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Abstract: A discernible gap has materialized between the expectations for object detection tasks in
optical remote sensing images and the increasingly sophisticated design methods. The flexibility
of deep learning object detection algorithms allows the selection and combination of multiple basic
structures and model sizes, but this selection process relies heavily on human experience and lacks
reliability when faced with special scenarios or extreme data distribution. To address these inherent
challenges, this study proposes an approach that leverages deep reinforcement learning within the
framework of vision tasks. This study introduces a Task-Risk Consistent Intelligent Detection Frame-
work (TRC-ODF) for object detection in optical remote sensing images. The proposed framework
designs a model optimization strategy based on deep reinforcement learning that systematically
integrates the available information from images and vision processes. The core of the reinforcement
learning agent is the proposed task-risk consistency reward mechanism, which is the driving force
behind the optimal prediction allocation in the decision-making process. To verify the effectiveness of
the proposed framework, multiple sets of empirical evaluations are conducted on representative opti-
cal remote sensing image datasets: RSOD, NWPU VHR-10, and DIOR. When applying the proposed
framework to representative advanced detection models, the mean average precision (mAP@0.5 and
mAP@0.5:0.95) is improved by 0.8–5.4 and 0.4–2.7, respectively. The obtained results showcase the
considerable promise and potential of the TRC-ODF framework to address the challenges associated
with object detection in optical remote sensing images.

Keywords: object detection; reinforcement learning; optical remote sensing image

1. Introduction

Object detection in the realm of optical remote sensing imagery constitutes a funda-
mental yet arduous undertaking in the analysis of aerial and satellite images. Its primary
objective is to ascertain the presence of one or more objects from a specific class within
a given image, subsequently determining the precise location of each predicted object in
the image [1]. This task assumes great significance across various domains, including the
military [2], agricultural practices [3], environmental studies [4], and urban planning [5].
The advent of deep neural networks, renowned for their formidable learning capabilities,
has led to remarkable progress in object detection with optical remote sensing images [6].
Consequently, state-of-the-art research outcomes continue to emerge, as evidenced by
numerous recent references [7–9]. However, this advancement has come at the expense of
increasingly larger models and heightened computational complexity. A growing disparity
has emerged between the intended use of object detection and the intricacies involved in
its design.

In Figure 1, it can be observed that for a given dataset, a diverse range of models can
be generated, exhibiting variations in categories, scales, and architectures. Each model
possesses distinct advantages and limitations, thus making unique contributions to the
desired objective. Notably, the findings manifest as follows. (a) In terms of confidence
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scores, single-class models consistently achieve higher scores without leading to overfitting
concerns. (b) Regarding detection precision and recall, the single-class model demonstrates
superior outcomes. In our analysis, single-class models are confronted with a reduced
number of categories, thereby minimizing the risk of misidentifying other categories. Fur-
thermore, the single-class model focuses on the confidence assessment of its designated
category, thereby yielding more dependable outcomes. Hence, the results suggest that
complex designed multiclass models may engender false predictions within their intended
use, while comparatively simpler single-class models offer heightened reliability. Through
the intelligent optimization of these models, superior outcomes can be achieved compared
to relying solely on a single complex model. This approach mitigates the inherent bias
towards consistency, ensuring a more comprehensive and effective solution. When apprais-
ing the predictions made by these models, the criterion in evaluating their validity does not
rely solely on their ability to optimize training objectives. Instead, the focus shifts towards
assessing the consistency between the prediction outcomes and the associated task risks. In
other words, it is essential to gauge the performance of the model during testing, within
the context of its intended application.

Multiclass Model
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Ground Truth Multiclass Model

SIngle-class Model 

(Overpass)
Ground Truth

Confidence Score Statistics: 377Confidence Score Statistics: 360 Confidence Score Statistics: 96Confidence Score Statistics: 51
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Confidence Score Statistics: 61
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Figure 1. Illustrative instances of complex designs deviating from their original intent are presented
herein. These results are all from the YOLOv8 detector and allow a comparative assessment of
predictive performance between multiclass models and single-class models. The subfigures (a),
(b) and (c) respectively represent the results of three categories: aircraft, overpass and playground.
They are organized by ground truth, multiclass model results, and single-class model results. False
detections are indicated via red boxes, and missed detections are indicated via yellow boxes.

The fundamental purpose of object detection is to predict high-quality detection results
for a hypothetical target. In the object detection process of optical remote sensing images,
there is a gap between the complexity of the designed network structure and the prediction
results. People expect more complex and detailed network structure designs to cover a
variety of scenarios and categories. Applying different improvement methods may improve
the overall performance, but a single model of a certain scale is difficult to adapt to different
scenarios. For example, in the process of aerial reconnaissance [10,11], the scenes from
the airborne perspective are varied, and it is difficult to complete all the detection tasks
through one network. Therefore, the prediction risks brought by choosing a certain model
are not consistent with the task expectations.

Problems of a similar nature are not exclusive to object detection tasks in computer
vision. Comparable challenges are extensively investigated in the domains of reinforce-
ment learning (RL) and natural language processing (NLP), particularly when confronted
with the intricate task of formulating optimization objectives for less precisely defined
undertakings like translation [12] or summarization [13]. A prevalent strategy employed to
address such issues involves acquiring the ability to emulate example outputs and then
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employing reinforcement learning to align the model with the associated reward func-
tion [14]. Leveraging this approach, the field of NLP has achieved remarkable outcomes
through the utilization of expansive pretrained language models and rewards determined
by human feedback to tackle difficult tasks [15,16]. Reinforcement learning, as a versatile
tool or paradigm, exhibits boundless potential by facilitating artificial-cognition-based
adaptation for various intelligent tasks in real-world scenarios, thereby enhancing the
performance of existing models towards attaining their theoretical upper limits of accuracy.
Obviously, this approach is equally applicable to visual tasks, and this work introduces
a predictive risk mechanism into visual models through reinforcement learning methods,
applying the advantages of multiple models in multiple scenarios and thereby exceeding
the performance of a single model.

Diverging from the aforementioned approaches [17–20] that integrate deep reinforce-
ment learning with computer vision tasks, this study places greater emphasis on the
congruity between the object detection objectives and the intended application scenar-
ios. Building upon the preceding analysis, this work proposes a Task-Risk Consistency
Object Detection Framework (TRC-ODF) for optical remote sensing images, employing
deep reinforcement learning as its foundation. Given the intricate and dynamic nature
of optical remote sensing images, a model-free reinforcement learning algorithm based
on value functions is employed to effectively allocate visual models trained on specific
data. To enhance the alignment between the detection task and the reinforcement learning
agent’s expectations during the model optimization allocation process, this study proposes
an internal drive mechanism termed the TRC reward, which deviates from conventional
object detection evaluation indices. In light of these advancements, the contributions of
this research are summarized as follows.

1. A framework designed to enhance deep-reinforcement-learning-based object de-
tection models is proposed, tailored to the arduous task of detecting objects in optical
remote sensing imagery. Contrary to prevailing methods that depend on segmented image
fragments as input states, the proposed approach leverages entire remote sensing images
as input to reinforcement learning agents. A series of experiments validate the considerable
potential and practical utility of this amalgamated methodology. The efficacy and adapt-
ability exhibited by various object detection algorithms highlight the extensive potential of
this integration for real-world applications.

2. This work proposes ResLNet, a layer-normalized feature extraction network con-
structed on the residual structure. Incorporating a uniquely devised post-layer normaliza-
tion unit can facilitate the abundant contextual information present in the entire image to
effectively steer the model optimization process.

3. To address the fundamental challenge in object detection where the task objective
aligns with the anticipated risk, a reinforcement learning incentive mechanism synchro-
nized with task risk is proposed, termed the TRC reward. This mechanism considers the
ramifications of true positives, false positives, and false negatives, and their associated
detection confidence, for the detection outcomes and intended applications. By amalgamat-
ing union intersection and confidence threshold screening, a reward function grounded
on dependable outcomes is constructed. This strategy significantly diminishes the intrin-
sic discord between the task at hand and the anticipated risk, ensuring more resilient
alignment.

The rest of this study is organized as follows. In Section 2, some works related to
this research are introduced. In Section 3, the proposed method is presented in detail. In
Section 4, the datasets and the environmental conditions of the experiments are described.
Section 5 describes the experiments and analyzes the experimental results in detail. Then,
in Section 6, the improved parts proposed in this study are explained in detail through the
experimental results. Finally, conclusions are drawn in Section 7.
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2. Related Works

In this section, previous research results on object detection, deep reinforcement
learning, and a combination of the two are elaborated. Firstly, through a discussion of
representative object detection algorithms, especially methods based on deep learning, the
reason that this method chooses YOLOv8 as the main basic detector is explained. Secondly,
in order to clarify the difficulty of combining reinforcement learning and object detection in
this article, the differences between deep reinforcement learning and supervised learning
are explained through the description of typical reinforcement learning methods. Finally,
the previous methods used in combining the two are reviewed and summarized in order
to highlight the differences between the methods proposed in this article.

2.1. Object Detection

Object detection, as one of the foundational tasks within the field of computer vision,
entails the prediction of two essential attributes of an object: its category and its correspond-
ing position. Traditional object detection algorithms predominantly rely on the utilization of
the Histogram of Oriented Gradient (HOG) [21] and the Scale-Invariant Feature Transform
(SIFT) [22] as a handcrafted feature pair sliding window for discrimination. Traditional
methods usually use handcrafted features as the basis for object discrimination, sliding
windows to traverse all pixel positions of the image, and, finally, traditional classifiers to
determine the category. Compared with deep learning methods, traditional methods are
generally multistep rather than end-to-end and are inferior to deep learning methods in
terms of accuracy and real-time performance. The prevailing approach in this domain is
the local deformation model, commonly known as the Deformable Part Model (DPM) [23],
along with its associated extensions. The advent of deep learning has facilitated the rapid
integration of deep convolutional neural networks into various domains of computer vi-
sion, leading to significant progress when compared to conventional algorithms. From
the perspective of encoding the object category and location, object detection algorithms
based on deep convolutional neural networks can be broadly classified into two categories:
anchor-based [24–27] and anchor-free methods [28–30]. Anchor-based object detection al-
gorithms typically involve the prediction of foreground and background regions in images
based on candidate boxes representing the object size and position. Additionally, based on
the distinct forward propagation methods employed by the models, anchor-based methods
can be further divided into two categories: two-stage region-proposal-based and single-
stage regression-based detection models. (Note: the terms “two-stage” and “single-stage”
mentioned here not only serve as a division within anchor-based methods but can also be
applied to the subsequent anchor-free methods. However, for the purpose of clear structural
analysis, this categorization is exclusively employed within anchor-based methods.)

The You Only Look Once (YOLO) framework has garnered considerable attention
among the various object detection methods due to its exceptional balance between speed
and accuracy, enabling rapid and reliable object identification in images. Over time, the
YOLO family has undergone multiple iterations, each building upon the previous version
to address limitations and enhance performance. The evolution of the YOLO series spans a
substantial history and, according to authoritative sources, it can be categorized into nine
primary versions [30–38]. These versions differ in three key aspects: anchors, backbone ar-
chitecture, and performance. In terms of anchors, the original YOLO model [31] employed a
relatively simple approach without the use of anchors, whereas the state-of-the-art methods
at that time relied primarily on two-stage detectors incorporating anchors. YOLOv2 [32]
introduced the integration of anchor points, leading to improved accuracy in bounding
box prediction. This trend continued for five years until the introduction of YOLOX [30],
which embraced an anchor-free methodology and achieved state-of-the-art results. Con-
sequently, subsequent iterations of YOLO abandoned the use of anchors. In terms of the
backbone architecture, the YOLO models have undergone significant transformations. The
initial Darknet architecture consisted of basic convolutional layers and max pooling layers.
Subsequent models incorporated cross-stage partial connections (CSP) in YOLOv4 [34],
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reparameterization in YOLOv6 [36], and continued in YOLOv7 [37] and YOLOv8 [38].
Regarding performance, while the YOLO models have exhibited improvements over time,
it is important to note that they prioritize achieving a balance between speed and accuracy
rather than focusing solely on accuracy. This tradeoff is crucial to the essence of the YOLO
framework, enabling real-time object detection across diverse applications.

Compared with the previous version of YOLO, YOLOv8 has made some improve-
ments in the CSPLayer [35], now called the C2f module. The C2f module (cross-stage
partial bottleneck with two convolutions) combines high-level features with contextual
information to improve the detection accuracy. YOLOv8 uses an anchor-free model with a
decoupled head to handle objectness, classification, and regression tasks independently.
This design allows each branch to focus on its task and improves the overall accuracy of
the model, which is the advantage of YOLOv8 compared to other versions. Moreover,
the backbone of YOLOv8 is inherited from YOLOv5, which is one of the detectors with
the widest range of practical applications. In this work, the proposed framework aims
to perform performance verification on a highly representative detector, so YOLOv8 is
selected as the main detector for application. In addition, the framework proposed in
this work has also been adapted to different types of representative detectors, such as
Faster RCNN [24], which is an anchor-based method, and DETR [39], using a Transformer
framework.

2.2. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is profoundly transforming the landscape of artifi-
cial intelligence (AI), presenting a significant step towards developing autonomous systems
endowed with higher-level comprehension of the visual world [40]. Presently, the inte-
gration of deep learning has extended reinforcement learning (RL) to hitherto intractable
challenges, including learning to play video games directly from pixel inputs and object
detection within the visual tasks explored in this study. In addressing reinforcement learn-
ing problems, two primary approaches prevail: value-function-based methods [41–43] and
policy-search-based methods [44,45]. Additionally, a hybrid actor–critic approach [46–48]
was proposed, which combines both value functions and policy search. It is worth noting
that the aforementioned reinforcement learning methods are all model-free approaches,
wherein learning transpires through interactions with the environment and the accumu-
lation of experience. Unlike supervised learning in visual tasks, DRL-based techniques
are specifically tailored to tackling sequential decision-making problems. These methods
aim to determine a sequence of actions that optimize a given goal within an uncertain
environment, relying on a set of experiences accrued during the interaction process. In
contrast to supervised learning, which provides immediate feedback following each system
action, the DRL framework employs delayed scalar-valued feedback that manifests after
a series of actions, encompassing the overall success or failure of the policy. Moreover,
supervised learning models are updated based on the discrepancy between the predicted
and desired outputs, and they lack a mechanism to obtain the correct value when erroneous.
In this regard, policy gradients in DRL address this predicament by assigning gradients
without relying on a differentiable loss function. This approach endeavors to encourage
the model to explore actions stochastically, ultimately facilitating learning to perform the
optimal actions. Therefore, reinforcement learning emerges as a versatile tool or paradigm
with boundless potential, offering cognitive-based adjustments for the application of various
intelligent tasks in real-world scenarios, thereby enhancing existing models to approach
their upper limits of accuracy.

2.3. Deep Reinforcement Learning in Object Detection

Numerous vision models have incorporated reinforcement learning algorithms to
address corresponding tasks. These models primarily focus on acquiring a system that
sequentially processes image components and iteratively refines the output. Caicedo
et al. [49], regarding the Markov Decision Process (MDP) as a framework, employed DRL
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for active object localization. The authors considered eight distinct actions (up, down,
left, right, bigger, smaller, fatter, and taller) to refine the bounding box around the object,
along with additional actions to trigger the goal state. State representation utilizes tuples
of feature vectors and action histories, while rewards are determined based on changes
in intersection over union (IoU) between actions. Notably, a representative approach in
this context is presented in [50], which employs a series of image “glances” and iterative
box prediction to extract visual features from specific regions. Uzkent et al. [17] proposed
an advancement to the sequential search strategy introduced by Mathe et al. [50]. The
framework proposed by Uzkent et al. comprises two modules: coarse search and fine
search. The authors assert the effectiveness of this approach for object detection in large
images (>3000 pixels). A coarse-level search is initially performed to identify a set of patches
in large images, which are subsequently used for a fine-level search to locate sub-patches.
Both the coarse and fine levels are modeled as a two-step MDP, where the policy network
provides a probability distribution over all actions. Actions are represented as binary
arrays (0,1), with 1 indicating the agent’s consideration of obtaining a sub-patch for the
corresponding patch. Patch and sub-patch numbers of 16 and 4, respectively, are employed
in the implementation, and a linear combination of accuracy and cost, which combines
the image acquisition cost and runtime performance bonus, is utilized. To capture the
interdependencies among different objects, Jie et al. [18] proposed a tree-structured RL
agent (Tree-RL) for object localization, considering the problem as an MDP. The authors
employed two types of actions, translation and scaling, encompassing eight and five actions,
respectively. The state representation concatenates the feature vector of the current window,
the feature vector of the entire image, and the history of actions taken. Differing from prior
methods, Wang et al. [19] introduce a multitask learning approach for object localization
using DRL. Within the RL framework, the state incorporates concatenated feature vectors
and historical actions, while a set of eight bounding box transformation actions (left, right,
up, down, bigger, smaller, fatter, and taller) is utilized. Pirinen et al. [20] proposed an
improvement over region proposal networks by employing reinforcement learning in the
task of greedy ROI selection. The authors utilized a two-stage detector similar to Fast and
Faster R-CNN, integrating RL into the decision-making process. Rewards in this context
are based on a normalized variant of IOU. To summarize, in these approaches, the state
representation involves segmented image slices obtained from previous iterations of the
vision algorithm or the DRL algorithm. Subsequently, the DRL agent predicts a series of
bounding boxes to refine the object fit, leading to an updated state input and rewards based
on intersection ratios [49,51–53].

3. Methodology

In this section, the overall architecture of the proposed object detection framework
is first elaborated in Figure 2. The proposed framework, rooted in deep reinforcement
learning, focuses on optimizing the object detection results through the utilization of deep
reinforcement learning models that enhance detectors encompassing various structures,
scales, and types. The architecture of the framework can be broadly classified into three
primary components. (1) Deep Reinforcement Learning Agent: This component embodies
the core of the framework, responsible for executing the decision-making process based
on reinforcement learning principles. (2) Reward Feedback Module: Serving as a cru-
cial module, this component facilitates the assessment and quantification of prediction
outcomes, offering reward values crucial for reinforcement learning agents to learn and
improve their performance. (3) Object Detection Result Acquisition Module: This module
plays a pivotal role in acquiring the detection results obtained through the framework’s
optimized detectors, enabling subsequent evaluation and analysis. The specific details of
this framework are elaborated in Section 3.1.2.
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Figure 2. The proposed framework scheme.

3.1. The Framework of Object Detection Based on Deep Reinforcement Learning
3.1.1. Problem Formulation

This work formulates object detection as a problem in which, for a given input image,
I ∈ RW×H×3 outputs a set of descriptions about object categories and locations:

Yxyc j {(xmin, ymin, xmax, ymax, class, con f )i}, i = 1, 2, . . . , N. (1)

The model obtained through data-driven training can be understood as such a mapping:

Yxyc = hk(It) (2)

hk , Mk, k = 1, 2, . . . , P, (3)

where It is the tth frame image within an image sequence, while hk is defined by the
network model Mk, stored within the model library and comprising weight parameters.
Notably, these models can emerge from training on distinct sample sets or as outcomes
of diverse network structures and sizes. In practical applications, this study encounters a
challenge whereby employing a model trained on a specific sample set fails to meet the
detection expectations for certain test samples, despite exhibiting satisfactory performance
when evaluated using detection metrics, as depicted in Figure 1. To address this issue,
a reinforcement learning model that learns effective optimal policies is proposed, pro-
moting enhanced visual outcomes while adhering rigorously to the principle of task-risk
consistency. This reinforcement learning agent model, denoted as πθ(At|St), selects the
appropriate action At based on the current state St, at time t. The state St, obtained from the
tth frame of the image sequence, precisely corresponds to the feature representation of the
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image frame. The action At pertains to the selection of different models Mk from the model
library. The chosen model is utilized for object detection, yielding a prediction outcome.
These predictions undergo evaluation via the incentive mechanism in Section 3.3, where
they are quantified as reward values, serving as feedback to the agent. This facilitates the
learning, adjustment, and optimization of the network parameters.

The depicted process is illustrated in Figure 3, where Ft is the feature map obtained
from the image frame after undergoing feature extraction, GTt is the true value of the
detection outcome, and rt is the current reward value at the subsequent time step. The
probability p(St+1|St, At) encapsulates the transition probability between states. Within
the proposed model, this probability assumes a Bernoulli distribution, contingent upon the
completion of action selection. While previous studies, as outlined in Section 1, primarily
focus on adjusting the bounding boxes for visual enhancement, this work uniquely focuses
on learning to optimize the detection results, irrespective of the initialization approach. This
distinction enables the applicability of the proposed approach to diverse detection results.

Agent

( | )t tA S

Detector ( )t kA selector M=tr( , )t t tS F GT=

Feature 

Extractor

1( | , )t t tp S S A+

Environment t t+1

reward signal 

prediction

…

raw images

policy

process status
Preprocess

Figure 3. The problem model encapsulated within the proposed framework.

3.1.2. Framework Details

Building upon the aforementioned problem statement, a comprehensive delineation
of the framework’s organizational scheme is presented. Next, the framework will be
elaborated in detail according to the three parts mentioned above.

The deep reinforcement learning agent serves as a crucial unit responsible for gen-
erating strategies that optimize both the models and the results. It engages in policy
optimization based on the input state representation, as demonstrated in Figure 2 using the
deep Q-network as an illustrative example. This process unfolds through a time-threaded
processing flow. Initially, the input optical remote sensing image sequence undergoes
preprocessing via environmental observation. Given the typically large size of these images,
the preprocessor compresses them to a size of 128 × 128 to facilitate subsequent agent
processing. Additionally, the images are normalized based on the pixel mean and variance
of the input data. Consequently, the processed optical remote sensing images are obtained
as the required input state for the agent. Within the deep reinforcement learning agent, a
feature extraction unit extracts features from the preprocessed image, with the proposed
blocks serving as an example in Figure 2. The design of these feature extraction network
structures can be tailored to the specific requirements of different tasks. Nevertheless, the
experiments suggest that overly complex feature extraction structures hinder the agent’s
parameter updating process during learning. Subsequently, the output of the feature ex-
traction network flows through the prediction head, culminating in the derivation of the
model selection strategy. The spatial dimension of this component is defined based on the
number of available models. This strategy then guides the selection of models based on the
input from different image frames.
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Based on the aforementioned object detection outcomes, the reward mechanism is
triggered to compute reward values for the outcomes, contingent upon the content pre-
sented in Section 3.3. The reward value generated by this module exerts an influence
on the reinforcement learning agent through cumulative and diminishing calculations,
aiming to guide the optimization of the strategy function. Reward values are obtained and
categorized into current and historical aspects, all of which are archived in the experience
playback sequence. During the agent’s learning process, in accordance with the temporal
processing flow, certain sampled sequences of states are initially employed for preliminary
strategy planning and reward computation, subsequently stored in the experience playback
sequence. This segment of information will be re-sampled as a mini-batch, serving as the
training data throughout the training process.

Drawing upon the aforementioned exposition of this architectural framework, a com-
prehensive object detection architecture based on deep reinforcement learning is designed.
Its adaptability is evident in its ability to be tailored to distinct requirements, wherein the
network structure and optimization technique of the reinforcement learning agent can be
customized accordingly. Additionally, different detection models can be selected based
on the specific focus of the object detection task. To the best of our knowledge, previous
researchers have not pursued similar endeavors. Our approach integrates deep reinforce-
ment learning with computer-vision-based object detection tasks, specifically within the
domain of optical remote sensing image processing. Subsequent experimental outcomes
substantiate the promising research prospects and practical significance of this work.

3.2. The Model-Free Reinforcement Learning Algorithm Based on Value Function
3.2.1. Network Architecture

The most straightforward depiction of a policy involves a lookup table, which consti-
tutes a tabular policy. Reinforcement learning techniques that employ lookup tables are
commonly referred to as tabular methods, including Monte Carlo methods, Q-learning,
Sarsa, and others. Traditional algorithms in reinforcement learning often employ tables
to store the state value function V(s) or the action value function Q(s, a). However, this
approach exhibits significant limitations. In the context of computer vision tasks, reinforce-
ment learning agents encounter continuous image sequences as their state space, giving
rise to an infinitely large number of states. Consequently, the table-based approach be-
comes impractical for storing the value function. To address this challenge, value function
approximation employs the function of directly approximating the state-value function or
action function. This approach mitigates the storage space requirements and effectively
resolves the aforementioned issue.

To compute the value function Qπ(s, a) within the continuous state and action space
formed by models, a function approximation Qθ(s, a) is employed, referred to as value
function approximation:

Qθ(s, a) ≈ Qπ(s, a), (4)

where s and a are the vectorized forms of state s and action a, respectively. The function
Qθ(s, a) typically corresponds to a parameterized function, such as a convolutional neural
network, with θ serving as its parameter. This function yields a real-valued output and
is referred to as a Q-network. The deep Q-network employed in this study pertains to
the Q-learning technique integrated with deep learning. It primarily combines value
function approximation and convolutional neural network technology, utilizing both the
object network and experience replay methodology for network training. In traditional
Q-learning, a table is utilized to store the rewards acquired by taking specific actions a
under each state s, effectively representing the state-value function Q(s, a). However, this
approach encounters the challenge of dimensionality in tasks characterized by an extensive
state space or even continuous domains, rendering its execution infeasible. Consequently,
the utilization of a deep Q-network, which employs the value function approximation
technique, proves more suitable for addressing problems associated with the state space.
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Diverging from the simplified Atari game screen typically handled by the original
deep Q-network, the research necessitates the direct processing of optical remote sensing
images by the proposed network. To this end, this work proposes ResLNet, as illustrated
in Figure 4, to extract the relevant features from image sequences within the state space.

3×3 conv

ReLU

3×3 conv

Input

LN

Output

3×3 conv

ReLU

3×3 conv

Input

LN

Output

AvgPool

3×3 conv

(a) block a (b) block b (c) Q Network

block b

block a

Input

block a

128×128×3
7×7 conv

ReLU

MaxPool

dim(AS)×1

MLP+

Dropout

Output

16×16×256

Figure 4. The proposed ResLNet and the Q-network composed of its blocks. The architectural
configuration of the network predominantly comprises two distinct types of blocks, culminating in a
vector that corresponds to the dimensions of the output action space, thereby signifying the outcome
of model selection.

The network architecture is constructed based on the residual network framework and
incorporates layer normalization. It primarily consists of two types of constituent blocks,
namely Block A and Block B. Both network blocks share a similar structure. They process
the input feature or image through two successive layers of 3 × 3 convolution, followed
by a nonlinear activation layer, forming a residual structure that combines the input with
the output. Subsequently, the resulting feature map undergoes pixel-wise addition and is
eventually passed through a layer normalization layer. However, the two network blocks
differ in their respective shortcut paths. In the case of Block B, the initial input requires size
compression to match the dimensions of the output feature map for the addition operation.
This dimension compression in Block B’s shortcut path is accomplished through an average
pooling layer followed by a 3 × 3 convolutional layer. In contrast, Block A maintains
consistent dimensions at the junction of the shortcut path and the residual path. The
shortcut path in Block A keeps the input unchanged as it traverses through the network.

In contrast to the residual network approach, the proposed ResLNet diverges by
eschewing the use of batch normalization layers after each convolutional layer. Instead,
layer normalization is utilized following the process of residual summation. Batch nor-
malization is a valuable technique in deep learning, particularly in supervised learning
scenarios, where training data are extracted from the dataset in batches, ensuring that
each batch conforms to an independently and identically distributed random sample. By
establishing a stable training environment, batch normalization calculates stable mean
and variance values for normalization, thereby reducing the impact of input covariance
shift. However, in the context of reinforcement learning, batch normalization encounters
limitations. As reinforcement learning agents must interact with the environment through
the experience replay mechanism to acquire training samples, the availability of data cannot
be guaranteed from the outset. Consequently, reinforcement learning fails to provide stable
training data for batch normalization. Due to the dynamic nature of the training data,
batch normalization struggles to adapt to new samples, leading to inaccurate evaluation
functions and degraded policy functions. Previous studies [54,55] have also observed
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that batch normalization exhibits limited efficacy in deep reinforcement learning, often
resulting in longer training times and instability, ultimately yielding suboptimal outcomes.
In Section 6.1, the experiments empirically investigate the roles of batch normalization and
layer normalization, shedding light on their respective impacts.

Furthermore, this work introduces a post-normalization approach by incorporating
layer normalization after the residual calculation step. Conversely, a pre-normalization
technique involves placing the normalization step before the feature extraction layer. Each
approach, post-normalization and pre-normalization, offers distinct advantages. Post-
normalization exhibits stronger parameter regularization effects and enhances the robust-
ness of the model. In contrast, pre-normalization mitigates issues related to gradient explo-
sion or vanishing, as certain parameters are directly added at a later stage. Consequently,
when the network architecture is not deeply layered, post-normalization may represent a
more sensible choice. In Section 6.1, the effects of pre-normalization and post-normalization
are empirically studied, exploring their respective impacts and consequences.

3.2.2. Policy Optimization

In the proposed approach, the detection model optimization problem can be under-
stood as a Markov decision process. A Markov decision process can be described via the
following elements: state set S = s1, s2, . . .; action set A = a1, a2, . . .; transition probability
function P(s, a, s′), where s′ is transformed from s, determined via the completion of action
a; and decay factor γ, where 0 ≤ γ ≤ 1 and the reward function is R(s, a).

The training of the agent follows the framework of the deep Q-network algorithm.
In this work, the agent operates within an environment comprising a sequence of images,
with the chosen detection models serving as its actions. The reward assigned to the
agent is determined based on the performance of the detection models. The deep Q-
network leverages the principles of Q-learning and employs the aforementioned network
architecture to estimate the Q-values for each action at every time step, despite the unknown
transition probability function. At time step t, the agent updates the Q-value according to
the following procedure:

Qt+1(s, a) = (α− 1)Qt(s, a) + α(r + γ max
a′

Qt(s’, a’)). (5)

The agent’s primary objective is to optimize the cumulative reward value during each
iteration, as illustrated in Algorithm 1, which outlines the utilization of the iterative deep
Q-network algorithm. In the training implementation, this work divides the process into
three different stages. In the initial phase, denoted as “experience cache accumulation”, a
cache of a certain capacity is established to store state space samples, action selections, and
reward changes due to dynamic interactions between the agent and its environment. After
completing some time steps dedicated to assembling the experience, the formal training
phase begins. An exploration mechanism is introduced during the training process to
alleviate the potential dilemma of the agent action selection falling into repeated loops. The
final stage of the training scheme involves regular updates of the target network, a key step
that facilitates loss calculation and subsequent backpropagation. The update frequency of
the target network is set, combined with a safeguard that incrementally integrates 10% of
the historical network weights every update. This measure is taken to prevent excessive
fluctuations in the network weight update process.
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Algorithm 1: Optimization process.
Input: Replay memory D; action-value function Q.
Output: Target action-value function Q̂

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights θ

3 Initialize target action-value function Q̂ with weights θ− = θ
4 for episode = 1 : M do
5 Initialize image sequence s1 = I1 and preprocess sequence φ1 = φ(s1)
6 for t = 1 : T do
7 With probability ε, select a random action at
8 Otherwise, select at = arg max

a
Q(φ(st), a; θ)

9 Execute action at in emulator, and observe reward rt and image It+1
10 Set st+1 = (xt+1|st, at), and preprocess φt+1 = φ(st+1)
11 Store transition (φt, at, rt, φt+1) in D
12 Sample random mini-batch of transitions (φj, aj, rj, φj+1) from D

13 Set yj =

{
rj i f epsiode terminates at step j + 1
rj + γ max

a′
Q̂(φj+1, a′; θ−) otherwise

14 Perform a gradient descent step on (yj −Q(φj, aj; θ))2 with respect to the
network parameters θ

15 Every C step resets Q̂ = Q.

3.3. The Reward Mechanism for Task-Risk Consistency

The mean average precision (mAP), an extensively utilized metric for the evaluation
of object detection, has garnered significant attention [56–58]. It serves as a valuable
tool to assess the performance of object detectors on specific datasets. In applications of
reinforcement learning to object detection, it is customary for researchers to employ the
mAP as the primary reward mechanism directing the optimization trajectory of the agent.
However, this methodology presents inherent constraints. While this metric accounts for
factors such as positional deviation and category balance, it should be acknowledged that
it does not provide a comprehensive evaluation and overlooks certain aspects. One such
aspect is score density, which refers to the specific score distribution associated with each
detected object. During the mAP calculation, the focus lies solely on the ordering of all
detection results, neglecting the actual scores assigned to the identified objects. Therefore,
the impact of the score density on the evaluation of object detection performance should be
taken into consideration beyond the conventional mAP metric.

Several key characteristics of the mAP are summarized as follows. (1) An increase in
mAP at higher intersection over union (IoU) thresholds does not solely imply improved
positional performance. It can also be attributed to instances where the detector fails to
filter out certain false positives (FPs) that happen to exhibit superior positional accuracy.
Consequently, threshold-based mAP values introduce positive contributions. (2) The
impact of FPs on performance is contingent upon the presence of true positives (TPs) with
lower scores than the FPs. There are instances where the FPs do not detrimentally affect
the performance. To address these challenges, this study proposes a reward mechanism
known as task-risk consistency, which guides reinforcement learning agents in their model
selection process. During practical predictions, achieving highly accurate detection results
remains a primary objective, necessitating a careful assessment of the influence exerted
by both FPs and false negatives (FNs) on the overall outcomes. Moreover, the nature of
the detection results with varying scores warrants careful consideration. Specifically, for
the detection results exhibiting relatively low scores, greater penalties should be assigned
to those with higher scores. To this end, a more comprehensive reward mechanism is
proposed, which takes into account the confidence associated with the detection results.
The specific formulation of the reward function is as follows:
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r(det(st, at)) = [
1

NTP

NTP

∑
i=1

con f TP
i − 1

NFP

NFP

∑
j=1

con f FP
j − NFN(1− con fthres)]× 100, (6)

where det(st, at) is the detection result when the input state (image) st is the applicable ac-
tion (model) at; NTP, NFP, and NFN are the sample numbers of TP, FP, and FN, respectively;
con f TP

i and con f FP
j are the prediction scores of the corresponding TP and FP samples,

respectively; and con fthresh is the confidence threshold of the final prediction result output.
Further exploration of the proposed reward function is presented through comparative
experiments in Section 6.2.

4. Experimental Settings

This section introduces the datasets used in the experiment, the experimental settings,
the selected comparison methods, and the evaluation index of the experimental results.

4.1. Parameter Setup
4.1.1. Object Detection Network Training Parameter Settings

All experiments conducted in this study were executed on the Ubuntu operating
system, utilizing the PyTorch open-source architecture. The selection of an appropriate
learning rate for the network model is a critical factor during the training process. To
expedite the convergence of network parameters in the initial training stage, a larger
learning rate was set, while a smaller learning rate was subsequently applied to prevent
convergence issues during later stages. A warmup period of three epochs was implemented
with a learning rate of 0.01. Following the warmup phase, the Adam optimizer was
employed with a learning rate of 2.5 × 10−4, dynamically adjusted based on the training
status using an adjustment factor of 5 × 10−4. The network operated with a batch size of
32, and the training iterations spanned 200 epochs.

4.1.2. Reinforcement Learning Agent Training Parameter Settings

The agent goes through an extensive training scheme for a total of 500,000 time steps,
following three different phases described in Section 3.2.2. A 10,000-capacity cache was
established to enable experience replay. The global learning rate was set to 2.5 × 10−4, the
batch size was 128, the training frequency was 10 time steps, and the reward discount factor
was set to 0.99. The initial exploration rate was initialized to 1 and gradually decayed to
a minimum value of 0.05. This exploration mechanism operated exclusively during the
first 50% of the training time steps. The update frequency of the target network was set to
100 time steps.

4.2. The Description of the Datasets

Some representative datasets [6,59,60] were selected to conduct the experimental in-
vestigations, with comprehensive descriptions given as follows. The RSOD dataset [59] was
sourced from Google Earth and Tianditu, encompassing a total of 936 images. These images
featured objects categorized into four distinct classes, namely airplane, fuel tank, overpass,
and playground, as demonstrated by the annotated ground truth images showcased in
Figure 5. Notably, the diverse object categories exhibited varying resolutions, ranging from
0.5 to 2 m for aircraft images, 0.3 to 1 m for fuel tank images, 1.25 to 3 m for overpass
images, and 0.4 to 1 m for playground images. The sensors employed in capturing these
images comprised panchromatic and multispectral modalities, with image dimensions
falling within the size range of 512× 512–1961× 1193.
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(a) (b) (c) (d)

Figure 5. The ground truth (GT) status of the RSOD dataset: (a) aircraft, (b) oil tank, (c) overpass,
(d) playground.

Moreover, a comprehensive analysis was conducted to assess the image count and
category distribution within the RSOD dataset, revealing a significant class imbalance, as
depicted in Figure 6. Notably, the aircraft category exhibited the largest number of objects
and corresponding images, followed by the oil tank. Conversely, the representation of
overpasses and sports fields was notably limited, comprising less than 4% of the objects
found in the aircraft category. To address the limitations of the original dataset, the
study referenced in [59] employed an extensive range of data augmentation techniques,
resulting in a remarkable 59-fold increase in the number of objects. Additionally, 2326
background images were introduced as counterexamples. These augmentation methods
were carefully designed and tailored to the specific characteristics of each category, ensuring
their effectiveness and practical applicability. However, it is important to note that this
work does not delve into the intricacies of these complex and specific data augmentation
methods, as it is beyond the scope of the research. Instead, the primary objective revolves
around optimizing the models and refining the outcomes through the implementation of
deep reinforcement learning algorithms within existing model libraries.

(a) (b) (c)

Figure 6. The sample category, size, and location distribution of the RSOD dataset. Subfigure
(a) represents the distribution of categories in the RSOD dataset; subfigure (b) represents the distribu-
tion of object size and object position in the RSOD dataset; subfigure (c) represents the correlation
between object size and object position in the RSOD dataset.

In the context of the RSOD dataset, a systematic processing approach was employed
to ensure its suitability for analysis. Initially, the positive images for each category were
divided into training and testing sets, adhering to a 3:2 ratio. Consequently, a total of
560 images were allocated to the training set, while the remaining 376 images constituted
the testing set. Subsequently, the training data underwent an HSV enhancement method,
wherein the color gamut parameters for the H, S, and V channels were set to 0.015, 0.7, and
0.4, respectively. Additionally, affine transformations were applied with translation and
scaling ratios of 0.1 and 0.5, respectively. Furthermore, a 50% probability was assigned
to perform upside-down and left-right flips. To further augment the dataset, a mosaic en-
hancement technique was employed on all images, involving the fusion of multiple images
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into a single detection sample. Importantly, these augmentation methods were consistently
applied across all datasets, without differentiation based on individual categories.

In order to verify the generalization of the proposed method, the experiments also
introduced datasets [6,60] with more complex scenes and more diverse categories as eval-
uation objects. The NWPU VHR-10 dataset [60] has 10 categories of objects and contains
a total of 715 high-spatial-resolution color images from Google Earth and 85 very-high-
spatial-resolution pan-sharpened color infrared (CIR) images from Vaihingen dataset [61].
The spatial resolution in Google Earth images ranges from 0.5 to 2 m, and the spatial
resolution of the CIR images is 0.08 m. These 800 images contain 150 background images,
which were also used in the training process. The remaining images were divided into
training sets and testing sets according to 8:2. The DIOR dataset [6] has 20 categories of
objects and contains a total of 23,463 optical remote sensing images and 192,472 object
instances. The image size in the dataset is 800 × 800 pixels, and the spatial resolution ranges
from 0.5 to 30 m. Similar to most existing datasets, this dataset was collected from Google
Earth by experts in the field of Earth observation interpretation. In order to ensure the
distribution similarity between training data and testing data, the original work randomly
selected 11,725 images as the training set and the remaining 11,738 images as the testing
set. In order to control the variables as much as possible, the NWPU VHR-10 and DIOR
datasets were enhanced in the same way as the RSOD dataset.

4.3. Evaluation Metrics

To quantitatively assess the efficacy of the optimized detection algorithm, several
evaluation metrics were employed, namely precision (P), recall (R), mean average precision
(mAP) [62], and return. These metrics served as quantitative measures for the evaluation
of algorithm performance. In this experiment, P was mainly used to measure the action
selection accuracy of the agent, and, at the same time, together with R, it provided the basis
for the mAP.

While acknowledging the inherent limitations of the mAP as an incentive for rein-
forcement learning, this study recognizes its importance as an important reference for
algorithm performance evaluation. To determine the average precision (AP) value for
an individual category, the enclosed area between the precision–recall (P-R) curve and
the coordinate axis was computed. Then, the AP values of all categories were averaged
according to the number of categories to obtain the mAP. Finally, different mAP values
were calculated, according to different IoU thresholds, and then averaged to obtain the
final result. Through the previous comparison, it was found that the reward value can
not only reflect the performance of the agent but also reflect the detection performance
under the proposed framework. Therefore, the return value was also used as one of the
evaluation metrics.

Moreover, the experimental analysis focused on two crucial aspects of the reinforce-
ment learning agent’s performance: the convergence speed and sample efficiency. Notably,
the convergence rate cannot be accurately captured by a single formula due to its depen-
dence on the specific learning algorithm and task configuration. However, the convergence
rate can be estimated by monitoring performance metrics such as the cumulative reward
throughout the training process.

Furthermore, sample efficiency, denoted as SE, is expressed as SE = (R − Rb)/N,
where SE is the sample efficiency, R is the cumulative reward obtained using N samples,
and Rb is the baseline reward, typically derived from a randomized policy.

5. Results

In this section, the effectiveness of the TRC-ODF is verified by describing the compar-
ative experiments. These experiments were performed on the RSOD dataset.
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5.1. Experimental Result and Analysis of the Rationality of the Proposed Framework

To verify the robustness and applicability of the proposed framework, five different
models were used for evaluation: a multiclass model, designated as M0, and four class-
specific models, namely M1, M2, M3, and M4. It is worth noting that M0 was trained on the
RSOD dataset, which contains four different categories. In contrast, M1 to M4 focused on
the single categories of these objects and were trained on the same RSOD dataset, with other
categories and backgrounds described as counterexamples. Following this, a reinforcement
learning agent was trained to utilize the outcomes from each model on the RSOD validation
set. The agent’s training was then directed by the TRC reward function, enabling it to
extract optimization suggestions. Post-training, the agent’s efficiency was assessed on the
RSOD validation set, wherein it discerned the most suitable model based on the provided
verification set image. A comprehensive analysis of the experimental outcomes revealed
several insights. Initially, we observed fluctuations in the agent’s reward curve, Q-value
curve, and loss function throughout its training. Subsequently, the total rewards obtained
by the agent after training were counted. Conclusively, the efficacy and reasonableness of
the proposed approach were ascertained by juxtaposing the model selection outcomes with
standard object detection evaluation metrics.

Figure 7 delineates the progression of the reward curve, Q-value curve, and the
loss function alterations during the reinforcement learning agent’s training epoch. With
iterations as the abscissa across all curves, their respective ordinates represent the return,
Q-value, and loss function values. Several critical observations emerged from the depicted
curves. Employing the study’s proposed framework and feedback reward mechanism,
the agent manifested stable training, culminating in a consistent plateau value. There was
marked convergence in the Q-value function, complemented by an ascendant trend in the
reward values. A comparative analysis was undertaken between the perceived reward
values of the combined category model and its single-category counterpart. Notably, agents
leveraging single-model perception amassed higher reward values. This underscored
the potency of augmenting the perception and amplifying the detection performance via
reinforcement learning. In order to verify the universality of these results, the mAP@0.5
and mAP@0.5:0.95 were used as evaluation metrics for the final detection results, as shown
in Table 1. The superior reward value acquisition and mAP results of the single-class model,
post-sensing-agent evaluation, overshadow those of the multiclass model. Specifically,
there was an increase of 5.95% in the mAP@0.5 metric, an enhancement of 4.17% in the
mAP@0.5:0.95 metric, and an almost 100,000 increment in the reward value. These metrics
robustly vindicate the efficacy of the proposed framework. Furthermore, the proposed
framework adeptly addressed data category imbalances. Given the paucity of images and
limited objects per image, the multiclass model training inadvertently overlooked Class C
objects, culminating in suboptimal prediction outcomes. The framework introduced herein
employed a single-class model, offering bespoke mapping for Class C, thereby markedly
refining its predictive precision. This exemplifies the framework’s resilience across varied
data scenarios.

In addition, in order to further verify the robustness and generalization of the proposed
framework, this work also conducted the same experiments on the NWPU VHR-10 dataset
and the DIOR dataset. Since the NWPU VHR-10 dataset contained a total of 10 categories,
the experiment on this dataset used one multi-class hybrid model and 10 single-class
models. They were all trained on the same dataset, and other categories and backgrounds
were described as negative. Since the DIOR dataset contained more object categories
(20 categories), this experiment used a slightly different processing method for this dataset.
These 20 categories were divided into four groups, each group containing five categories of
objects; thus, a total of five multiclass mixture models were used. One model contained all
categories, and the remaining four models contained five categories each. The rest of the
settings were the same as for the experiments on the RSOD dataset. The results involving
these two datasets are combined in Table 1.
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(a) (b) (c)

Figure 7. Trainingcurves for the reinforcement learning agents in TRC-ODF. Subfigures (a), (b) and
(c) respectively represent the curves of training loss, Q value, and reward value over time steps.

Table 1. Comparison of the reward values and detection performance of multiclass models and the
proposed framework.

Dataset Model Return mAP@0.5 mAP@0.5:0.95 Precision Recall F1 Score

RSOD

Multi-
Class

A 1

−91,562.8

−2339.5
90.8

90.6

64.7

64.2

94.3

97.8

92.3

87.3

93.3
B 3862.7 97.6 78.3 96.1 97.7
C −98,131.5 74.9 34.0 84.7 84.9
D 5045.4 99.9 82.4 98.5 99.3

TRC-ODF
(ours)

A
9058.2

−5699.5
96.2

87.9
67.4

62.1
95.4

96.2
93.9

89.9
94.6B 4160.5 97.6 79.3 97.0 98.0

C 4797.0 99.5 42.6 88.4 87.7
D 5045.4 99.9 85.7 100.0 100.0

NWPU
VHR-10

Multi-
Class

a 2

-

-

94.5

99.5

66.9

72.5

94.8

99.1

87.1

100.0

90.8

b - 95.4 67.7 91.9 87.4
c - 81.4 45.7 81.9 81.0
d - 99.0 79.2 97.6 96.7
e - 96.7 72.7 96.7 82.4
f - 97.0 74.7 96.6 96.2
g - 99.9 85.7 100.0 98.2
h - 97.3 66.6 95.4 86.9
i - 83.8 37.2 94.5 57.6
j - 95.4 62.5 94.4 84.9

TRC-ODF
(ours)

a

-

-

96.2

99.5

68.9

75.3

95.2

99.3

93.4

100.0

94.3

b - 93.8 68.3 91.1 89.2
c - 93.7 43.3 94.5 92.7
d - 98.9 81.6 98.2 98.4
e - 97.0 71.9 92.8 94.4
f - 99.3 81.3 92.9 100.0
g - 99.5 92.6 100.0 99.6
h - 97.9 68.6 98.3 94.9
i - 86.2 38.6 91.9 75.9
j - 95.9 67.2 93.5 89.3

DIOR

Multi-
Class

1–5 3

-
-

81.8
88.3

61.0
69.1

86.1
91.8

74.1
78.9

79.76–10 - 79.7 62.2 84.8 73.0
11–15 - 79.5 59.6 82.7 73.0
15–20 - 79.5 53.0 85.1 71.6

TRC-ODF
(ours)

1–5
-

-
82.6

89.0
61.7

69.5
87.8

91.9
74.7

79.7
80.76–10 - 79.9 62.6 85.6 74.3

11–15 - 80.4 59.8 85.2 73.1
16–20 - 80.9 54.7 88.4 71.6

The parts marked in red and bold represent the results of this study. 1 Classes A, B, C, and D correspond to the
aircraft, oil tank, overpass, and playground categories in the RSOD dataset, respectively. 2 Classes a–j correspond
to the airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor,
bridge, and vehicle categories in the NWPU VHR-10 dataset, respectively. 3 Classes 1–20 correspond to
the expressway service area, expressway toll station, airplane, airport, baseball field, basketball court, bridge,
chimney, dam, golf field, ground track field, harbor, overpass, ship, stadium, storage tank, tennis court, train
station, vehicle, and windmill categories in the DIOR dataset, respectively.
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Figure 8 presents partial visualization prediction results on the NWPU VHR-10 and
DIOR datasets. The left half, separated by dashed lines in the figure, represents alternative
predictions composed of multiple models, while the right half represents the detection
results obtained from the original detection network. In the proposed framework, trained
agents optimize the predictions generated by the multiple models. Compared with a single
model, the proposed framework performed better in the final results. By making full use of
the prediction results of multiple models, objects that cannot be detected by a single model
can be predicted, and false detections caused by multiclass models can also be avoided.

5.2. Experimental Results and Analysis of Different Scale Detectors

To substantiate the rigor and extensibility of the proposed TRC-ODF framework, addi-
tional experiments were conducted using YOLOv8 detectors of disparate scales. Unlike
the preceding assessments, the models employed here featured distinct network architec-
tures, although they were uniformly trained on the comprehensive RSOD dataset, thereby
complementing the prior experiments. Five YOLOv8 detectors of varying dimensions were
selected and subjected to mAP evaluation post-training, as enumerated in Table 2. The
findings unambiguously indicate that the larger detectors generally outperformed their
smaller counterparts in detection tasks. Given that even expansive network configurations
cannot guarantee universal optimization across all validation sets, the detailed outcomes
are given in Table 2, where the relative prevalence of differently scaled models selected
by the sensing agent is accounted for. The objective was to discern efficacious models
across varying scales that maximize resource utility within the model library. Detailed
results are recorded in Table 2, which takes into account the relative proportions of the
models of different sizes chosen by the agent. Notably, while the most intricate model
demonstrated superior prediction capabilities in most scenarios, the second-largest or the
third-largest model exhibited comparable performance in specific instances. In quantitative
terms, the mAP@0.5 index was marginally elevated by 0.2, while the mAP@0.5:0.95 index
experienced a more substantial increase of 2.4. This substantiates that even scaled down
models can make salient contributions to the final evaluation metrics, thereby bolstering
the overarching framework’s efficacy in detection tasks.

Table 2. Performance comparison between isolated models of different scales and multimodels based
on deep reinforcement learning.

Model Selected
Percentage mAP@0.5 mAP@0.5:0.95 Precision Recall F1 Score

Single Model

YOLOv8-n - 87.1 53.7 90.5 87.7 89.1
YOLOv8-s - 90.8 64.7 94.3 92.3 93.3
YOLOv8-m - 94.5 72.4 96.0 93.2 94.6
YOLOv8-l - 96.8 76.3 96.6 94.8 95.7
YOLOv8-x - 98.7 77.7 98.1 95.7 96.9

Multimodel
(RL)

YOLOv8-n 0.0%

98.9 80.1 98.3 96.6 97.4
YOLOv8-s 0.0%
YOLOv8-m 1.9%
YOLOv8-l 2.8%
YOLOv8-x 95.3%

Single Model
Faster R-CNN - 94.9 68.0 95.9 91.7 93.8

DETR - 95.5 69.4 96.5 93.5 95.0

Multimodel
(RL)

Faster R-CNN 90.0% 96.5 68.6 97.4 92.9 95.1

DETR 90.1% 97.4 69.8 97.9 95.9 96.9

The parts marked in red and bold represent the results of this study.
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Multiclass + Single Model
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Figure 8. Visualization of the prediction results on the NWPU VHR-10 and DIOR datasets. Among
them, the yellow box represents the location where missed detection occurred, and the red box
represents the location where false detection occurred.

In addition, this work also conducted experiments on detectors with different network
structures from the YOLO series, namely Faster R-CNN and DETR. Faster R-CNN is one
of the classical object detection algorithms, while DETR adopts the Transformer structure
that is currently highly respected, which is a different network from YOLOv8. Using the
same method for framework adaptation, it can be observed from Table 2 that the proposed
framework can also improve the detection performance.

6. Discussion

The ensuing section is dedicated to describing the ablation experiments to elucidate
the underpinnings of the TRC-ODF framework. The investigative focus predominantly
encompasses the architectural nuances of the feature extractor’s network and the formula-
tion of the reward function. Concomitantly, this work furnishes a rigorous analysis of the
computational expenses, encompassing both temporal and storage overheads, attributable
to the deployment of the proposed framework.

6.1. Effectiveness of the Agent Feature Extractor

The proposed ResLNet, with a distinct architectural design for the feature extractor, di-
verges from the conventional structures prevalent in extant reinforcement learning models.
Our approach uses the post-layer normalization technique, advancing the traditional residual
network. For an intricate visual representation, the reader is directed to Figure 4. To validate its
efficiency, it was juxtaposed against a suite of feature extractors: the prototypical one, the ResNet
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feature extractor with an embedded residual structure, and the strategy integrating prelayer
normalization within the DQN framework. Drawing upon comparative metrics, the terminal
reward value, and the detection evaluation indices mAP@0.5 and mAP@0.5:0.95, the superiority
of the post-layer normalization method delineated in this work is emphatically evidenced.

The aforementioned figure provides a detailed view of the training trajectories for
distinct network architectures. Specifically, Figure 9a,b unequivocally demonstrate the
merits of post-layer normalization, with outcomes indicating enhanced convergence rates,
superior sample efficiency, and a consistent Q value. Subsequently, Figure 9c affirms the
potential of this technique to yield elevated reward values. Such observations lend credence
to the prior discourses surrounding layer and batch normalization. Within the realm of
deep reinforcement learning, layer normalization fosters augmented stability and mitigates
adverse exploration tendencies. Through this empirical experiment, the superiority of
post-layer normalization over prelayer normalization was also identified, which aligns
with the analytical assertions in Section 3.2.1. These empirical nuances are manifested in
the acquired reward metrics and conclusive detection performance evaluations, as Table 3
shows. When juxtaposed against network paradigms such as MLP, CNN(ResNet), and
pre-LN, the TRC-ODF (ResLNet) methodology proposed herein improves the mAP@0.5
index by 337.3%, 61.1%, and 39.2% respectively. Analogously, the mAP@0.5:0.95 metric
showed enhancements of 334.8%, 47.5%, and 23.9%.

(a) (b) (c)

(ResNet)

(ResNet)(ResNet)

Figure 9. Training curves of reinforcement learning agents with different feature extractors. Subfigures
(a), (b), and (c) respectively represent the curves of training loss, Q value, and reward value over time
steps, which include different methods using MLP, ResNet, pre-LN, and ResLNet as feature extractors.

Table 3. Comparison of the impact of different feature extractors on reward value and detection
performance under the same perceptual intelligence framework.

Network Return mAP@0.5 mAP@0.5:0.95 Precision Recall F1 Score

DQN
(MLP)

Class A
−6046.4

−6046.4
22.0

87.9
15.5

62.1
24.1

96.2
22.5

89.9
23.2Class B 0.0 0.0 0.0 0.0 0.0

Class C 0.0 0.0 0.0 0.0 0.0
Class D 0.0 0.0 0.0 0.0 0.0

DQN
(ResNet)

Class A
942.6

−6475.7
59.7

81.0
45.7

57.7
98.1

97.9
59.9

81.7
74.4Class B 4242.0 97.6 79.3 94.4 98.8

Class C 925.3 20.8 10.8 100.0 20.0
Class D 2251.1 39.6 35.1 100.0 39.1

DQN
(pre-LN)

Class A
3616.4

−6046.4
69.1

87.9
54.4

62.1
96.1

96.2
70.4

89.9
81.3Class B 4153.0 95.6 77.4 94.5 96.3

Class C 86.9 2.0 1.6 100.0 1.7
Class D 5422.9 91.0 76.4 93.8 93.8

TRC-ODF (ResLNet) 9058.2 96.2 67.4 95.4 93.9 94.6

The parts marked in red and bold represent the results of this study.
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6.2. Effectiveness of the Reward Function Based on Task-Risk Consistency

Within the domain of deep reinforcement learning, the reward function stands as an el-
emental cornerstone, decisively charting the agent’s optimization trajectory. Drawing from
the paradigm of task-risk consistency, this study introduces a reward mechanism using
Equation (6) that eschews the direct application of the confidence or mAP as incentive mea-
sures. To verify the effectiveness of the designed mechanism, this work compared it with
two alternative object detection rewards, as shown in Table 4. The first approach employed
rudimentary confidence levels as immediate reward stimuli; while confidence is not a
definitive detection metric, it offers constructive directionality to the agent. Conversely, the
second technique leveraged the mAP evaluation index as its incentive mechanism. Notwith-
standing its intuitive appeal as a seemingly potent mechanism, the preceding analyses
show that such guidance may not invariably culminate in accurate prediction outcomes.

Table 4. Comparison of the impact of different reward mechanisms on the reward value and detection
performance under the same perceptual intelligence framework.

Reward Model Select Accuracy mAP@0.5 mAP@0.5:0.95 Precision Recall F1 Score

Simple conf.
Class A

95.3%
99.4%

87.1
87.0

60.4
62.0

97.8
95.3

88.3
87.9

91.7Class B 100.0% 97.6 79.3 94.1 98.8
Class C 93.1% 89.3 37.6 93.1 90.0
Class D 80.0% 74.5 62.5 96.1 76.6

mAP
Class A

96.1%
100.0%

88.2
87.9

61.3
62.1

96.2
97.8

89.1
88.1

92.5Class B 100.0% 97.6 79.3 94.1 98.8
Class C 91.4% 87.9 37.1 96.4 88.3
Class D 85.0% 79.5 66.6 96.3 81.3

TRC (ours)
Class A

99.7%
100.0%

96.2 (+9.1, +8.0) 67.4 (+7.0, +6.1) 95.4 93.9 (+5.6, +4.8) 94.6 (+2.1, +2.9)Class B 100.0%
Class C 98.3%
Class D 100.0%

The parts marked in red and bold represent the improvement of our method to other reward mechanisms.

As depicted in Figure 10, normalized training curves were initially obtained corre-
sponding to diverse reward mechanisms to facilitate straightforward comparative analysis.
While Figure 10b,c reveal broad congruence in the Q-value and reward normalization
curves across the three mechanisms under consideration, Figure 10a indicates that TRC
(our method) achieves notably expedited convergence rates and elevated sample efficiency.
Further corroboration of the superiority of TRC emerges from the subsequent tabular
enumeration of the numerical results. Although the overall trends of the normalized curves
bear a resemblance, a closer examination of the actual metrics reveals the advantageous
nature of the TRC, particularly in optimizing weaker categories such as Class C and Class
D. This is reflected in the heightened selection accuracy in the post-perceptual evaluation
in Table 4. Our method also manifests a distinct edge in mAP-related metrics, a testament
to the synergistic alignment between the scrupulously crafted task-risk consistency reward
mechanism and the overarching framework. This result can be attributed to the proposed,
more comprehensive reward mechanism that considers both the detection accuracy and
confidence, thus placing more emphasis on the consistency of the model performance with
the prediction results, rather than merely considering the mAP metric.

Furthermore, this experiment conducted a more detailed visual analysis of the draw-
backs of directly using mAP as a reward and discussed the reasons for this phenomenon.
Figure 11 illustrates that the two detectors exhibited identical mAP values but displayed
substantial variations in their respective score distributions. In the left image, for instance,
the two false positive (FP) scores are 0.87 and 0.88, whereas, in the right image, they are 0.35
and 0.25. These discrepancies in FP scores imply differences in the specific scores assigned
by the detectors. Consequently, during practical prediction scenarios, the detector on the
right can effectively adjust the score threshold within the range of 0.35 to 0.88, capitalizing
on the significant score gap between true positives (TP) and FP. Conversely, the detector
on the left can only set the score threshold between 0.87 and 0.88, posing challenges in
suppressing the TP results of other images. Furthermore, a lower score threshold is often
set during actual prediction, leading to the retention of these two FP results.
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(a) (b) (c)

Figure 10. Training curves of reinforcement learning agents with different reward mechanisms.
Subfigures (a), (b), and (c) respectively represent the curves of training loss, Q value, and reward
value over time steps, which include different methods using confidence, mAP and TRC as reward.

In addition, intriguing findings arose in this experiment. Figure 12 presents empirical
evidence that may appear counterintuitive. Intuitively, one might expect the detection
outcomes of objects labeled as (b) and (d) to be superior to those of (a) and (c) due to
the additional false positives (FP) present in (b) and (d). Furthermore, the result for (c)
surpassed that of (a) due to its enhanced positional accuracy. Intuitively ranking these
results by their mAP might suggest the following order: (c) > (a) > (b) = (d). However,
the actual mAP values associated with these four result groups are presented in Figure 12:
(c) = (d) > (b) > (a). mAP is calculated by computing the mean average precision for each
intersection over union (IOU) threshold and subsequently averaging these values to yield
the final result. Although the detection outcomes for (b) contain an FP, when calculating
the mAP@0.5, a result with a lower score that has improved positional accuracy does not
impact the mAP (since there are no true positives with lower scores, the false positives
have no effect on the precision–recall curve). Similarly, when calculating the mAP@0.95, a
result with a higher score but poorer positional accuracy becomes an FP. However, as there
are no true positives at this threshold in (a), the mAP of (b) remains higher than that of (a).
Consequently, for all thresholds considered, the mAP for (b) is either superior to or equal
to that of (a), leading to the counterintuitive observation.

(a) (b)

Figure 11. The limitations of the mean average precision (mAP) in predictive evaluation become
evident when considering the scenario where the mAP values remain equal, while there exist
disparities in the confidence scores associated with false positives (FP). Specifically, on the left of the
figure (a), the FP confidence scores are 0.87 and 0.88, whereas, on the right of the figure (b), they are
0.35 and 0.25.

The distinction between (c) and (b) lies in the absence of any detection results with
inferior positional accuracy in (c). Consequently, when computing a low-threshold mAP
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such as mAP@0.5, the two are identical (the reason for the lack of negative impact from
false positives in (b) remains consistent, as explained above). However, when calculating a
high-threshold mAP such as mAP@0.95, (c) outperforms (b), resulting in superior overall
performance for (c). Although the intuitive effect of (b) and (d) may appear similar,
the discrepancy in the mAP arises from the sole dissimilarity between (b) and (d): the
detection result with improved positional accuracy in (d) possesses a higher score. Thus,
the performance of (d) aligns with that of (c) since the low-scoring false positives, which
exhibit subpar performance, do not influence the outcome.

During the mAP calculation, the detector employs a lower confidence threshold
(typically set to 0.001 by default) during the verification phase, enabling the inclusion of a
larger number of prediction results in the calculation. However, in practical applications,
most predictions with low confidence scores are suppressed. Considering the ultimate
objective of the object detection task, incorporating a larger number of prediction results in
mAP calculations entails certain risks. Figure 13 illustrates the scenario where the detector
in the right image produces a prediction result with a low score but within the IoU threshold.
Intuitively, one would expect the performance of the detector on the left to surpass that of
the right. However, upon calculating the mAP, it becomes evident that the mAP for the
right image is higher. This phenomenon arises because, when calculating the mAP at the
low IoU threshold, there are no TPs with scores lower than the FP in question. Conversely,
when calculating the mAP at the high IoU threshold, the FP contributes positively to the
performance. Consequently, the detector in the right image achieves a higher mAP. This
counterintuitive result aligns with the findings presented in the previous section regarding
visualizations. To mitigate this, detection results are filtered for retention by establishing
score and IoU thresholds. Subsequently, the results are sorted based on confidence. TP and
FP are then determined according to the IoU criteria. Finally, the occurrences of FNs are
counted, and the reward value is computed as in Equation (6). By employing the proposed
reward mechanism for evaluation, the intuitive results align consistently.

(a) (b)

(c) (d)

mAP@0.5:0.95: 12.9

mAP@0.5: 25.7

mAP@0.75: 0.00

mAP@0.5:0.95: 14.2

mAP@0.5: 25.7

mAP@0.75: 12.9

mAP@0.5:0.95: 15.4

mAP@0.5: 25.7

mAP@0.75: 25.7

mAP@0.5:0.95: 15.4

mAP@0.5: 25.7

mAP@0.75: 25.7

Figure 12. Counterintuitive results of mAP I. Intuitively ranking these results via their mAP suggests
the following order: (c) > (a) > (b) = (d). However, the actual mAP values associated with these four
result groups are (c) = (d) > (b) > (a).



Remote Sens. 2023, 15, 5031 24 of 27

(a) (b)

TRC Reward=91.75

mAP@0.5:0.95: 66.8

mAP@0.5: 100.0

mAP@0.75: 62.9

TRC Reward=75.5

mAP@0.5:0.95: 69.0

mAP@0.5: 100.0

mAP@0.75: 85.1

Figure 13. Counterintuitive results on mAP II. In light of expectation, it is anticipated that the
results in subfigure (a) would outperform its counterpart in subfigure (b). Nonetheless, upon
meticulous calculation of the mAP, a discernible observation emerges, indicating a higher mAP value
for subfigure (b). The reward value obtained by the TRC reward mechanism can more accurately
reflect the accuracy of the prediction result and produce more accurate positive guidance for the agent.

6.3. Computational Time Analysis

Given the juxtaposition of the proposed framework with an object detection system,
it becomes imperative to discern the temporal and computational overheads introduced
during the model’s prediction phase. This work meticulously enumerates key metrics such
as the storage requisites of the model, its parameter count, the floating-point operations
involved, and any latency engendered by the framework’s incorporation. Table 5 eluci-
dates that the post-training model size of the deep reinforcement learning agent was a
mere 12.2 MB, signifying minimal storage implications. Concurrently, both the parameter
tally and the floating-point operations remained lower than for the standalone model,
underscoring the framework’s efficiency. Consequently, the amalgamated system ensured
a negligible computational burden during prediction, maintaining a commendable 60 FPS
throughput.

Table 5. Computational time analysis.

Model Size Parameters GFLOPs Delay

TRC-ODF 12.2 MB 3.04 M 1.84 13.2 ms
YOLOv8-s 22.6 MB 11.20 (+8.16) M 28.60 (+26.76) 3.5 (−9.7) ms

7. Conclusions

This study proposes TRC-ODF, a deep-reinforcement-learning-guided task-risk con-
sistency object detection framework tailored for optical remote sensing images. The frame-
work leverages the power of deep reinforcement learning combined with the task-risk
consistency reward, with the overall goal of enhancing the detection performance. The core
of the proposed framework is a post-layer-normalized feature extraction network based on
a residual architecture and a carefully designed reward function, which can extract features
from the state space of the agent input and guide the agent to optimize on an accurate
trajectory. Complementing the theoretical elaboration of the method, empirical evalua-
tions were performed on various representative optical remote sensing image datasets.
These experiments confirmed the logical basis and expected applicability of TRC-ODF
and verified the effectiveness of the proposed network and reward mechanism. In view
of the overlap in the processing flows of different computer vision tasks, the potential of
TRC-ODF under other vision tasks besides object detection can be recognized. The future
goal of this research is to generalize the framework to a range of vision tasks, including, but
not limited to, classification, tracking, segmentation, and matching. It is expected to connect
different computer vision tasks at a higher level through deep reinforcement learning.
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