
Citation: Yuan, X.; Liang, Y.; Feng,

W.; Li, J.; Ren, H.; Han, S.; Liu, M.

Classification of Coniferous and

Broad-Leaf Forests in China Based on

High-Resolution Imagery and Local

Samples in Google Earth Engine.

Remote Sens. 2023, 15, 5026. https://

doi.org/10.3390/rs15205026

Academic Editor: Zengyuan Li

Received: 21 September 2023

Revised: 12 October 2023

Accepted: 15 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Classification of Coniferous and Broad-Leaf Forests in China
Based on High-Resolution Imagery and Local Samples in
Google Earth Engine
Xiaoguang Yuan 1,2,3 and Yiduo Liang 1,2,3 , Wei Feng 1,2,3,*, Junhang Li 4, Hongtao Ren 4, Shuo Han 1

and Mengqi Liu 1

1 Department of Remote Sensing Science and Technology, School of Electronic Engineering, Xidian University,
Xi’an 710071, China; xgyuan@xidian.edu.cn (X.Y.); 22021211484@stu.xidian.edu.cn (Y.L.);
shan_1@stu.xidian.edu.cn (S.H.); 20009100595@stu.xidian.edu.cn (M.L.)

2 Xi’an Key Laboratory of Advanced Remote Sensing, Xi’an 710071, China
3 Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University,

Xi’an 710071, China
4 Key Laboratory of State Forestry Administration on Soil and Water Conservation & Ecological Restoration of

Loess Plateau, Shaanxi Academy of Forestry, Xi’an 710082, China; li-junhang@hotmail.com (J.L.);
renhongtao0626@163.com (H.R.)

* Correspondence: wfeng@xidian.edu.cn; Tel.: +86-187-0687-1688

Abstract: As one of the world’s major forestry countries, accurate forest-type maps in China are of
great importance for the monitoring and management of forestry resources. Classifying and mapping
forest types on a large scale across the country is challenging due to the complex composition of forest
types, the similarity of spectral features among forest types, and the need to collect and process large
amounts of data. In this study, we generated a medium-resolution (30 m) forest classification map of
China using multi-source remote sensing images and local samples. A mapping framework based
on Google Earth Engine (GEE) was constructed mainly using the spectral, textural, and structural
features of Sentinel-1 and Sentinel-2 remote sensing images, while local acquisition data were utilized
as the mapping channel for training. The proposed method includes the following steps. First, local
data processing is performed to obtain training and validation samples. Second, Sentinel-1 and
Sentinel-2 data are processed to improve the classification accuracy by using the enhanced vegetation
index (EVI) and the red-edge position index (REPI) computed based on the S2A data. Third, to
improve classification efficiency, useless bands are removed and important bands are retained through
feature importance analysis. Finally, random forest (RF) is used as a classifier to train the above
features, and the classification results are used for mapping and accuracy evaluation. The validation
of the samples showed an accuracy of 82.37% and a Kappa value of 0.72. The results showed that the
total forest area in China is 21,662,261.17 km2, of which 1,127,294.42 km2 of coniferous forests account
for 52% of the total area, 981,690.98 km2 of broad-leaf forests account for 45.3 % of the total area, and
57,275.77 km2 of mixed coniferous and broad-leaf forests account for 2.6% of the total area. Upon
further evaluation, we found that textural and structural features play a greater role in classification
compared to spectral features. Our study shows that combining multi-source high-resolution remote
sensing imagery with locally collected samples can produce forest maps for large areas. Our maps
can accurately reflect the distribution of forests in China, which is conducive to forest conservation
and development.

Keywords: multi-source remote sensing; coniferous forest; broad-leaf forest; feature importance
analysis; random forest

1. Introduction

Forests cover almost one-third of the world’s land area and constitute the main body
of the terrestrial ecosystem with the largest coverage, the widest distribution, the most
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complex composition, the richest biodiversity, and the highest primary productivity [1,2].
As one of the world’s largest developing countries, China’s rich and diverse forest resources
are of great significance to the country’s sustainable development and the protection of the
ecological environment. Forest classification plays an important role in the management
and conservation of forest resources and carbon storage [3]. Coniferous forests are usually
considered the early stage of forest succession, broad-leaf forests the late stage of forest
succession, and mixed coniferous and broad-leaf forests the transitional stage of forest
succession [4,5]. Coniferous and broad-leaf forests have different characteristics above
and below ground. Coniferous forests are characterized by tree species with needle-like
foliage, a leaf pattern that helps reduce water evaporation in cold climates. Broad-leaf
forest species, on the other hand, usually have broad, spreading leaves; are more sensitive
to light; and are usually found in warmer regions [6]. However, most existing forest studies
do not distinguish between coniferous forests, broad-leaf forests, and mixed coniferous
and broad-leaf forests on a large scale. Therefore, in order to better understand the specific
distribution of forests in China, a nationwide mapping of coniferous, broad-leaf, and mixed
coniferous and broad-leaf forests in China is needed.

China has a vast land area and a diverse geomorphologic environment that provides a
wide variety of habitats for different vegetation types [7,8]. As a result, there is a great deal
of variation in the composition and distribution range of China’s forests, and these factors
make it extremely difficult to obtain ground vegetation information [9,10]. Traditional
methods of obtaining vegetation information such as ground surveys and sampling are
inefficient, laborious, and costly, and they fail to provide a continuous spatial data distribu-
tion of ground vegetation [11]. Moreover, the scale of the survey samples is inconsistent
with the scale of the actual forest, making it difficult to meet accuracy requirements. There-
fore, technologies such as big data, machine learning, and remote sensing are increasingly
applied in intelligent forestry [12,13].

Remote sensing data have provided increasing amounts of multispectral data since
the launch of the Sentinel mission [14]. Earth observation satellites not only monitor and
periodically revisit the ground but can also provide complete spatial details for forest map-
ping. In early studies, supervised maximum likelihood classifiers (MLC) and unsupervised
clustering (K-means) were generally used [15,16]. After 1995, classifiers based on nonpara-
metric decision trees and neural networks, among others, gradually replaced traditional
methods and were able to better cope with the complexity of remotely sensed data [17,18].
In recent years, remote sensing research has increasingly favored the use of nonparametric
machine learning methods such as random forest (RF) and support vector machine (SVM)
[19]. These methods are able to handle mixed sets of input variables (spectral, texture, en-
semble, exponential, etc.), and the improvement of hardware and software capabilities has
facilitated the application of these methods [20]. Therefore, machine learning classification
methods are currently regarded as effective for remote sensing image classification and
processing. Many studies have utilized sets of input variables, i.e., features, to map forests.
For example, Descals et al. combined spectral and textural features to map closed-canopy
oil palm plantations globally [21]. Zhao et al. combined optimal phenological period,
spectral, and topographic features to map grassland classifications in Zambia. Despite
the rapid development of the hyperspectral remote sensing of vegetation, it has not been
widely explored for large-scale forest remote sensing classification [22].

The aim of this study is to produce a national forest classification map with a resolution
of 30m. The work was realized on the Google Earth Engine platform, which is a computing
cloud platform provided free of charge by Google since 2010 that archives a large amount
of satellite imagery and provides geographic cloud computing for geoscience applications
on a global scale [23]. Since the remote sensing datasets on the GEE platform are very large,
the selection of datasets is also important. Remote sensors have their own characteristics,
and using different remote sensing images may lead to different results, even if the study
objectives are the same. We chose Sentinel data as the remote sensing data for this study.
The Sentinel-1 satellites are a crucial component of Earth observations that are equipped
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with C-band synthetic aperture radar (SAR) technology, which offers a unique capability to
provide continuous imagery regardless of lighting conditions or weather patterns, making
them exceptionally valuable for a wide range of applications. The satellites provide imagery
with a revisit period of 12 days during frequent monitoring of the Earth’s surface [24,25].
Each scene captures imagery at multiple resolutions, offering users flexibility in selecting
the level of detail required for their specific applications. The available resolutions include
10 m, 25 m, and 40 m, enabling fine- to medium-scale monitoring and analysis. The scenes
are also characterized by different polarization options, which enable the collection of data
on how radar waves interact with the Earth’s surface. Both single-polarization (HH or
VV) and dual-polarization (HH+HV or VV+VH) operations are supported, and they are
implemented via a transmitter chain (switchable to H or V) and two parallel receiver chains
for H and V polarizations. Sentinel-2 was launched on 23 June 2015 as the second satellite of
the Global Monitoring for Environment and Security (GMES) program. The satellite carries
a multispectral imager covering 13 spectral bands with a width of 290 km and monitors the
Earth at three resolutions (10, 20, and 60 m). One satellite has a revisit period of 10 days,
and two satellites have a revisit period of 5 days, opening up a completely new way of
specialized forest monitoring [26]. The relatively short revisit period enables the collection
of more detailed information on individual forest types. Due to a variety of satellites and
sensors, S2 data have led to innovations in the field of remote sensing and have seen a wide
range of applications.

The noteworthy contributions of this study are as follows: (1) Optimal feature
combination—Based on all bands of the original Sentinel-2 image, the EVI and REPI
indices are calculated, and texture feature extraction is completed. (2) Feature importance
analysis—In order to ensure the computational efficiency of the network, we verify the
accuracy according to the order of importance of the band features, retaining the high-
quality feature bands and removing the redundant bands. (3) Combination of multi-source
high-resolution remote sensing data and local samples to construct a framework for the
large-scale drawing of classification maps on the GEE platform. (4) Generation of a classifi-
cation map of coniferous forests, broad-leaf forests, and mixed coniferous and broad-leaf
forests in China in 2020 with a resolution of 30m. The resulting classification map has
significant implications for forest protection, conservation, and development efforts in
China. It provides a comprehensive overview of forest types and their distribution, serving
as a crucial resource for policymakers, researchers, and conservationists. Additionally, the
map facilitates informed decision making in sustainable forest management, ecosystem
conservation, and land-use planning. In summary, this study’s outcomes contribute to
the better understanding and responsible management of China’s diverse and vital forest
resources.

2. Materials and Methods

The forest classification process (Figure 1) encompasses the following three distinct
steps, each playing a critical role in achieving accurate and reliable results: Step 1—
preprocessing and categorization of forest collection samples. Step 2—feature extraction
using remote sensing datasets. Step 3—mapping and accuracy assessment of Chinese forest
classifications. The detailed process of each step is described below.

2.1. Field Data

We used a mobile phone application (LiVegetation) and forest data collected from the
literature [27]. This application enabled the systematic recording of vegetation attributes,
along with their corresponding geographical coordinates. Importantly, all the data collected
through LiVegetation were meticulously gathered by scholars or experts in vegetation
ecology. This ensured the quality and accuracy of the recorded information. To enrich our
dataset, we reviewed scientific papers related to nature reserves and recent biodiversity
research books published within the last five years. Our selection retained records that
contained specific species composition information and geographic location data. These
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records were then digitized for further analysis. In total, we collected a substantial dataset
comprising 311,890 data. To ensure the dataset’s suitability for forest classification, we
screened and categorized the data (Figure 2b). This categorization process resulted in the
following distribution: 145,938 coniferous forest samples, 145,938 broad-leaf forest samples,
and 17,227 mixed coniferous and broad-leaf forest samples. Each of these samples was
associated with precise geographic coordinates, allowing for precise spatial analysis. These
data were reprojected, resulting in the division of China into seven regions (Figure 2a).
Detailed information about each region is shown in Table 1. The label of the coniferous
forest area is “0”, the label of the broad-leaf forest area is “1”, and the label of the mixed
coniferous and broad-leaf forest area is “2”. Then, we divided the forest samples into
training data (70%) and validation data (30%).

Figure 1. The methodological workflow implemented in GEE.
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Table 1. Statistics of samples by region.

Region Province Number of Samples Total

North

Beijing 497

20,123Tianjin 45
Hebei 1346
Shanxi 15,006

Inner Mongolia 3229

Northeast
Liaoning 5880

18,326Jilin 3904
Heilongjiang 8542

East

Shanghai 1281

85,861

Jiangsu 3535
Zhejiang 11,459

Anhui 4936
Fujian 21,804
Jiangxi 18,742
Taiwan 1823

Shandong 22,381

Center
Henan 3873

45,681Hubei 16,443
Hunan 25,365

South

Guangdong 2558

26,680
Guangxi 23,844

Hong Kong 30
Macao 7
Hainan 241

Southwest

Chongqing 13,635

75,381
Sichuan 41,666
Guizhou 6071
Yunnan 11,478

Tibet 2531

Northwest

Shaanxi 17,825

39,738
Gansu 15,519

Qinghai 1083
Ningxia 551
Xinjiang 4760

311,890
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(a) Seven geographical regions of China (b) Distribution of forest samples collected in this study

Figure 2. Illustration of the regional divisions and the distribution of forest samples.

2.2. Remote Sensing Datasets
2.2.1. Sentinel-1

The Sentinel-1 Ground Range-Detected (GRD) data used in our study were accessed
through the Google Earth Engine (GEE) system. This is a ground range monitoring product
that captures amplitude information and has a multiview capability to minimize the effects
of speckle. Due to their sensitivity to the vegetation structure, the VV and VH polarization
bands of the Sentinel-1 time-series images from 2017 to 2020 were selected to generate
a complete VV and VH image of the whole of China for classification using the median
synthesis method. This image was resampled to 30 m for spatial analysis, followed by
feature importance analysis.

2.2.2. Sentinel-2

In the context of our research, we used Sentinel-2 Multispectral Instrument (MSI)
Level 2A data, which were accessed through the Google Earth Engine (GEE) platform. This
particular dataset has been meticulously calibrated using a digital elevation model. Each
pixel’s value is derived from measurements acquired at the Top of Atmosphere (TOA), with
data records extending back to 2017. However, it is noteworthy that some geographical
regions experience partial gaps in remote sensing data due to cloud cover. Figure 3 shows
the remote sensing image coverage of Sentinel-2 in China from 8 March 2017 to 31 December
2020. A detailed description of the Sentinel 2 band is detailed in Appendix A.1.
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Figure 3. Number of Sentinel-2 scenes over China during the study period from 28 March 2017 to 30
December 2020. The color ranges from blue to red, indicating fewer scenes. The darker the color, the
fewer scenes in the area.

The dataset encompasses an array of spectral bands, including visible and near-
infrared (NIR) bands (B2, B3, B4, B8) with a spatial resolution of 10 m per pixel. Additionally,
it incorporates short-wave infrared bands (B11, B12) with a resolution of 20 m per pixel.
Notably, band 1 serves the purpose of aerosol analysis, whereas bands 9 and 10 are optimally
suited for identifying water vapor and cirrus clouds. These specific bands provide imagery
at a resolution of 60 m per pixel, predominantly intended for atmospheric correction
procedures. Augmenting the dataset further are three quality assessment (QA) bands, with
QA60 being particularly significant due to its inclusion of cloud mask information. This
information proves invaluable in the removal of cirrus and dense cloud formations from
the images.

2.2.3. Auxiliary Data

In our research, we employed forest masks derived from GlobeLand30’s 2020 land
cover product [28]. These forest masks are important in our analysis as they help delineate
areas of coniferous, broad-leaf, and mixed coniferous and broad-leaf forests within forested
regions. This approach serves to minimize the influence of other land cover types and
significantly enhances the accuracy of our forest classification processes.
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2.3. Methodology
2.3.1. Structural and Spectral Feature Analysis

In this article, the VV and VH polarization bands of the S1 time-series images from
2017 to 2020 were selected due to their sensitivity to the vegetation structure [29]. The
median synthesis method was used to generate a complete VV and VH image covering the
whole of China, which was then resampled to a resolution of 30 m.

S2 data with less than 10% cloud cover from 2017 to 2020 were selected to extract
spectral and image texture features of the study area for mapping the forest distribution
in China. Before further processing, cloud masking and shading were applied to each
image for quality assessment using the default values provided by GEE. Then, a synthetic
image was obtained by calculating the median value of each pixel. The synthetic image
was resampled to a resolution of 30 m. Two vegetation indices that help distinguish
coniferous forests, broad-leaf forests, and mixed coniferous and broad-leaf forests were
added, including the enhanced vegetation index (EVI) and the red-edge position index
(REPI), which were computed using the following equations:

EVI = 2.5 × ρNIR − ρRed
ρNIR + 6 × ρRed − ρBlue + 1

(1)

REPI = 705 + 35 ×
(ρRed − ρRed Edge3)/2 − ρRed Edge2

ρRed Edge2 − ρRed Edge1
(2)

The EVI index is more sensitive to canopy structure and type changes [30]. It also
reduces the influence of atmospheric and soil noise and provides a stable response to
the vegetation in the area measured. Due to scattering from the leaves and canopy, the
reflectance of vegetation in the red-edge range (680–780 nm) increases sharply with the
wavelength [31], and the reflectance near the red edge is sensitive to crops’ chlorophyll and
nitrogen content. The REPI corresponds to the wavelength position, where the reflectance
of the green vegetation in the red-edge range has the fastest increase in reflectance with the
increasing wavelength. Compared with the NDVI, where saturation is a problem, the REPI
corresponds more significantly to the leaf area index and chlorophyll concentration [32].

2.3.2. Texture Features Analysis

The classification of forests based solely on spectral features is inefficient due to the
potential for different objects to exhibit similar spectral characteristics. Additionally, the
same object may display varying spectral attributes under different conditions, such as
diverse angles of sunlight, densities, and water contents [33].

Texture is a crucial attribute of an image, representing patterns resulting from spatial
variations in grayscale levels. One widely employed method for texture characterization is
the gray-level covariance matrix (GLCM). The GLCM defines the joint probability distribu-
tion of gray levels for two pixels with specific spatial relationships within an image [34].
Google Earth Engine (GEE) offers a rapid computational function called “glcmTexture”,
which employs GLCM texture features. It calculates texture metrics based on the covariance
matrix of grayscale values around each pixel in every band.

The GLCM is essentially a table that depicts the frequency of diverse combinations
of pixel luminance values (gray levels) within an image. It tallies the occurrences of a
pixel, with value X being adjacent to a pixel with value Y at a particular direction and
distance, and then extracts statistics from this dataset. The implementation computes 14
GLCM metrics initially proposed by Haralick [35], along with an additional 4 metrics
introduced by Conners [36]. The resulting output comprises 18 bands for each input
band if direction averaging is enabled, and 18 bands for every direction pair within the
kernel if this feature is not enabled. These metrics include the Angular Second Moment
(ASM), Contrast (CONTRAST), Correlation (CORR), Variance (VAR), Inverse Difference
Moment (IDM), Sum Average (SAVG), Sum Variance (SVAR), Sum Entropy (SENT), Entropy
(ENT), Difference Variance (DVAR), Difference Entropy (DENT), Information Measure
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of Correlation (IMCORR1 and IMCORR2), Max. Correlation Coefficients (MAXCORR),
Dissimilarity (DISS), Inertia (INERTIA), Cluster Shading (SHADE), and Cluster Prominence
(PROM) [37]. Here are some formulas for calculating these metrics:

ASM = ∑i∑j p
2(i, j) (3)

Contrast = ∑
Ng−1
n=0 n2[∑

Ng
i=1 ∑

Ng
j=0 p(i, j)] (4)

Correlation =
∑i∑j(i, j)p(i, j)− µxµy

σxσy
(5)

Variance = ∑i ∑j(i − u)2 p(i, j) (6)

IDM = ∑i ∑j(
1

1+(i−j)2 )p(i, j) (7)

SAVG = ∑
2Ng
i=2 (ip(x+y)(i)) (8)

Entropy = −∑i ∑j p(i, j)log(p(i, j)) (9)

DISS = ∑
Ng−1
n=1 n[∑

Ng
i=1∑

Ng
j=1 p(i, j)2] (10)

where p(i,j) is the (I,j)th entry in a normalized gray-tone spatial-dependence matrix;
Ng is the number of distinct gray levels in the quantized image; µx and µy are the means of
px and py; and σx and σy are the standard deviations of px and py.

Following the aforementioned feature extraction process, texture feature extraction
was performed on the S2 image. This resulted in the generation of 18 texture indices for
each band, culminating in a total of 252 bands.

2.3.3. Feature Importance Analysis

Despite obtaining an extensive array of both spectral and texture features, an excess of
texture attributes can lead to redundancy and computational inefficiency. Hence, a feature
selection process is imperative to retain crucial attributes while discarding irrelevant ones.
To ascertain the quality of features, the “explain” function, integrated within the GEE plat-
form, was employed to evaluate the significance of 254 features. Table 2 shows the results
of the analysis for the first 18 bands in the study area, where higher values correspond
to increased feature importance. The results show that none of the 14 MAXCORR bands
played any role in the classification, which is evident from their importance score of 0.
Conversely, the SAVG demonstrates substantial importance across all bands, significantly
outweighing other attributes. Let us delve into the significance of a feature by examining
its variable importance measure based on out-of-bag data (VIMOOB

j ) [38]. VIMOOB
j is a

metric defined as follows: During the random forest (RF) modeling process, out-of-bag
(OOB) data are utilized. This involves randomly selecting training bootstrap samples to
construct a decision tree within each tree of the random forest. Once a tree is built, the
OOB prediction error rate is computed. Subsequently, the observations of the variable Xj
are randomly permuted and the tree is recalculated, along with the OOB prediction error
rate. Finally, the difference between the two OOB error rates is computed. This process is
repeated across all trees within the random forest ensemble, and the resulting differences
are standardized and averaged to derive the variable importance measure based on out-
of-bag data (VIMOOB

j ) for the variable X j. In essence, VIMOOB
j provides an assessment

of the impact of each individual variable (X j) on the model’s predictive performance. It
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quantifies how perturbing the values of X j affects the accuracy of predictions, taking into
account the inherent variability introduced by the random forest modeling process [39].

Table 2. Characteristic importance analyses of 254 bands across China and ranked in descending
order of importance. The first 18 of these bands are shown below.

Band Importance Band Importance Band Importance

B1_savg 18.958 B9_savg 15.711 B3_prom 15.226
B2_savg 17.409 VV 15.678 B5_dvar 14.991

B1_shade 17.241 B8A_savg 15.550 B1_idm 14.853
B7_savg 16.934 REPI_savg 15.435 EVI_shade 14.839
B5_savg 16.044 VH 15.389 B6_idm 14.741

EVI_savg 15.912 B11_savg 15.373 B5_shade 14.617

The variable X j in the i-th tree VIMOOB
j is:

VIMOOB
j =

∑ni
o

p=1 I(Yp = Yi
p)

ni
o

−
∑ni

o
p=1 I(Yp = Yi

p,πj
)

ni
o

(11)

where ni
o is the number of observations in the out-of-bag (OOB) data of the i-th tree; I(g)

is the indicator function, which equals 1 when two values are equal and 0 when they are
not; Yp is a binary variable, taking values of 0 or 1, which represents the true outcome of
the p-th observation; Yi

p is another binary variable, indicating the prediction result of the
p-th observation of the OOB data by the i-th tree before any random replacement; and Yi

p,π
denotes the prediction result of the i-th tree on the p-th observation of the OOB data after
random replacement. If the variable j does not appear in the i-th tree, then the variable
importance measure based on out-of-bag data (VIMOOB

j ) for that variable is assigned a
value of 0.

The results of the importance analysis of the spectral, texture, and structural features
for each region are shown in Figure 4. Most of the texture feature values are higher than
the spectral feature values, so compared with the spectral features, the texture information
helps distinguish between coniferous, broad-leaf, and mixed coniferous and broad-leaf
forests. The structural features VV and VH also show good importance, so we choose
texture features and structural features to input into the network. It can be seen from the
table that structural features performed better in the northeast, east, and south, whereas
the spectral features performed better in the center.
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Figure 4. Evaluation of the importance of the spectral, textural, and structural features within seven
regions. Blue represents the original band and green represents the texture features after GLCM.

For the 254 bands obtained by sorting according to the importance of features, we
started with one band and increased by one band step by step until all the bands were input
into the network. The results are shown in (Figure 5). The accuracy was 59.90% when only
the B1_savg band with the highest eigenvalue score was input. However, as the number of
bands input into the network increased, the accuracy also increased. When the bands with
the top 12 eigenvalue scores were input, the accuracy reached a small peak at 82.37%. At
this time, the network took less time to perform computations, and the computations were
more efficient. As the number of bands continued to increase, the accuracy experienced
some minor fluctuations and mostly stayed around 82.4%. This shows that the increase
in the number of bands caused redundancies in the results and a gradual increase in the
network computation time, greatly weakening computational efficiency. In the figure, it
can be seen that the accuracy was close to 83%, but we chose the optimal case considering
the efficiency of the network and the time problem. Therefore, the first 12 bands (B1_savg,
B2_savg, B1_shade, B7_savg, B5_savg, EVI_savg, B9_savg, VV, VH, B8A_savg, REPI_savg,
and B11_savg) were selected as the final input features.

2.3.4. Classification

In this study, a random forest (RF) approach was used to classify the forests. The
RF classifier uses an ensemble of trees, which surpasses the maximum likelihood and
decision tree approaches in terms of accuracy. Moreover, the random selection of features
and samples is performed within the RF classifier, which effectively avoids the problems
of overfitting and excessive dimensionality [40]. We created the RF classifier on the GEE
platform with 100 decision trees and a bag fraction of 0.2.
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Figure 5. As the input of 254 bands increases, the accuracy follows the curve of the frame.

2.4. Accuracy Assessment
2.4.1. Comparison With Field Data

In this article, 30% of the forest samples were used as the validation set, which con-
tained 44,617 coniferous forest samples, 43,781 broad-leaf forest samples, and 5168 mixed
coniferous and broad-leaf forest samples. The accuracy of the maps was assessed by
calculating the confusion matrix, which is a cross-tabulation of the semi-automatic map-
ping process and the assignment of class labels to the reference data. In order to check
the reliability of the mapping method, we used three metrics: the overall accuracy (OA),
Cohen’s consistency index (Kappa coefficient) [41], and macro-F1 score. The OA is the
proportion of all reference pixels that are correctly categorized, reflecting the accuracy of
the categorization. The Kappa coefficient, as a consistency test, can be used to measure the
effectiveness of the categorization. The macro-F1 score is the average F1 value across all
categories, which assigns the same weight to all categories, ignoring the actual frequency
of occurrence of the sample. The formulas are as follows:

OA =
Numcorrect

Sum
(12)

Kappa =
Po − Pe

1 − Pe
(13)

F1 − scorei =
1

1
2 (

1
PAi

+ 1
UAi

)
=

2PAi × UAi
PAi + UAi

(14)

macro − F1 =
F1 − score1 + F2 − score2 + F3 − score3

3
(15)

where Numcorrect is the number of correctly mapped validation samples, and Sum is the
total number of validation samples. Po is the prediction accuracy, i.e., the ratio of the
number of correct samples in each category to the total number of samples; and Pe is the
chance consistency. PA is the producer’s accuracy, and UA is the user’s accuracy.
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2.4.2. Comparison with National Vegetation Map

To further validate the obtained classification map, we compared it with China’s
publicly available vegetation map (1:1 million) (2019) [42]. This map presents a complete
picture of China’s vegetation, including 55 vegetation types, 960 community types, and the
distribution of more than 2,000 dominant plants. Our classification map was resampled to
1,000,000m to match the resolution of the vegetation map. Then, pixel-by-pixel comparisons
of the two maps were performed, and the overlapping area was analyzed to verify the
spatial extent of our classification map.

3. Results
3.1. Distribution of China’s Forests in 2020

The forest distribution map of China in 2020 is shown in Figure 6, with an estimated
forest area of 2,166,261.17 km2, which is very close to the area of 2,204,500 km2 in the
Ninth National Forest Inventory (2014–2018). The area of forests in each provincial area
is presented in Table 3. Coniferous forests cover 1,127,294.42 km2, accounting for 52% of
the total area; broad-leaf forests cover 981,690.98 km2, accounting for 45.3% of the total
area; and mixed coniferous and broad-leaf forests cover 57,275.77 km2, accounting for 2.6%
of the total area. By dividing China’s provinces into seven regions, it can be seen that the
southwest region has the largest forest area and the northwest region has the smallest forest
area. Heilongjiang, Inner Mongolia, Sichuan, and Yunnan provinces account for a larger
proportion of the total area.

Table 3. Area of the three types of forests in each province.

Region Province Coniferous/km2 Broad-Leaf/km2 Mixed/km2 Total//km2 Percent/%

North

Beijing 6,661.91 1,018.35 166.29 7,846.55 0.36
Tianjin 178.22 41.26 7.5 226.98 0.01
Hebei 25,865.77 16,725.32 1.05 42,592.14 1.97
Shanxi 31,775.18 13,045.02 593.34 45,413.54 2.10

Inner Mongolia 69,728.81 98,247.58 6.7 167,983.09 7.75

264,062.3 12.19

Northeast
Liaoning 19,660.41 31,282.36 38.49 50,981.26 2.35

Jilin 23,627.01 56,882.8 7,011.02 87,520.83 4.04
Heilongjiang 89,905.14 127,198.53 8,996.01 226,099.68 10.44

364,601.77 16.83

East

Shanghai 44.47 26.36 24.09 94.92 0.00
Jiangsu 678.6 1,806.63 76.82 2,562.05 0.12

Zhejiang 17,637.16 37,665.23 601.8 55,904.19 2.58
Anhui 34,004.67 5.72 0.09 34,013.48 1.57
Fujian 31,548.95 47,649.96 15.7 79,214.61 3.66
Jiangxi 50,174.06 46,016.37 2919.94 99,110.37 4.58
Taiwan 9,303.47 9,977.72 2,092.07 21,373.26 0.99

Shandong 3,470.8 590.32 0.12 4,061.24 0.19

296,334.12 13.68

Center
Henan 9,415.18 20,921 6.42 30,342.6 1.40
Hubei 28,330.9 53,717.53 697.47 82,745.9 3.82
Hunan 65,070.74 46,516.89 164.52 111,752.15 5.16

224,840.65 10.38
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Table 3. Cont.

Region Province Coniferous/km2 Broad-Leaf/km2 Mixed/km2 Total//km2 Percent/%

South

Guangdong 25,592.29 59,261.58 43.9 84,897.77 3.92
Guangxi 39,644.76 89,432.19 8,058.34 137,135.29 6.33

Hong Kong 68.83 52.64 0 121.47 0.01
Macao 14.32 0 0 14.31 0.00
Hainan 2,056.5 17,033.53 0 19,090.03 0.88

241,258.87 11.14

Southwest

Chongqing 17,029.21 11,295.87 4,219.55 32,544.63 1.50
Sichuan 146,670.31 40,738.02 81.56 187,489.89 8.65
Guizhou 62,969.38 13,024.96 8,981.37 84,975.71 3.92
Yunnan 154,402.04 29,265.63 9,060.16 192,727.83 8.90

Tibet 55,258.38 41,689.71 20.69 96,968.78 4.48

594,706.84 27.45

Northwest

Shaanxi 42,740.64 52,406.42 2,406.09 97,553.15 4.50
Gansu 36,428 15,813.78 829.29 53,071.07 2.45

Qinghai 3,978.6 1,002.57 0.02 4,981.19 0.23
Ningxia 716.66 55.99 0.08 772.73 0.04
Xinjiang 22,640.06 1,283.14 155.28 24,078.48 1.11

180,456.62 8.33

2,166,261.2 100

Figure 6. Map of classification of coniferous and broad-leaf forests in China.
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3.2. Accuracy Assessment
3.2.1. Comparison with Field Data

In order to show the forest classification results in detail, the ground data collected
by Google Earth were used as an example, and three regions in Yunnan and Heilongjiang
provinces were selected to demonstrate the results. In Figures 7 and 8, the second column
shows the ground data and the third column shows the classification results. The forest
cover boundaries were accurately reflected, and the boundaries between coniferous forests,
broad-leaf forests, and mixed coniferous and broad-leaf forests were clearly predicted.
Overall, through the analysis of the validation samples and visualization results, we can see
that the forest classification performed well and achieved acceptable results at the national
and regional scales.

In this article, 93,567 data collected as the validation set were used to evaluate the
generated maps, and seven regional and nationwide confusion matrices were obtained
(Figure 9). Based on the nationwide confusion matrix, the overall accuracy (OA) achieved
was 82.37% and the Kappa coefficient achieved was 0.72, indicating that the classification
results were highly consistent with the validation sample. The overall accuracy and Kappa
coefficient for each province are shown in Figure 10, where it can be seen that Hainan
Province had the highest overall accuracy of 91.78% and Kappa coefficient of 0.74. Xinjiang
Province was second to Hainan Province with an OA of 87.59% and a Kappa coefficient of
0.74. Since the dataset was collected manually, the distribution of the data collected from
the forests in each province was uneven, and there was a difference between the number of
training and validation samples. Moreover, the OA obtained was highly consistent with the
validation sample. There were differences between the number and values of the OA and
Kappa coefficients obtained. The OA values of most provinces were distributed around
78% and the Kappa coefficient values were distributed around 0.65. However, the OAs for
Beijing, Heilongjiang, Shanghai, Zhejiang, Hunan, Hong Kong, and Jiangxi provinces were
below 70%. This was caused by the training and validation samples, which were more
urban in the region, and the forests were mainly distributed outside the cities and in places
with smaller population distributions. So, it was more difficult to collect the dataset for this
region with fewer samples.

Figure 7. Illustration of Yunnan province. The remote sensing images in the figure are from © Google
Earth 2020.
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Figure 8. Illustration of Heilongjiang province. The remote sensing images in the figure are from
© Google Earth 2020.

Figure 9. Confusion matrix for the classification of coniferous, broad-leaf, and mixed coniferous and
broad-leaf forests at the national and provincial levels in China.
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Figure 10. Overall accuracy and Kappa coefficients at the national and provincial levels.

3.2.2. Comparison with National Vegetation Map

We performed pixel-level comparisons of the national vegetation map (2019) and
the obtained classification maps. Since the resolution of the national vegetation map is
1,000,000 m, the classification map was resampled to a resolution of 1,000,000 m. The over-
lapping areas of coniferous, broad-leaf, and mixed coniferous and broad-leaf forests were
identified, as shown in Figure 11. In the forest classification results we obtained, the total
forest area was 2,166,261.17 km2, of which the coniferous forest area was 1,127,294.42 km2,
the broad-leaf forest area was 981,690.98 km2, and the area of mixed coniferous and
broad-leaf forest was 57,275.77 km2. In the national vegetation map, the forest area was
2,076,336.05 km2, of which the coniferous forest area was 1,043,690.98 km2. The overlapping
area of the forest was 1,512,318.92 km2, of which the coniferous forest area was 792,603
km2, the broad-leaf forest area was 685,795.06 km2, and the area of mixed coniferous and
broad-leaf forest was 33,839.9 km2. The total overlapping area accounted for 69.81% of
the classification results, of which the overlapping area of coniferous forest accounted for
70.31% of the classification results, the overlapping area of broad-leaf forest accounted for
69.85% of the classification results, and the overlapping area of mixed coniferous and broad-
leaf forest accounted for 59.08% of the classification results. The resulting data showed that
the classification results of coniferous and broad-leaf forests were highly accurate, and the
classification results of mixed coniferous and broad-leaf forests contained significant errors.
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Figure 11. Overlapping areas between the map generated in this study (2020) and the national
vegetation map (2019).

3.3. Uncertainties of the Forest Classification Forest Map

To assess and analyze the overall area of error in forest classification by region and
province, we illustrated the distributions of the forest classification errors for the seven
regions and 34 administrative districts using line graphs. Figure 12 shows the forest area for
the whole country and the seven regions, where the black lines indicate the classification
results of this study, the blue lines indicate those of the national vegetation map, and the
red lines indicate the overlapping areas after the pixel-level comparison. As can be seen in
the figure, the area of the classification results in each region was essentially the same as
the forest area of the 30m resolution national vegetation map, but the coniferous forest area
in the northwest region was larger. The overlapping area after the comparison consistently
maintained a linear relationship with the classification results, which indicates that the
classification results we obtained are statistically acceptable forest classification results for
the whole country. However, in central and southern China, there were significant errors
in the broad-leaf forest areas, and in northwestern China, there were significant errors in
the coniferous forest areas. The overlapping areas in the other provinces were essentially
the same as the classification results. The errors in Hong Kong, Macao, and Taiwan were
mainly due to the small number of local samples. The samples we used were collected
and uploaded manually, and the topographic data collected in some areas, such as cities
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with complex topography and high urban coverage, were also limited. Moreover, the
longitudinal span of the Chinese region is large and the landforms are very different, which
can easily lead to prediction errors. In northwest China, the land cover type is mainly
barren, with sparse vegetation and bushes, resulting in a misclassification phenomenon.
The relatively high elevation of the terrain in the region had a great impact on the data
collection, leading to obvious errors in the prediction of coniferous forests. In eastern
China, urbanization covers a large area, and the dataset used was relatively small and
performed poorly for Jiangsu Province. In the north, northeast, southwest, and central
regions of China, the performance of individual provincial administrations was fair and
highly consistent with the survey data, as the forests in these regions are relatively similar
and stable and not easily confused.

Figure 12. Statistical comparison of 7 regional and national vegetation maps in China. In each plot,
the horizontal coordinate represents the forest type, and the vertical coordinate represents the area
covered. The black line shows the area of the study, the blue line shows the area of the national
vegetation map, and the red line shows the overlapping area of the two.

In conclusion, the statistical reliability of this study has been verified based on survey
data from the 2019 national vegetation map. When examining the overall performance in
the seven regions and 34 provincial administrations, the results show that the errors in this
study are generally acceptable. The large differences between our classification maps and
the national vegetation maps were mainly caused by the following reasons:

(1) Difficulties in the collection of local samples: Although the number of samples was
large, the distribution of samples in each regional province was not balanced, resulting
in different accuracies in each province. The local sample data also depended on the
distribution of users using the software, e.g., in Hong Kong, Macao, and Taiwan, there
were few users, as well as the image classification accuracy.

(2) Google Earth Engine imagery had uneven coverage: Figure 3 shows the spatial
distribution of the number of image tiles captured by Sentinel-2 from 28 March 2017 to
30 December 2020 (our study period), where blue indicates that the amount of remote
sensing image coverage in the region was high, and red indicates that the amount of remote
sensing image coverage in the region was low. It can be seen in the figure that remote
sensing image coverage was low in the southwest region, including Tibet and Sichuan,
whereas in the north of China, remote sensing image coverage was higher. Although GEE
is the best choice for obtaining high-resolution remote sensing images of the whole country,
the uneven coverage of images can affect the uniformity of forest classification. The number
of remote sensing images was relatively sparse, resulting in a decrease in classification
accuracy in the region. Therefore, although the unevenness in the distribution of Sentinel-2



Remote Sens. 2023, 15, 5026 20 of 26

images still caused uncertainty in our classification results, the impact was minimized
due to the rational use of image texture information and the combination of uniformly
distributed Sentinel-1 image information.

(3) The change in the country’s forest area was rapid: According to the National
Bureau of Statistics (NBS) [42], in the Eighth National Forest Inventory (NFI), the forest
area of the country was 2,100,000 km2, whereas in the Ninth NFI, the forest area of the
country was 2,204,500 km2, so the distribution and area of forests changed over time. The
national vegetation map we used is from 2019, so spatial differences between that map and
our classification map were inevitable.

(4) We analyzed the differences between the mapped areas and statistics for all
provinces and presented them as line graphs. The results showed that the areas of broad-leaf
forests mapped in the provinces of Jiangsu, Hebei, Yunnan, and Guizhou were significantly
overestimated, and the areas of coniferous forests mapped in the provinces of Inner Mon-
golia, Heilongjiang, and Liaoning were significantly underestimated. This was due to the
errors in the forest mask (GlobeLand30) land cover data, which under- or overestimated the
forest areas in the northern and northwestern regions despite its high user accuracy (84.10%
to 90.50%) and producer accuracy (92.10% to 93.90%). Many coniferous and broad-leaf
forests in the provinces were not categorized as forests, resulting in underestimation, as
shown in Figure 13.

(5) Resampling the classification map resulted in a loss of detailed information: The
resolution of the national vegetation map is 1,000,000 m, whereas the resolution of our
classification map is 30 m. When comparing the two maps, it was necessary to maintain
the same resolution so we resampled the classification map to 1,000,000 m. The pixels
were enlarged and shifted due to the process of resampling, resulting in the loss of some
details, so the overlapping area was slightly smaller as a proportion of the total area
when the two maps were compared. Therefore, when comparing the two maps with
the national vegetation map, there were significant differences. Overall, differences in
pixel-level comparisons between the two maps were unavoidable.

Figure 13. Example of forest area underestimation in GlobeLand30 data. The remote sensing images
in the figure are from © Google Earth 2020.
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4. Discussion

In this study, we constructed a general framework for forest classification in China
based on the spectral, textural, and structural features of multi-source remote sensing
images and generated a 2020 classification map of coniferous forests, broad-leaf forests,
and mixed coniferous and broad-leaf forests with the help of local samples. Random
forest was used for feature importance selection, improving the efficiency and accuracy
of classification, which is of great significance for forest management and conservation in
China.

Open access to multi-source remote sensing images and cloud computing platforms
has provided unprecedented convenience in the field of remote sensing. GEE, as a typical
representative of cloud computing platforms, has powerful access and processing capa-
bilities for satellite data, so it is often used for land-cover mapping on a large scale [43,44].
Traditional remote sensing data processing cannot operate on a large scale and the images
need to be processed and spliced separately, which can lead to differences between different
areas. This study relied on GEE’s advantage of storing a large amount of remote sensing
data to perform mapping on a large scale in China. The data of Sentinel-1 and Sentinel-2
for the whole study area from 2017 to 2020, which comprised a substantial amount of data,
were aggregated, effectively avoiding the problem of uneven color due to splicing and
ensuring the quality of remote sensing data.

The local samples used in this study were from a phone application (LiVegetation), as
well as the literature, which greatly improved the efficiency of data collection. The local
samples provided the validation set and the training set, while the remote sensing images
reflected the characteristics of the ground through different bands. The combination of the
two improved the accuracy and efficiency of classification [45].

We calculated the texture features for 14 bands in Sentinel-2 and the structural features
provided by Sentinel-1. In total, 254 bands were obtained. We used random forest for
feature importance analysis for the bands and input them into the network in order of
feature value size to obtain the training accuracy values from 1 band to 254 bands. The
results showed that a large number of band features in the network can affect the operation
speed and efficiency, resulting in redundancy. Therefore, in this study, the top 12 bands in
terms of importance were selected to be input into the network for operation.

We compared the obtained classification map (30 m) with the national vegetation map
(1,000,000 m) [46]. The resolution of the classification map is 30 m and it was resampled to
a resolution of 1,000,000m before the comparison. The results showed that the two maps
overlapped on 69.8 % of the area of the classification map. We analyzed the sources of
error and identified five possible causes: (a) The collected dataset was unevenly distributed
across the country. (b) There were differences in the number of Sentinel-2 images that were
unevenly distributed regionally within the time interval of the study. (c). The area of forests
in the country changed rapidly. (d) The forest mask used (GlobeLand30) contained detailed
errors and misclassification of forests. (e) Resampling led to a loss of detailed information
due to the fact that the resolution of the national vegetation map was 1,000,000 m, resulting
in a loss of some detailed information about the coordinates when mapping. It is worth
mentioning that when our classification map is resampled, as the pixel point is zoomed
in, the coordinates represented by that point will also change, resulting in errors in the
subsequent comparison. Therefore, the area of error between the classification map and the
national vegetation map is within acceptable limits.

5. Conclusions

In this study, we provide a reliable framework for large-scale forest classification by
combining multi-source remote sensing images and local samples. With this framework,
we generated a forest classification map of China in 2020 with a spatial resolution of
30 m. Sentinel-1 provided the structural features, and Sentinel-2 provided the spectral and
textural features, offering discriminative features with different performances for forest
classification in different regions. Meanwhile, the locally collected samples were used
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as mapping pipelines and as training and validation sets for training, which provided
reliable data for this study. Two metrics, EVI and REPI, were constructed to add effective
features. Integrating the bands of EVI, REPI, and S2 as inputs to the grayscale matrix
yielded 252 texture features, which were combined with the structural features of S1 for
feature importance selection. Considering the computational efficiency, the first 12 bands
were selected as the final input. Finally, the features were trained and mapped using a
random forest classifier. Our mapping results can provide accurate and reliable information
on coniferous forests, broad-leaf forests, and mixed coniferous and broad-leaf forests in
China, which is beneficial to the conservation and development of Chinese forests.
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Appendix A

Appendix A.1

For more comprehensive insights, the delineation of the features can be found in
Table A1.

Table A1. Overview of the bands of S2.

Band Center Wavelength/nm Resolution/m Description

B1 443 60 Aerosols
B2 490 10 Blue
B3 560 10 Green
B4 665 10 Red
B5 705 20 Red Edge 1
B6 740 20 Red Edge 2
B7 783 20 Red Edge 3
B8 842 10 NIR

B8A 865 20 Red Edge 4
B9 940 60 Water vapor

B11 1610 20 SWIR 1
B12 2190 20 SWIR 2

QA10 10
QA20 20
QA60 60 Cloud Mask
AOT Aerosol Optical Thickness

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
http://datav.aliyun.com/portal/school/atlas/area_selector
http://datav.aliyun.com/portal/school/atlas/area_selector
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Appendix A.2

As shown in Figure A1, the macro-F1 of China is 0.8. Shanxi, Yunnan, Qinghai,
Ningxia, and Xinjiang all have higher classification accuracies, with macro-F1 values over
0.9, whereas Tianjin, Shanghai, Hong Kong, and Macao have lower macro-F1 values, which
suggests that the framework’s prediction in this region is poor. Overall, the framework’s
predictions are reliable at the national level.

Figure A1. Macro-F1 at the national and provincial levels.

Appendix A.3

Figure A2 shows a detailed comparison of the 34 provinces in China. In the southern
area of China, there are significant errors in the forest areas of Hong Kong and Macao; in
the northwest area of China, there are significant errors in the coniferous forest areas of
Qinghai Province and Ningxia; and in the eastern area of China, there are significant errors
in the broad-leaf forest areas of Jiangsu Province and the forest areas of Taiwan.
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Figure A2. The results for the 34 provinces in China were statistically compared with the data of the
national vegetation map. The provinces in different geographic regions were represented by different
wireframes.
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