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Abstract: Craters are the most prominent geomorphological features on the surface of celestial bodies,
which plays a crucial role in studying the formation and evolution of celestial bodies as well as in
landing and planning for surface exploration. Currently, the main automatic crater detection models
and datasets focus on the detection of large and medium craters. In this paper, we created 23 small
lunar crater datasets for model training based on the Chang’E-2 (CE-2) DOM, DEM, Slope, and
integrated data with 7 kinds of visualization stretching methods. Then, we proposed the YOLO-
Crater model for Lunar and Martian small crater detection by replacing EioU and VariFocal loss
to solve the crater sample imbalance problem and introducing a CBAM attention mechanism to
mitigate interference from the complex extraterrestrial environment. The results show that the
accuracy (P = 87.86%, R = 66.04%, and F1 = 75.41%) of the Lunar YOLO-Crater model based on
the DOM-MMS (Maximum-Minimum Stretching) dataset is the highest and better than that of the
YOLOX model. The Martian YOLO-Crater, trained by the Martian dataset from the 2022 GeoAI
Martian Challenge, achieves good performance with P = 88.37%, R = 69.25%, and F1 = 77.65%. It
indicates that the YOLO-Crater model has strong transferability and generalization capability, which
can be applied to detect small craters on the Moon and other celestial bodies.

Keywords: small crater detection; YOLO-Crater; Efficient-IoU (EIoU); VariFocal; convolutional block
attention module (CBAM); DOM; DEM; slope; stretching method

1. Introduction

As circular geomorphological features, craters are formed by the collision of small
celestial bodies at high speed. They have great significance for geological age estimation of
the Moon [1,2] and Mars [3], terrain and evolutionary history research [4], mineral resource
assessment [5], safe landing [6,7], landing site selection and obstacle avoidance for rovers [8],
evaluating the influence of the crater abundance on the ice occurrence [9] in the lunar polar
Permanently Shadowed Regions (where ARTEMIS [10] will land), and even subsurface
exploration [11]. Hence, crater detection has always been a hot topic. In the early days,
crater detection mainly relied on visual interpretation with astronomical telescopes and
remote sensing images. Whereas these methods based on subjective experience are unstable
and time-consuming [12]. With the development of information and space technology,
more and more automatic CDAs (Crater Detection Algorithms) have been brought forward
with high accuracy [13]. Now, the features extracted by deep networks have stronger
discrimination and generalization abilities than hand-crafted features [14], and numerous
detection methods based on deep learning have been emerging.
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As one of the most popular object detection models, You Only Look Once (YOLO)
makes predictions based on the global information of an image and makes good use of
the context [14]. Moreover, it performs well in the detection of multi-scale, small objects.
Therefore, more and more researchers use YOLO to detect craters. Benedix et al. [15]
developed a model based on YOLOv3 to detect kilometer-size craters on Mars using
daytime infrared data (100 m/pixel) acquired by the Thermal Emission Imaging System
(THEMIS) [16] with an accuracy of F1 = 87%. In addition, YOLOv3 was able to perform well
in detecting sub-kilometer craters using Lunar Reconnaissance Orbiter Camera Narrow
Angle Camera (LROC-NAC) data with high accuracy (F1 = 84%) but low accuracy for
large-scale craters (F1 = 62%) [17]. Cui et al. [18] trained YOLOv5 with SLDEM to detect
craters of diameters ranging from 2 to 15 km in the South Pole-Aitken Basin, with an
accuracy of F1 = 95%. Tang et al. [19] utilized YOLOv5 to detect kilometer-size craters
using Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC-WAC) data,
with an accuracy of F1 = 69%. In terms of model construction, most methods directly
use the baseline YOLO model to detect craters. However, the loss function (measure the
difference or error between the predicted results of the model and the actual results) of
the YOLO makes it difficult to solve the sample imbalance problem of small targets in the
training process [20], which may lead to poor performance under complex conditions. The
lunar surface has various geomorphic features [21], and some circular highlight-shadow
landforms are easy to misidentify as craters, such as volcanic cones, domes, etc. Moreover,
images that are taken under different illumination conditions highlight different features
on the lunar surface, and topographic features of craters generate less pronounced shadows
at lower incidence angles [22]. Therefore, to improve the detection accuracy of small craters
(diameter < 1 km), it is necessary to improve the YOLO model.

Currently, an abundance of lunar data have been used to build crater sample datasets.
For example, the main image datasets are based on Chang’E CCD, LROC-NAC, and
SELENE TC (Terrain Camera). Most topographical datasets came from Chang’E-DEM
(Digital Elevation Model), LOLA-DEM, SLDEM, and SELENE-DEM. In model training,
the dataset requires completeness, self-consistency, timeliness (data keeps pace with the
times and is not outdated), confidentiality, accuracy, standardization, unbiasedness, and
ease of use [23]. That is to say, the quality and distribution of the dataset will affect the
detection accuracy. However, there is no standard sample dataset for crater detection.
In fact, the sample data is selected regardless of regional differences, geomorphological
features, data types, resolution, object size, and so on. According to the data processing,
there is no systematic analysis of the impact of the data visualization. Some models directly
use the original data, while others use the processed data with different visualization
stretching methods [24,25]. However, different methods will lead to different visual effects
and potential information loss, which may have a great impact on detecting accuracy. The
Chang’E-2 (CE-2) data has good consistency in imaging mode, coverage, data processing,
and spatial resolution [26], which makes it possible to build a dataset for global small lunar
crater detection.

In this paper, we propose a novel crater detection model (called YOLO-Crater) by
replacing the loss function and introducing the CBAM attention mechanism based on the
YOLOX network structure. Then, the CE-2 DOM (Digital Orthophoto Map), DEM (Digital
Elevation Model), Slope (terrain slope derived from DEM), and integrated data were used
to build 23 sample datasets with different visualization stretching methods and train the
YOLO-Crater models, respectively. To determine the final dataset and the corresponding
Lunar YOLO-Crater model, a series of comparative experiments (see Section 4.1) were made
to analyze the visualization stretching methods and the detection model accuracy. Finally,
the Martian sample dataset provided by the 2022 GeoAI Martian Challenge was used to
train the Lunar YOLO-Crater model to build the Martian crater detection model (called
Martian YOLO-Crater) and evaluate the YOLO-Crater’s transferability and generalization
capability.
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2. Dataset

The dataset is used to train and test the crater detection model. The lunar dataset was
based on high-spatial-resolution data and small sample craters. The sample information
includes the size and position of the sample craters. Currently, the SELENE-TC, LROC-
NAC, and CE-2-CCD can provide lunar image data with high resolution [26–28]. The
resolution of SELENE-TC data is 7.4 m/pixel, and the coverage rate (the percentage of
the surface that is covered) is 92.4%. However, the mosaic image has dislocation, leakage
in the middle and low latitudes, and inconsistent brightness in the polar regions. The
LROC-NAC data resolution covers 0.5 to 2 m/pixel. However, due to inconsistent imaging
conditions, there are great differences in positioning, resolution, brightness, and shadow.
Now, the CE-2 provides global DOM data (7 m/pixel) and DEM data (20 m/pixel) with
consistent imaging conditions and a positioning control network, which made it possible
to build a standard sample dataset for all of the lunar crater detection. As for the sample
dataset, there is no publicly available and unified small crater dataset. Now, many lunar
crater databases have been created by Head et al. [29], Salamunićcar et al. [30], Povilaitis
et al. [31], Robbins [32], and so on. However, the crater size is more than a kilometer, which
cannot be used to create the small crater sample dataset. Many CDAs have used the DOM,
DEM, and some derived data to detect the crater, but there is no adaptation evaluation of
the above data. So, we selected DOM, DEM, Slope extracted from DEM, and integrated
data (DOM, DEM, and Slope: DDS) to create the small crater sample dataset in the typical
sample areas and make a comparative experiment to evaluate the applicability of datasets.
The dataset creation process includes data preparation and data creation (see Figure 1).
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2.1. Data Preparation

Though the CE-2 image has consistent imaging conditions, the difference in terrain
and placement makes the texture different. To make the detection model have better
generalization capability, the crater samples should cover different types of craters. The
lunar surface has different terrains, and the types of craters on different terrains are different.
Therefore, the features of craters are also different, such as reflectance, shadow direction,
and so on. In this paper, we selected six sample areas in Maria and Highland. Among them,
R1, R2, R3, R4, and R6 were selected by Zang et al. [33]. While R5 is reselected to expand
the Maria area. R5 coves 57.59◦W and 39.41◦N–40.61◦N, with the same extent as the R6
(in Highland).

We labeled the crater with DOM data manually using ArcMap software and recorded
the center coordinates and radius of the crater. The labeling principle is that the shadow
direction of any given crater in the same area is consistent [33]. However, we found that
there are some missed labels and incorrect labels, such as short lunar wrinkle ridges with
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the same highlight-shadow features as craters. To improve the detection accuracy of the
model and the completeness of the crater label set, we verified and modified the labels
marked by Zang et al. [33]. In the end, a total of 83,620 labels were obtained. The number
of labels is significantly higher than those labeled by Fairweather et al. [17] with 43,402,
Hashimoto and Mori [34] with 4967, Yang et al. [35] with 14,406, and Lagain et al. [36]
with 2142. The number of labels in R1 to R6 are 8632, 8857, 23,970, 34,884, 3519, and 3758,
respectively. In addition, 42,006 new craters were labeled. The size-frequency distribution
of labels (see Figure 2) shows that 99% are less than 1 km in diameter.
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Figure 2. Size-frequency distribution of the labeled craters.

In order to evaluate the crater detection ability with DEM data, we also collected the
CE-2 DEM (20 m/pixel) in the same sample areas.

2.2. Dataset Creation

DEM data is the value of the elevation, which cannot be used to detect the craters
directly in the CDAs. Thus, DEM should be transformed and visualized into an image [37].
However, there is no reference to analyze and evaluate the effect of the visualization
transform, which may affect the detecting accuracy deeply. In the compilation of Chang’E-1
Topographic Atlas of the Moon [38], Mu conducted a comparative experiment about DEM
visualization. If the global DEM data acquired by Chang’E-1 was divided into 188 sheets,
and then each sheet was enhanced and visualized, the topographic details were very clear.
In verse, if the global DEM was visualized and then divided, the topographic details in
each sheet were unclear. Mu obtained the same result in compiling The Chang’E-2 High
Resolution Image Atlas of Lunar Sinus Iridum [39]. So, we used the former data processing to
visualize the dataset with several image stretching methods. The following are the steps
for dataset creation:

Firstly, we cropped the data into 640 × 640 pixel blocks with a certain overlap to make
the crater on the segmentation boundary be detected properly [40]. As shown in Figure 2,
approximately 90% of craters’ radius is less than 250 m, and we weighed the completeness
of the crater (it is considered that a complete crater is defined as when at least half of its
area appears in the block) and the efficiency of model training and chose an overlap rate of
5% (250 m ÷ 7 m/pixel ÷ 640 pixels ≈ 5%).

Secondly, we used seven kinds of stretching methods commended by Gao [41] and
ArcMap [42] to visualize and enhance the cropped data. The stretching methods include
Maximum-Minimum Stretching (MMS), 1%/2% Linear Truncation Stretching (1%/2% LTS),
Standard Deviation Stretching (SDS), Histogram Equalization (HE), Laplacian Sharpening
(LS), and Gaussian Smoothing (GS). As a result, we obtained 22 datasets [3 kinds of data
(DOM, DEM, and Slope) × 7 (methods) + 1 (DOM without any enhancement) = 22] in VOC
format for model training and stretching method adaptation evaluation.
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Finally, we divided the dataset into training, validation, and testing data. In each
dataset, the training data and validation data with a ratio of 9:1 were randomly selected in
R1, R2, R3, and R4, and the testing data contained all of the samples in R5 and R6.

2.3. Martian Dataset

The Martian dataset, downloaded from the 2022 GeoAI Martian Challenge in Co-
daLab (http://cici.lab.asu.edu/martian/#data-download (accessed on 20 April 2022)), was
created by Hsu et al. [43]. The image data was THEMIS daytime infrared with 100 m
resolution and global coverage [44]. In addition, Martian sample craters were labeled with
bounding boxes (BBOXs), recording the center and length diameter provided by Robbin’s
crater database [45]. The total number of labels was 301,912, with 27.3% between 0.2 km
and 1 km in diameter, 38.94% between 1 and 1.5 km and nearly 90% no more than 3 km.
The dataset contained 102,675 images of 256 × 256 pixels. The training data contained
50,838 images with 149,560 craters, the testing data contained 50,837 images with 149,389
craters, and the validation data contained 2963 craters.

3. Methods
3.1. YOLO-Crater

In this paper, we used YOLOX [46] as the baseline crater detection framework. In the
framework, the loss function was replaced, and an attention mechanism was introduced to
solve the sample imbalance problem and enhance the feature extraction ability. As shown
in Figure 2, there is an imbalanced distribution in crater samples: 59.66% less than 100 m in
radius, 21.73% from 100 m to 150 m, 12.51% from 150 m to 250 m, and only 6.11% more
than 250 m. As for the sample type, there are simple craters, complex craters, and degraded
craters. However, YOLOX uses the traditional binary cross-entropy loss to calculate the
confidence loss, which makes it difficult to solve the crater sample imbalance problem [47].
VariFocal loss borrows the weighting idea from focal loss and deals with large, small, simple,
and complex craters asymmetrically to solve the imbalance problem [48]. So, we replaced
the traditional binary cross-entropy loss with the VariFocal loss. Furthermore, YOLOX uses
the Intersection over Union (IoU) loss to calculate the localization loss. When the crater
prediction box and crater ground truth box have no intersection, IoU = 0, which can result
in a gradient vanishing problem for non-overlapping areas. Zheng et al. [49] suggested
that a good positioning loss should consider three important geometric indicators, namely
overlapping area, center point distance, and aspect ratio. Efficient-IoU (EIoU) loss combines
these geometric indicators, which can relieve the gradient vanishing problem [50]. Thus,
we replaced IoU loss with EIoU loss (LEIoU). EIoU loss is measured by the following
expressions:

IoU =
A ∩ B
A ∪ B

(1)

LEIoU = LIoU + Ldic + Lasp = 1− IoU +
ρ2(b, bgt)

(cw)
2 + (ch)

2 +
ρ2(w, wgt)

(cw)
2 +

ρ2(h, hgt)
(ch)

2 (2)

where b, h, w are the central point, height, and width of the prediction box. bgt, wgt, hgt

are the central point, height, and width of the ground truth box. cw and ch are the width
and height of the smallest enclosing box covering the prediction box and ground truth box,
respectively. ρ(·) =

∥∥b− bgt
∥∥

2 is the Euclidean distance.
In addition, YOLOX uses the Darknet53 backbone and Path Aggregation Network

(PANet) neck to extract features, which enhance the entire feature hierarchy with accurate
localization signals in lower layers by bottom-up path augmentation [51]. However, due
to the complex lunar topographic surface, some circular highlight-shadow landforms are
easy to misidentify as craters, such as volcanic cones, domes, etc. Moreover, if there is a
low contrast between the crater and the background in the image, it is difficult to detect
the crater. To enhance the circular highlight-shadow feature and make the model focus

http://cici.lab.asu.edu/martian/#data-download
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on the crater area, the Convolutional Block Attention Module (CBAM) was introduced
to the YOLOX. CBAM consists of a channel attention module and a spatial attention
module [52], as shown in Figure 3. Channel attention focuses on ‘what’ is meaningful given
an input image, while spatial attention focuses on ‘where’ is an informative part, which is
complementary to channel attention [52].
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By replacing the loss function and introducing the CBAM attention mechanism, we
proposed a YOLO-Crater model shown in Figure 4. In the first stage, CE-2 images of
640 × 640 pixels were input into the backbone. In the second stage, Darknet53 was used
to extract crater features. In the third stage, CBAM was added to the connection channel
between the backbone and neck to enhance the crater features extracted by the backbone.
In the fourth stage, PANet used up-sampling and down-sampling to merge the different
hierarchy features from CBAM. In the last stage, the YoloHead was used to predict crater
localization and size. Additionally, the VariFocal loss and EIoU loss were used to tune the
model through backward propagation.
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3.2. Model Training and Testing

The model training aims to obtain the best Lunar and Martian crater detection models.
The model training was performed under the PyTorch framework (torch 1.8 + cu11) using
the Python language (Python 3.7) and torchvision library (version: 0.9.0 + cu11). Accuracy
metrics, including Precision (P), Recall (R), and F1 score (F1) [53], were adopted to evaluate
the detection accuracy using Equations (3)–(5).

P =
TP

TP + FP
(3)
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R =
TP

TP + FN
(4)

F1 =
2× P× R

P + R
(5)

where TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively.

The model training and testing include the following steps (see Figure 5):
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The first step is to train the YOLO-Crater model using the DOM dataset and other
21 datasets (DOM, DEM, and Slope with seven kinds of visualization stretching methods)
and select the optimal stretching method for each data type and the three correspond-
ing datasets. Then, the above three datasets were integrated into the DDS dataset (see
Section 4.1.1) to train the YOLO-Crater again.

The second step is to use the testing data from the above 3 datasets and the DDS dataset
to evaluate the trained models using the accuracy metrics and determine the optimal model
as the Lunar YOLO-Crater (see Section 4.1.2).

The last step is based on the idea of transfer learning, which means that some knowl-
edge is specific to individual domains or tasks, and some knowledge may be common
between different domains such that they may help improve performance for the target
domain or task [54]. We take the Lunar YOLO-Crater model as a pre-trained model and
use the Martian dataset to train and test the Martian YOLO-Crater.

The model hyper-parameters are shown in Table 1. Due to the crater texture informa-
tion in Maria being poorer than that in Highland, we set the confidence threshold to 0.4 in
Maria and 0.3 in Highland.

Table 1. The model hyper-parameters.

Hyper-Parameter Value

epoch 100
batch size 16
nmsthre 0.5
test size (640, 640)
test_conf 0.4 (Maria)/0.3 (Highland)

3.3. Detection Post-Processing

In Lunar YOLO-Crater model training and testing, the detected craters were located in
image coordinates, which should be transformed into geo-coordinates to put the detected
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craters together. Furthermore, we cropped the data with a 5% overlap rate, which may pro-
duce duplicate craters and affect the detection accuracy. Thus, the detection post-processing
includes the projection coordinate transformation, the duplication crater removal, and the
accuracy calculation. We used the GetGeoTransform method described in [33] to transform
the image coordinates (x,y) into the geo-coordinates (θ, φ). To remove the duplicate craters,
we used the Non-Maximum Suppression (NMS) method, which selected the bounding
box with the highest probability and suppressed all other bounding boxes that had an IoU
greater than a threshold (θ) [25]. The threshold is determined below.

The correct detection (TP), missed detection (FN), and false detection (FP), used
in (3)–(5), are calculated by (6) and (7). If the coordinates of the detected crater satisfy
Equations (6) and (7), which means a correct detection (TP) [53]. Conversely, it is a missed
detection (FN) or false detection (FP).(

xt − xp
)2

+
(
yt − yp

)2[
min

(
rt, rp

)]2 < Dxy (6)

∣∣rt − rp
∣∣

min
(
rt, rp

) < Dr (7)

where (xt, yt, rt) is the center pixel coordinates and radius of the labels;
(
xp, yp, rp

)
is

the center pixel coordinates and radius of the detected crater; Dxy and Dr are tunable
hyper-parameters.

To determine the tunable hyper-parameters, we selected the parameter combination
with the highest F1. The range of θ is [0, 1]. A low threshold is not conducive to detecting
overlapped craters. While a high threshold is not conducive to removing duplicate craters.
Thus, we selected θ ∈ [0.3–0.7] with a step size of 0.1. Dxy and Dr have the same range
[0.5, 3] [53]. A small step size can cause slow changes and consume more computing time,
so we set the step size to 0.5 for Dxy and Dr. In the end, a total of 180 sets of parameter
combinations were obtained, with the F1 ∈ [0.7120–0.7541]. We selected the best parameter
combination (θ = 0.3, Dxy = 1.5, Dr = 1.5) with the corresponding F1 = 0.7541 (see
Figure 6).
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4. Results and Discussion

Based on the following comparative experiments, we used the detecting accuracy
metrics to evaluate the data visualization, determine the optimal dataset for the Lunar
YOLO-Crater, and analyze the detecting accuracy distribution. In addition, we used
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the Martian dataset downloaded from the 2022 GeoAI Martian Challenge to test the
transferability and generalization capability of the YOLO-Crater model.

4.1. Comparative Analysis of Lunar Crater Detection
4.1.1. Data Visualization an Evaluation

In this experiment, accuracy metrics such as Precision (P), Recall (R), and F1 score (F1)
are used to evaluate visualization enhancement methods using the testing data, which can
determine the optimal stretching method for each data type.

DEM: The testing data was used to evaluate the detection accuracy shown in Table 2.
The highest detection accuracy is based on the DEM-1% LTS method, with F1 = 23.35%.
However, the lowest accuracy is based on the DEM-HE method, with F1 = 13.51%. Fur-
thermore, the MMS and LTS methods have similar accuracy, which also means that the
elevation values of the highest point and lowest point have a greater impact on the DEM
visualization. Additionally, the detection accuracy of the DEM datasets is low. So, the
features for detecting in DEM data are limited because they lack texture features and
highlight-shadow features.

Table 2. Detection accuracy based on DEM visualization datasets with seven kinds of stretching
methods (bold indicates the minimum value; bold and underlined indicate the maximum value).

Method P R F1

DEM-MMS 0.9093 0.1088 0.1944
DEM-1% LTS 0.8712 0.1348 0.2335
DEM-2% LTS 0.8962 0.1186 0.2095

DEM-SDS 0.9147 0.1120 0.1996
DEM-HE 0.9092 0.0730 0.1351

DEM-LS+ MMS 0.9135 0.1088 0.1945
DEM- LS+ MMS + GS 0.9174 0.1114 0.1988

Slope: In the sample areas, the maximum value of the slope is not more than 69◦.
Table 3 shows the detection accuracy for different stretching methods. The Slope-SDS
achieves the highest accuracy with F1 = 22.97%, more than 1.5% than the Slope-1% LTS.
However, the Slope-HE achieves the lowest accuracy, with F1 = 19.23%. Compared with
the DEM datasets, the detection accuracy of the Slope datasets has shown no apparent
increase.

Table 3. Detection accuracy based on Slope visualization datasets with seven kinds of stretching
methods (bold indicates the minimum value; bold and underlined indicate the maximum value).

Method P R F1

Slope-MMS 0.9243 0.1108 0.1978
Slope-1% LTS 0.8777 0.1223 0.2147
Slope-2% LTS 0.8989 0.1124 0.1998

Slope-SDS 0.8410 0.1330 0.2297
Slope-HE 0.8950 0.1077 0.1923

Slope-LS+ MMS 0.9049 0.1112 0.1980
Slope- LS+ MMS + GS 0.8922 0.1218 0.2143

DOM: Table 4 shows the accuracy of the detection based on Change’E-2 DOM with
different image stretching methods. The DOM-MMS obtains the highest detection accuracy,
with F1 = 75.41%. The lowest is 67.29%, corresponding to the DOM- LS+ MMS + GS.
However, the DOM achieves a better result (F1 = 72.33%). Compared with the MMS, the
others did not improve the detection accuracy, but reduced it, which means the above
image stretching methods have no great impact on detecting accuracy. The main reason
is that the DOM, as the processed image data, has been enhanced [28]. Compared with
the DEM and Slope datasets, DOM datasets have an apparent detecting accuracy increase.
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If image data were used to detect the crater, the MMS may be the best-recommended
stretching method.

Table 4. Detection accuracy based on DOM and visualization datasets with seven kinds of stretching
methods (bold indicates the minimum value; bold and underlined indicate the maximum value).

Method P R F1

DOM 0.8562 0.6261 0.7233
DOM-MMS 0.8786 0.6604 0.7541

DOM-1% LTS 0.7956 0.6390 0.7087
DOM-2% LTS 0.7815 0.6280 0.6964

DOM-SDS 0.7764 0.6505 0.7079
DOM-HE 0.7312 0.6390 0.6820

DOM-LS+ MMS 0.8672 0.5886 0.7012
DOM- LS+ MMS + GS 0.8765 0.5461 0.6729

DDS: After the above comparison and analysis, we obtained the optimal stretching
method for each datatype, and then we used the corresponding datasets (DOM-MMS,
DEM-1% LTS, and Slope-SDS) to form the DDS dataset by layerstacking in ENVI software.

4.1.2. Best Dataset Selection

The above step determined the optimal stretching method for each data type and the
corresponding dataset. To select the best dataset, we used the best testing accuracy for each
data type. As shown in Table 5, the DOM-MMS dataset achieved the highest detection
accuracy, with P = 87.86%, R = 66.04%, and F1 = 75.41%. The DDS dataset achieved good
accuracy with P = 84.33%, R = 63.01%, and F1 = 72.13%, but missed some detections (see
Figure 7).

Table 5. The best testing accuracy for each data type (bold indicates the minimum value; bold and
underlined indicate the maximum value).

Dataset P R F1

DOM-MMS 0.8786 0.6604 0.7541
DDS 0.8433 0.6301 0.7213

Slope-SDS 0.8410 0.1330 0.2297
DEM-1% LTS 0.8712 0.1348 0.2335
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The DEM-1% LTS dataset and the Slope-SDS dataset derived from the DEM resulted
in the lowest accuracy. In Figure 8, we can see more texture information in the DOM-MMS
dataset than that in the DEM-1% LTS and Slope-SDS datasets. Though the illumination
cannot affect the DEM and slope, the texture in the image was affected by the landscape
and the illumination, as shown in Figure 8. That is to say, the DOM image contains more
of the crater’s features. For example, we can see that the craters have highlight-shadow
features, and the texture is directional, which becomes an apparent feature for the craters.
In the DEM-1% LTS image, we cannot see the apparent features. However, in the Slope-SDS
data, we can see the slope changes in and out of the crater. Thus, the detection accuracy
based on Slope-SDS is better than that based on the DEM-1% LTS.
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4.1.3. Accuracy Distribution Analysis

To evaluate the detection model improvements, an ablation experiment was carried out
to analyze the effect of the new loss function, CBAM, and both of them. Table 6 shows the
results. Without any improvement, YOLOX was used to detect the crater with F1 = 66.75%.
When the CBAM was added to the model, the P (92.51%), R (52.8%), and F1 (67.23%) all
increased a little, which indicates that the CBAM promotes extracting fine features of craters
slightly. When changing the new loss function described in Section 3.1, the P decreases
(by 5%), but the R (by 10%) and F1(by 6%) increase obviously, which indicates that the
new loss function enables the model to relieve the crater sample imbalance problem and
identify more small-scale craters efficiently. When both of them were embedded into the
model at the same time, the model became (Lunar) YOLO-Crater with higher detection
accuracy (F1 = 75.41%).

Table 6. Results of the ablation experiment (bold and underlined indicate the maximum value).

CBAM Loss P R F1

5 5 0.9115 0.5266 0.6675
3 5 0.9251 0.5280 0.6723
5 3 0.8656 0.6257 0.7263
3 3 0.8786 0.6604 0.7541

Figure 9 shows the distribution of craters detected by the Lunar YOLO-Crater in Maria
and Highland. As shown in Figure 9, the Lunar YOLO-Crater has some missed and false
detections. Some craters have severe degradation and unclear highlight-shadow features,
which make it difficult to detect them. In addition, due to the limitations of the cropped
image size and image resolution, the model cannot detect a crater radius of more than
2.24 km (Figure 9b, blue dashed circle). Moreover, the interference derived from other lunar
circular features, which have significant highlight-shadow features, led to misidentifying
them as craters. However, when we verified the false detections, we found that some “false”
craters are true craters. This reflects the limitations of manually labeled crater datasets and
the importance of automatic crater detection research.
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As shown in Table 7, the Lunar YOLO-Crater achieved a higher detection accuracy
both in the Maria and Highland than YOLOX and had a better performance in the High-
land (P = 89.56%, R = 66.18%, F1 = 76.11%) than that in Maria (P = 86.11%, R = 65.9%,
F1 = 74.66%). The main reason is that the features in Highland, including image contrast,
image hierarchy, clarity, and texture information, are better than those in Maria [27].

Table 7. Detecting accuracy in Maria and Highland. (Underlined indicates the YOLO-Crater model’s
F1 score).

Type Model TP FP FN P R F1

Maria(R5)
YOLOX 1948 274 1571 0.8767 0.5536 0.6786

YOLO-Crater 2319 374 1200 0.8611 0.6590 0.7466

Highland(R6) YOLOX 1884 98 1874 0.9506 0.5013 0.6564
YOLO-Crater 2487 290 1271 0.8956 0.6618 0.7611

In order to evaluate the ability of YOLO-Crater to detect craters at different radius
scales, we made a detecting accuracy statistic as shown in Figure 10 and Table 8. We found
that the F1 is 73.97% with a radius < 100 m, greater than 80% within 100 m to 350 m, and
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77.14% within 350 m to 400 m. However, a lower performance for detecting craters is
shown with the radii between 400 m and 500 m. As can be seen in Figure 10, the Recall
(green) and F1 (blue) curves showed a downtrend. In addition, the scale has no obvious
impact on small crater detection, as shown in Table 8.
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Table 8. Detecting accuracy at different radius scales.

R(m) TP FP FN P R F1

R ≤ 100 3533 624 1862 0.8499 0.6549 0.7397
R ∈ (100~150] 646 16 291 0.9758 0.6894 0.8080
R ∈ (150~200] 295 12 129 0.9609 0.6958 0.8071
R ∈ (200~250] 129 2 54 0.9847 0.7049 0.8217
R ∈ (250~300] 63 2 26 0.9692 0.7079 0.8182
R ∈ (300~350] 43 2 15 0.9556 0.7414 0.8350
R ∈ (350~400] 27 2 14 0.9310 0.6585 0.7714
R ∈ (400~450] 13 0 17 1.0000 0.4333 0.6047
R ∈ (450~500] 9 0 17 1.0000 0.3462 0.5143

4.2. Martian Crater Detection

There are significant geomorphological differences between Mars and the Moon,
which can be used to examine the generalization ability of YOLO-Crater. As described in
Section 3.2, we took the Lunar YOLO-Crater model as a pre-trained model and used the Mar-
tian dataset downloaded from the 2022 GeoAI Martian Challenge to train the pre-trained
model and obtain the Martian YOLO-Crater model. Figure 11 shows the detection results (in
brown) and the ground-truth labels (in green) using validation data. Figure 11a–c demon-
strates the Martian YOLO-Crater model can detect craters of different sizes (Figure 11c).
In addition, the model can detect unlabeled craters (see Figure 11d–f). However, there
are some crater-like features undetected by the model (Figure 11e). In Table 9, the results
indicate a good performance in detecting Martian craters with P = 88.37%, R = 69.25%, and
F1 = 77.65%.

The 2022 GeoAI Martian Challenge organizer only provided the testing image data
without corresponding labels and required the participants to upload the testing results
to the evaluation server. Based on the feedback, the organizer evaluated the detecting
accuracy using the Average Precision (AP) metric. The detecting accuracy of the Martian
YOLO-Crater ranked second (http://cici.lab.asu.edu/martian/#eval-award (accessed on
26 April 2023)) with AP50:95 = 46.7% and AP50 = 86.1% in the Challenge, while the first
with AP50:95 = 48.4% and AP50 = 86.0% (https://codalab.lisn.upsaclay.fr/competitions/19
34#results (accessed on 26 April 2023)). The above results indicate that the YOLO-Crater
has strong transferability and generalization ability and can be applied to detect small
craters on other celestial bodies.

http://cici.lab.asu.edu/martian/#eval-award
https://codalab.lisn.upsaclay.fr/competitions/1934#results
https://codalab.lisn.upsaclay.fr/competitions/1934#results
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Table 9. Detecting accuracy using the validation data.

Model AP50 AP50:95 P R F1

Martian YOLO-Crater 0.8490 0.4550 0.8837 0.6925 0.7765

5. Conclusions

In this paper, we proposed a novel small crater detection model (called YOLO-Crater)
by replacing the IoU loss and traditional binary cross entropy loss with the EIoU loss and
VariFocal loss and introducing the CBAM attention mechanism. To obtain more lunar
small crater (Diameter < 1 km) samples (based on 7 m/pixel DOM) with high accuracy,
about 42,006 labels had been remodified manually based on the existing labels made by
Zang et al. [33]. A series of comparative experiments were made to systematically analyze
the impact of data type, stretching method, terrain type, and crater size on the crater
detectionmodel.

The results showed that the data type and visualization stretching methods had an
important impact on detecting accuracy. The DOM is the best data type for small crater
detection. CE-2 DOM-MMS (Maximum and Minimum Stretching) was found to be the best
stretching method, with a total P = 87.86%, an R = 66.04%, and an F1 = 75.41%. Compared
with the YOLOX, the Lunar YOLO-Crater performs better both in Maria and Highland
with accuracies of F1 = 74.66% and 76.11%, respectively. Moreover, the Lunar YOLO-
Crater obtains higher accuracy in detecting small-scale craters within 400 m in radius.
In addition, the Martian crater detection model (Martian YOLO-Crater) was trained by
image sample data from the 2022 GeoAI Martian Challenge and achieved second place
with P = 88.37%, R = 69.25%, and F1 = 77.65%, which means the Martian YOLO-Crater has
strong transferability and generalization capability.

In the future, more and more high-resolution data will be acquired for the Moon
and other celestial bodies. The remodified lunar small crater dataset could serve as a
valuable supplement for GeoAI datasets, which would enable more researchers to utilize,
improve, and expand it to other celestial bodies. Meanwhile, the strong transferability and
generalization capability of the YOLO-Crater will make it possible to detect craters with
high accuracy on other celestial bodies using image data.
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