the dates 21 January 2005, 24 May 2005, and
13 March 2006 for sample No. 162) and lower (such as those on the dates 5 January 2003,
3 March 2003, etc., of sample No. 68) noisy points that deviated from the reasonable values
were detected using the inter-quartile range (IQR). In fact, the evaluation results at the
LSH, KBU, Shandong, and Yanting stations confirmed the identification of the over and
undervalued LAI outliers based on interannual dynamics. Previous studies have proven
that post-processing methods improved LAI products and made them more consistent
and continuous [34,36,37,69], which further suggested that the shape of the sudden peaks
and valleys in adjacent time periods belongs to the outlier category. In addition, several
studies have proven that climate change can produce changes in phenology [70,71]. When
constructing residuals based on the multi-year LAI values, it is important to take into
account the interannual variation trend of the LAI for the same day of the year (DOY) for
every year. This approach is useful in detecting outliers, as evident by the results of this
study (i.e., the date 17 February 2003 in the sample dataset, denoted as No. 0).

Seasonal patterns are important factors to identify LAI outliers in post-processing. The
results from this study showed that the proportion of outliers identified by the GSD was
greater than that identified by other methods. Phenology, such as the timing of the SOS and
EOS, the maximum LAI, and the amplitude of LAI (i.e., the difference between the maxi-
mum and the minimum LAIs in a growth cycle), is an essential metric for distinguishing the
change in land vegetation cover [72]. There will be an apparent change in deciduous vege-
tation’s regulation loop of “greenup–peak–greendown–senescence–dormancy–greenup”
within a full growth cycle. Occasionally, when there is a vegetated surface with a dark (wet)
soil background, the vegetation index also can be positively biased [43,50]. However, the
contaminated remote sensing VI is mostly negatively biased, especially in the GS [37,73].
This characteristic leads to asymmetric judgment intervals using the IQR method to per-
form LAI anomaly judgments in GS. The advantage of using quadratic polynomial fitting
to construct residuals to identify outliers in the GS is that the quadratic polynomial has
only one peak, so it can well reflect the variation trend of LAI in a single growth cycle.
From the perspective of different land use types, some terrestrial types have a clear phase
transition from the NGS to the GS, such as grassland, MixF, ENF, savanna, DBF, open
shrub, DNF, etc. [26], in which the GSD method can remove the outliers well, such as the
results from samples No. 0, No. 74, No. 162, and No. 260. In addition, the evaluation
results at each ground measured station, such as Demmin, Sonian, and GDK, confirmed the
applicability of identifying abnormally low values in the GS based on seasonal dynamics.
Additionally, the identification of the outliers improved within each GS over two growth
cycles, as observed at the Shandong station. However, the seasonal patterns of the woody
savanna type were not obvious in the tropical regions, as evidenced by samples No. 146,
No. 181, and No. 221. In contrast, distinct seasonal characteristics were observed in
the woody savanna type landcover located in the non-tropical regions, such as No. 18,
No. 35, and No. 53 (see Information S2 in Supplementary Material). In addition, sudden
fluctuations (drastic spikes or down) of the LAI in the GS are also abnormal for evergreen
plants. Nonetheless, the LAI decreases were significantly affected by the dry season for
monsoon forests; however, this process is often relatively traceable.
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There were four outliers that remained unidentified even by including both interannual
and seasonal patterns when considering 1.5σ sdd. These outliers were located at the MMF,
LSH, Nanjing, and TNF sites. For those sites, although the upscaling strategy was utilized
to possess the observations, the presence of uncertainty arose from a spatial scale mismatch
between the satellite and ground-based observations. Moreover, the MMF site was located
in a mixed forest and MODIS LAI outliers were assessed on 5 August 2005, during a growth
period. However, comparing the MODIS LAI tile with that of the moments before and
after being in the same level, it is not actually an outlier, even though it was judged as an
outlier by 1.5 times sdd. The main reason why it is judged as an outlier is the difference
between this site’s observation values and the MODIS LAI observation values. Similarly,
the MODIS LAI at the LSH (on 24 July 2008) and Nanjing (on 20 July 2017) sites, located in
deciduous forests, were assessed during the growing seasons and no outliers were detected.
In addition, the TNF site was in a tropical forest where the perennial LAI was at a high level
and the MODIS LAI datapoint on 13 January 2004 was not an outlier, which agreed with
the results obtained by including interannual and seasonal patterns. Furthermore, when
the MODIS LAI outliers were identified by 1.0 sigma standard deviation, it was found
that 27 records were not detected by the temporal pattern method proposed in this study.
When the annual LAI level was high at a site, the absolute error between the MODIS and
the ground-based LAI observations increased. In this case, the outliers identified under a
1.0 sigma standard deviation may overestimate the count of outliers.

In addition, the average of the original MODIS LAI across 433 recording points was
2.20; however, it increased to 2.44 after the post-processing, showing that the original
MODIS LAI values were underestimated by 10%. Furthermore, the correlation coefficient
between the MODIS after removing the outliers and GM LAI was 0.90, which was better
than previous studies, i.e., 0.78 [36] and 0.80 [32], although these adopted S-G and general
neural networks in post-processing, they ignored outliers’ interference and thus inevitably
produced wrong peaks, which is emphasized in the research of Kong et al. [34]. However,
although there are 87 and 68 outliers respectively identified by total denoising, which is
not in accordance with the outliers judged by 1.5 and 1.0 times sdd, most of the identified
outliers from the MODIS LAI are significantly smaller than the GM LAI datapoints in
some sites. The reason for this was that the standard deviation of sdd was 1.51 m2·m−2;
however, the variation interval of the LAI in the low vegetation cover area could not reach
this standard deviation range, so the LAI outliers in this area could not be determined by
a standard deviation method. In reality, a small number of noise points are misjudged as
outliers in either the non-growth period or the growth period. Nevertheless, MODIS LAI
has a large sample size (92) throughout the year, removing these outliers can be achieved by
other reasonable means, such as double-logistic [38] and S-G filtering [35], etc. Therefore,
the small number of misjudged outliers did not affect the overall effect.

4.2. Outlier Identification in Areas without Apparent Non-Growing Seasons

The quality of the phenology products is derived from the timeseries of the MODIS
observed land surface greenness, which is influenced by the timeseries of the 2-band
enhanced vegetation index calculated from the MODIS nadir bidirectional reflectance
distribution function adjusted surface reflectance [51], which affects the GSD. From the
respective of different land cover types, the MYMD, MYDD, and GSD can identify outliers
in deciduous forest, such as the sample points in No. 14, No. 74, No. 104, and No. 295;
in evergreen forest, such as the sample points in No. 20, No. 101, and No. 200; and in
other types such as grassland, mixed forest, woody savanna, savanna, shrub, wetland, and
crops, correspond to the sample points in No. 0, No. 6, No. 9, No. 28, No. 84, No. 125, and
No. 214. However, those methods are not effective for particular types. For example, the
bad characteristic of the phenology phase is still being determined because of persistent
cloud cover and suboptimal atmospheric conditions in tropical regions. As a result, the
effect of the GSD in this region is less effective. As shown in the No. 26 of Figure S3 of
the Supplementary Materials, the outlier identification was poor from 1 September 2003
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to 1 March 2004 and 1 November 2004 to 1 April 2005 using the GSD methods. This was
likely to be caused by the presence of no significant phase shift from the non-growth to the
growth season for some land types, i.e., EBF and woody savanna in tropical zones. Even
though the denoising proposed in this study was capable of identifying outliers, all the
outliers could not be detected over the EBF land type.

The IQR-based outlier identification method is based on the assumption that the
number of contaminated LAI points is less than that of the normal LAI points. How-
ever, several MODIS pixels retrieved by the backup algorithm throughout the year are
contaminated by clouds specifically over the EBFs located in tropical regions. Yuan et al.
reported that the MODIS LAI values were significantly underestimated relative to the
actual LAI measurements in the tropical EBF land type in different seasons [36]. Before
setting a threshold to identify LAI outliers, the LAI characteristics for each season must
be determined throughout the year. For the points that generally exhibit a higher level of
LAI during each season throughout the year, such as the samples No. 2, No. 33, and No. 71
(Figure S2 in the Supplementary Material shows the results of other samples denoising
results), the outliers in these samples can be effectively removed by setting appropriate
thresholds. However, the LAI may also have some obvious seasonal variations for some
EBFs [26], such as the sample No. 128, where the LAI values from November to March the
next year were significantly lower than those from March to November, and the Q75TD
method was not applicable in this case. In addition, previous studies also reported that the
LAI values in the tropical rain forest during a growing season were very high [32,47,67].
Juarez et al. [47] proposed a method to improve the estimate of the leaf area index based on
the histogram analysis of hemispherical photographs, and LAI changes from June 2000 to
May 2003 ranged from 3.72 to 6.48, with an average value of 4.92 through the continuous
monitoring of the Amazon tropical forest, which supported the evidence that an excessively
low LAI was an outlier in an area without a non-growing season for the EBF type land
cover. In our study, the evaluation results of LAI outliers in the PDF, PSO, SKR, TNF, and
SMG stations also confirmed the validity of identifying low-LAI outliers based on the Q75
TD method.

The LAI characteristics in the woody savanna land cover type could be summarized
into three types: (1) It has prominent seasonal variation characteristics, such as samples
No. 9, No. 18, No. 38, and No. 53, located in subtropical, temperate, or high-latitude arctic
regions. Because of the apparent time nodes from NGS and GS, it was practically possible
to identify outliers by including the interannual and the seasonal dynamics. (2) It has high
LAI values throughout the year and an LAI temporal character is like the EBF type within
the year. Moreover, this kind of woody savanna was found mainly in the tropics, which
could detect outliers via the Q75 TD method. (3) It has no apparent seasonal variation
characteristics, such as for samples No. 146 and No. 181, with a low LAI value from July
to October every year. A previous study reported on the variations in the LAI during the
wet and dry seasons. For instance, the LAI estimates ranged between 3.0 and 7.0 m2·m−2

during the wet season, whereas for the dry season, most parts had LAI estimates ranging
between 0 and 3.5 m2·m−2 [64]. Nevertheless, sample No. 181 also showed a higher LAI
value between July and October 2003. To validate the LAI measurements in this zone, we
should increase the plot-level LAI monitoring and include high-spatiotemporal-resolution
remotely sensed data in future studies [74].

5. Conclusions

The results obtained from this study proved that the outliers present in the MODIS
LAI dataset could be identified by including temporal patterns in the post-processing.
In addition, after employing the interannual dynamics, the R2 between the MODIS and
ground-based LAI observation improved from 0.51 to 0.54. Correspondingly, the R2

between the GM LAI and MODIS LAI increased from 0.51 to 0.88 when the outliers were
removed based on the seasonal dynamics. Additionally, the R2 between the GM LAI and
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MODIS LAI increased from 0.51 to 0.90 after eliminating the outliers in the MODIS LAI
measurements detected based on the interannual and seasonal dynamics.

Moreover, we validated our results against 433 LAI measurements collected from
52 ground stations. In summary, 50, and 92, outliers of MODIS LAI can be determined
when defining outliers in terms of 1.5 and 1.0 times sdd, respectively. Notably, the seasonal
patterns are critical to identifying LAI outliers in post-processing. The denoising of a
growing season can, respectively, identify 33 and 51 outliers, where the proportion of
identified outliers was 66.00% and 55.43%, which is superior to the interannual patterns.
The original average of MODIS LAI values was 2.20 across 433 measurements, whereas
this value reached to 2.44 after post-processing, indicating that the original MODIS LAI
measurements were underestimated by 10%. Our proposed methodology effectively
identified the outliers in the MODIS LAI datasets incorporating the interannual and the
seasonal patterns; this approach has the potential to reduce the interference for other
MODIS post-processing methods, such as S-G, DL, etc. The results from this study provide
a new theoretical support for the MODIS LAI post-processing.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15205042/s1, Figure S1: Vegetation phonological in-
formation. (a–c) represent the DOY of green-up for single-growth cycle vegetation and the first and
second cycle of double-growth-cycle vegetation, respectively; Figure S2: Identification of outliers
of sample points (form 2003 yr to 2010 yr); Table S1: The basic information of single growth-cycle
sample points.; Table S2: The basic information of double-growth-cycle sample points. Table S3: the
phonological information of ground measurements LAI stations; Figure S2 attachment supplement
the other samples’ denoising effect of sample points; Figure S3 attachment supplement the results
from the other sites of Figure 5 in the manuscript.
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