
Citation: Ye, Y.; Lu, D.; Wu, Z.; Liao,

K.; Zhou, M.; Jian, K.; Li, D. Vertical

Characteristics of Vegetation

Distribution in Wuyishan National

Park Based on Multi-Source High-

Resolution Remotely Sensed Data.

Remote Sens. 2023, 15, 5023. https://

doi.org/10.3390/rs15205023

Academic Editors: Bogdan

Andrei Mihai and Marcel Torok

Received: 26 September 2023

Revised: 16 October 2023

Accepted: 17 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Vertical Characteristics of Vegetation Distribution in Wuyishan
National Park Based on Multi-Source High-Resolution
Remotely Sensed Data
Yongpeng Ye 1,2, Dengsheng Lu 1,2 , Zuohang Wu 3 , Kuo Liao 3, Mingxing Zhou 1,2, Kai Jian 1,2

and Dengqiu Li 1,2,*

1 Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University,
Fuzhou 350117, China; qsx20211164@student.fjnu.edu.cn (Y.Y.)

2 Institute of Geography, Fujian Normal University, Fuzhou 350007, China
3 Fujian Institute of Meteorological Science, Fuzhou 350001, China
* Correspondence: lidengqiu@fjnu.edu.cn

Abstract: Identifying vertical characteristics of mountainous vegetation distribution is necessary for
studying the ecological environment quality and biodiversity and for evaluating its responses to
climate change. However, producing fine vegetation distribution in a complex mountainous area
remains a huge challenge. This study developed a framework based on multi-source high-resolution
satellite images to strengthen the understanding of vertical features of vegetation distribution. We
fused GaoFen-6 and Sentinel-2 data to produce 2 m multispectral data, combined with ALOS PALSAR
digital elevation model (DEM) data, and used an object-based method to extract variables for
establishing a classification model. The spatial distribution of vegetation types in Wuyishan National
Park (WNP) was then obtained using a hierarchical random forest classifier. The characteristics of
different vegetation types along the elevation gradient and their distribution patterns under different
human protection levels were finally examined. The results show that (1) An overall accuracy of
87.11% and a Kappa coefficient of 0.85 for vegetation classification was achieved. (2) WNP exhibits
obviously vertical differentiation of vegetation types, showing four compound dominant zone groups
and five dominant belts. (3) The composition of vegetation types in the scenic area differs significantly
from other regions. The proportions of Masson pine and Chinese fir exhibit a noticeably decreasing
trend as the distance increases away from roads, while the changes in broadleaf forest and bamboo
forest are less pronounced.

Keywords: Wuyishan National Park; multi-source high-resolution remote sensing; vegetation types;
vertical gradient

1. Introduction

Mountains condense the physical geography and ecology of horizontal natural zones
due to their significant environmental gradients within a relatively small spatial range [1,2].
The altitudinal spectrum of these gradients serves as a critical indicator of climate change
and amplifies the signals of climate variations [3,4]. Accurately describing the vertical
zones of mountainous vegetation types is an effective approach to unravel the complexities
and heterogeneity of mountain environments. National parks, often situated in complex
mountainous regions, preserve pristine natural habitats with limited human interference.
They exhibit distinct vertical vegetation zones, serving as havens for biodiversity and show-
casing key ecological processes [5], and become the focus area for examining altitudinal
belts of vegetation types.

The traditional way of revealing the distribution patterns along the altitude gradient
of mountainous vegetation is through field surveys using random sampling or continuous
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transects in representative communities. It is conducive to further analyze vegetation com-
position and structure, altitudinal belts spectrum, species diversity, and their relationships
with environmental factors [6,7]. A field survey method can provide accurate species details
but exhibits low spatiotemporal continuity and requires substantial human resources. Few
field samples or transects used to represent the boundary of vegetation distribution within
the vertical zones weaken the transitional characteristics of vertical boundaries and increase
the uncertainty in quantitative analysis of mountainous vegetation spectrum structure
evolution [8]. In addition, previous research primarily focused on the delineation of vertical
boundaries for individual or few vegetation types (such as tree-line, snowline), resulting in
a very limited knowledge of the altitudinal belts across the mountains [9,10].

Remote sensing data have the advantage of wide coverage, long time series, and low
cost. With the improvement of spatial, temporal, and spectral resolutions, it provides an
effective solution for accurate vegetation classification and altitudinal belt analysis [11–13].
However, previous studies often relied on medium- or low-resolution remote sensing
data [12,14], treating forests as one category [8]. While this might be suitable for areas with
large elevation differences, complex and diverse habitats, and varied land cover types (such
as in the Qinghai–Tibet Plateau), it cannot capture the altitudinal spectrum in mountainous
zones where different vegetation types are transformed within forests. Some remote
sensing-based land cover products have subdivided forests into finer categories, such as
evergreen broadleaf forest, deciduous broadleaf forest, and evergreen coniferous forest,
improving the ability to characterize mountainous vegetation altitudinal belts. However, for
subtropical forest ecosystems with complex and diverse tree species, their ability to identify
land cover types is extremely limited. Taking the GLC_FCS30 product as an example, it
includes only three forest categories in the Wuyishan region: open evergreen broadleaf
forest, closed deciduous broadleaf forest, and closed evergreen coniferous forest [15].
Therefore, it is necessary to utilize high-resolution remote sensing data to better reveal the
altitudinal belt characteristics of vegetation in typical subtropical mountainous areas.

The development of high-resolution remote sensing technology and the availability
of high spatial resolution remote sensing data (such as Quickbird, Worldview, ZiYuan,
and GaoFen (GF) satellites) have provided new opportunities for vegetation mapping and
altitudinal belt analysis [16–18]. High spatial resolution imagery enhances the ability to
capture fine-grained surface features but exacerbates the spectral heterogeneity within
objects, leading to the “salt-and-pepper” effect in pixel-based classification methods. This
issue can be effectively addressed by segmenting the imagery into homogeneous objects,
resulting in higher classification accuracy [19–22]. It is crucial to select appropriate variables
avoiding the “curse of dimensionality” [23,24]. When dealing with a limited number of
variables, parametric classifiers such as maximum likelihood can be used for vegetation
classification [25]. Machine learning algorithms can achieve higher classification accuracy
when dealing with complex data with high-dimensional features [26–28]. However, re-
search on multi-source high-resolution remote sensing data for land cover classification
at the scale of national parks is still limited. The development of high-resolution remote
sensing technology raises the question of whether it can improve our understanding of the
complex altitudinal spectrum in mountainous areas, which is a topic of common concern
in remote sensing technology and ecological research.

Wuyishan National Park (WNP) is in the subtropical region of China with large
elevation variation. It possesses unique natural habitat conditions, preserving the zonal
vegetation of the central subtropical evergreen broadleaf forest. It also exhibits a significant
vertical gradient, with various vegetation types distributed from low to high elevations,
including evergreen broadleaf forest, mixed coniferous and broadleaf forest, coniferous
forest, and meadow. As a dual World Cultural and Natural Heritage site, WNP has
different levels of protected and utilized regions, resulting in complex ecosystem types
and altitudinal differentiation. Currently, research on the vertical gradient of vegetation in
WNP is mostly based on field investigations, focusing on the composition, structure, and
biodiversity of specific vegetation communities [29]. Most of these studies were conducted
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several decades ago and lack spatially continuous distribution information [30,31]. Remote
sensing-based research in WNP primarily focuses on vegetation cover, landscape pattern
analysis, ecological quality assessment [32], and the utilization of time series data for
analyzing spatial patterns of vegetation changes and monitoring treeline dynamics in
response to climate change [33–35]. The spatially continuous distribution characteristics
of vegetation types along the vertical gradient in WNP are yet to be investigated. This
study integrates GF-6 and Sentinel-2 images, uses an object-based hierarchical random
forest classifier for vegetation mapping in WNP, and identifies the vertical distribution
pattern of each vegetation type. Specifically, our main objective is to explore the vertical
distribution patterns of vegetation types in WNP, assess the significance of differences in
vertical distribution patterns among different vegetation types, and investigate the impact
of human protections on the vertical characteristics of vegetation distribution.

2. Study Area

WNP is located in the northern part of Fujian Province (Figure 1a). The area is
1001.41 km2 and the elevation ranges from 171 m to 2161 m. This region has a typical
subtropical monsoon climate with average annual temperature of 18 ◦C and annual precip-
itation of 1684–1780 mm. A total of 2799 plant species have been recorded in this park [36].
Besides the typical zonal evergreen broadleaf forest, this park also features warm temperate
coniferous forest, subtropical coniferous forest, mixed forest, bamboo forest, shrub, grass,
and meadows. 
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Figure 1. The location of WNP and samples used for classification (background image: Sentinel-
2, composite bands: R: Band 4, G: Band 3, B: Band 2) (a), the boundaries of different subregions
within the park (b), and main roads, peaks, and associated geographical names with DEM (c). Plots
1©– 5© show the vegetation in different areas and at different elevations captured using drones and

smartphones. Plots 1© and 2© depict the distribution of broadleaf and bamboo forests on slopes
near roads and residential areas. Plot 3© captures broadleaf forests, while Plot 4© showcases Chinese
fir and tea plantations, providing a comparison of vegetation landscapes in different subregions
at similar elevation. Plot 5© visually presents the unique vegetation distribution in the scenic area,
clearly showing the presence of tea plantations and non-vegetated areas (bare rocks and mudflats),
among others.
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The northwest region of WNP was established as the National Nature Reserve in 1979
and the southeast region was established as scenic area in 1982. Both combined areas were
successfully listed as a World Natural and Cultural Heritage site in 1999. In 2021, WNP
was designated as one of the initial batches of national parks established in China. Based
on the historical evolution of protective measures and research contents, WNP was divided
into five subregions (Figure 1b), with variations in protective measures as shown in Table 1.

Table 1. Five subregions under different protection measures in Wuyishan National Park.

Code Regions Protection Measures Area (km2) Elevation
Range (m)

Average
Elevation (m)

Standard
Deviation of
Elevation (m)

A1 Core Area of
Nature Reserve

Strict protection, only allowing
scientific research activities 329.05 297–2155 1175.65 359.30

A2
Experimental

Area of Nature
Reserve

Strict protection, only allowing
scientific research, teaching

internships, and similar activities
89.06 404–1655 915.50 232.28

A3 Buffer Area of
Nature Reserve

Strict control, allowing scientific
experiments, teaching internships,

tourism, and similar activities
159.85 421–1927 1190.60 310.68

A4 Ecological
Protection Area

Strict control, allowing ecological
restoration and scientific research

and education, with limited
tourism development

424.14 200–1864 812.20 325.29

A5 Scenic Area

General, allowing planned
production activities and

infrastructure construction that
comply with regulations

64.09 171–724 288.67 89.20

3. Data and Methods

The framework of this study consisted of three main parts (Figure 2): (1) Data acquisi-
tion and collection; (2) Fine classification of vegetation types based on GF-6 panchromatic
band and Sentinel-2 multispectral bands; (3) Analysis of altitudinal belts of vegetation
types in WNP.
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Figure 2. Framework for studying the vertical characteristics of vegetation distribution in Wuy-
ishan National Park (GF-6, PAN, and MSI indicate GaoFen-6, panchromatic, and multispectral
instrument, respectively).
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3.1. Dataset and Preprocessing
3.1.1. Sample Data Collection and Classification System Design

A total of 957 samples were collected through field surveys in April and August
2021. We collected the samples by drawing polygons on the fused images of GF-6 and
Sentinel-2 and Google Earth based the vegetation type labels from the field surveys. All
the samples used to train and test the classification model are in polygon forms. The classi-
fication system was designed with a total of 11 vegetation categories, including Masson
pine (Pinus massoniana) (60 samples), Chinese fir (Cunninghamia lanceolata) (117 samples),
other coniferous forests (53 samples), mixed coniferous and broadleaf forest (80 samples),
broadleaf forest (73 samples), bamboo forest (119 samples), shrubland (11 samples), grass-
land (11 samples), farmland (110 samples), tea plantation (102 samples), and non-vegetated
lands (221 samples). There are very limited areas of grassland and shrubland in WNP
and few samples were collected. Masson pine and Chinese fir are the main timber tree
species in southern China and are distributed in and around WNP. Other coniferous forests
mainly include southern hemlock (Tsuga chinensis var. tchekiangensis) and Huangshan pine
(Pinus hwangshanensis). Broadleaf forest mainly includes Castanopsis eyrei (Castanopsis
eyrei), Castanopsis carlesii (Castanopsis carlesii), Schima superba (Schima superba), and other
broadleaf tree species widely distributed in WNP. Bamboo forest includes Moso bamboo
(Phyllostachys edulis), dwarf bamboo (Oligostachyum oedogonatum), and Yushan bamboo
(Yushania wuyishanensis). Shrub mainly grows in areas with poor site conditions or at
higher altitudes. Grassland mainly includes artificially managed grasslands and natural
grasslands. Farmland includes cultivated land with crops and fallow land. Non-vegetated
mainly includes tidal flats, rocks, bare soils, impervious surface areas, and water bodies.
These samples were divided into training and validation sets using stratified random
sampling with a ratio of 6:4.

3.1.2. Collection and Preprocessing of Remotely Sensed Data

The study area experiences frequent cloud cover and rainfall, making it difficult to
obtain high-quality optical sensor imagery that matches the time of the field surveys. We
collected GF-6 and Sentinel-2 images, and ALOS PALSAR DEM (Table 2). The vegetation
types in the study area are relatively stable between field survey and remote sensing data.
The GF-6 panchromatic (PAN) band has a spatial resolution of 2 m, and four bands of
Sentinel-2 L1C products have a spatial resolution of 10 m, while the remaining bands
with 20 m were resampled to the same spatial resolution using the Sen2Res method [37].
Several preprocessing steps including orthorectification, radiometric calibration, and atmo-
spheric correction were performed. The Gram–Schmidt method [38] was used to integrate
Sentinel-2 multispectral bands and GF-6 PAN band to gain improved spatial resolution of
multispectral bands.

Table 2. Main data sources and related information.

Data Source Spatial Resolution Acquire Time

High-resolution data GF-6 Panchromatic band: 2 m 22 November 2019

Multispectral data Sentinel-2 Blue, Green, Red, NIR bands: 10 m
Other bands used: 20 m 13 December 2019

Terrain data ALOS PALSAR DEM 12.5 m \

3.2. Vegetation Classification Based on the Fused Remotely Sensed Data

When high spatial resolution images were used for vegetation classification, previous
research has indicated that the object-based classification methods performed better than
pixel-based methods [39]. The segmentation was performed using the multi-resolution seg-
mentation algorithm in eCognition software (version 9.0.1). The segmentation parameters
were determined through iterative experiments and finally set as follows: scale parameter
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of 250, shape of 0.1, and compactness of 0.5. A total of 4,151,112 objects were obtained
with an average area of 660.72 m2. A total of 26 variables were extracted based on the
segmentation objects, including spectral bands from the fused image (10 bands); texture
variables computed from the gray-level co-occurrence matrix (GLCM) (homogeneity, con-
trast, dissimilarity, entropy, angular second moment, mean, standard deviation, correlation);
geometric features calculated from the segmentation objects (length/width, asymmetry,
compactness, density, shape index);and elevation, slope, and aspect derived from ALOS
PALSAR DEM data.

Too many variables used for vegetation classification cannot guarantee an improved
classification performance, especially in the complex landscapes under investigation and
insufficient training samples. Therefore, it is necessary to optimize the feature set for differ-
ent vegetation types. We adopted a modified hierarchy classifier based on an automated
optimization of tree structure and variables using the Z-score algorithm [40]. A cyclic
iteration process was employed to obtain the optimal set of variables for each hierarchical
node. In comparison to the overall optimal variable selection approach of random forest,
the hierarchy method selects the optimal variable combinations for each hierarchical node.
The classification result was evaluated using overall accuracy, Kappa coefficient, producer’s
accuracy (PA), and user’s accuracy (UA).

3.3. Characterizing Distribution Patterns of Vegetation Types
3.3.1. Vertical Distribution Patterns of Vegetation Types

The areal proportions of different vegetation types were extracted at various elevations,
constructing a vertical gradient of vegetation types. Considering the disparity of spatial
resolution between the ALOS PALSAR DEM data (12.5 m) and the vegetation classification
results (2 m), the elevation range was divided into 50 m intervals, named as vertical zones,
and the areal proportions of vegetation types within each 50 m zone were calculated to
obtain the altitudinal belts of vegetation types. The difference test was used to evaluate
the vertical distribution differences among vegetation types. The Wilcoxon signed-rank
test was employed to examine the statistical significance considering its ability to tackle the
abnormal data distribution [7]. The calculated cumulative sums of areal proportions with
vertical zones were used for a difference significance test to ensure consistency between the
orders of altitudinal belts for each vegetation type.

Based on previous research [8], the distribution of upper/lower limits, core distribution
zone, main distribution zone, dominant belt, and compound dominant zone (Table 3) were
adopted to describe the vertical structure and composition characteristics of vegetation
types. By examining the relationships within the dominant belt, compound dominant zone,
and compound dominant zone group (combination of adjacent compound dominant zones),
the internal relationships of the vegetation altitudinal belts were elucidated. Additionally,
compound dominant zones and compound dominant zone groups were named based on
their elevation ranges (e.g., low-elevation compound dominant zone group, high-elevation
compound dominant zone) to succinctly express potentially transitional relationships
among vegetation types in the altitudinal belts spectrum.

Table 3. Definitions of terminology for describing vertical distribution of vegetation types.

Terms Definitions Determination Method

Distribution of Upper/Lower Limits
The elevation at the highest and lowest
zones where a vegetation type exhibits

continuous distribution.

The highest elevation where the type
appears within a zone represents the upper

limit, whereas the lowest elevation
represents the lower limit of the

distribution for that type.
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Table 3. Cont.

Terms Definitions Determination Method

Core Distribution Zone

The number of vertical zones occupied
by the type is less than one-third of the
total number of vertical zones within its

distribution range, and the areal
proportion of the type’s distribution

within these zones is more than
two-thirds of the total distribution area

for that type.

Starting from the elevation zone with the
highest proportion of the vegetation type’s

area, the core distribution zone extends
equally in both directions (upward and

downward) in terms of area ratio. When
the cumulative areal proportion of the type
reaches more than two-thirds, the vertical
distribution range is defined as the core

zone (core distribution range) for that type.
The number of vertical zones within the

core zone should be less than one-third of
the total number of vertical zones occupied

by the type.

Main Distribution Zone

The vertical zones where the vertical
distribution area of the vegetation type

accounts for more than two-thirds of
the total area of that type while lacking
core distribution zone within its vertical

distribution range.

Starting from the vertical zone with the
highest proportion of the vegetation type’s

area, the main distribution zone extends
equally in both directions (upward and

downward) based on area ratio. When the
cumulative areal proportion of the type

reaches more than two-thirds, the vertical
distribution range of that type is defined as

the main distribution range.

Dominant Belt One vegetation type accounts for more
than two-thirds of the zone’s area.

The proportion of a specific vegetation
type’s distribution area within a vertical

zone exceeds two-thirds of that zone’s area.

Compound Dominant Zone

It is characterized by two or more
vegetation types, with the name based

on the proportion of their respective
distribution areas.

No single vegetation type dominates a
vertical zone (the proportion does not reach

more than two-thirds of the area).
Vegetation types with a combined

proportion exceeding two-thirds are
selected in descending order based on their
areal proportions, and the zone is named

after these dominant types.

3.3.2. Impact of Human Factors on Vegetation Type Distribution

Protection measures are important indicators for quantifying human disturbances
to vegetation. We examined the differences of vegetation vertical distributions among
five distinct areas under different protective measures (Table 1). The proportion cumulative
sum of each vegetation type’s area in each subregion was calculated and the significance
of their differences was calculated using the Wilcoxon signed-rank test. In addition, we
performed separate tests for each vegetation type’s areal proportion across vertical zones in
each region to reveal the differences in vertical distribution patterns of various vegetation
types within different levels of protected areas.

Although the five subregions are all under protection, human activities related to
production and livelihood (such as tree planting and logging, cultivation of farmland
and tea plantation, and expansion of construction areas) can lead to changes in vegeta-
tion types. These activities can alter the spatial and vertical distribution of vegetation
types. Considering these human activities are closely related to the roads, we utilized
OpenStreetMap data and remote sensing imagery to produce a major roads map of WNP
(Figure 1c). The Euclidean distance between each pixel within WNP and the nearest road
was calculated, resulting in the spatial distribution of the nearest road distance. To ensure
relative consistency in the number of pixels between different intervals, the road distance
was reclassified using a quantile method. The proportions’ cumulative sum of different
vegetation types within road distance intervals were then statistically analyzed using the
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Wilcoxon signed-rank test, to determine whether there were significant differences across
road distance intervals.

4. Results
4.1. Analysis of Classification Results

The error matrix (Table 4) shows that an overall classification accuracy of 87.11%
with a Kappa coefficient of 0.85 was obtained. The highest classification accuracy was for
other coniferous forests and non-vegetated lands, while the lowest accuracy was for mixed
coniferous and broadleaf forest. Confusion mainly occurs among Masson pine, Chinese
fir, other coniferous forests, and mixed coniferous and broadleaf forest. The accuracy of
bamboo forest was relatively high, with both PA and UA exceeding 91%.

Table 4. Classification accuracy and area statistics for each vegetation type.

MP CF OC MCB BL BB SL GL FL TP NV Total

MP 17 2 19
CF 1 43 2 4 2 52
OC 1 21 22

MCB 3 2 1 21 1 1 29
BL 1 1 5 24 2 2 35
BB 1 1 44 2 48
SL 4 1 5
GL 3 3
FL 40 1 1 42
TP 1 1 2 1 2 33 40
NV 2 3 88 93

Total 24 47 22 31 30 48 5 5 45 41 90 388

PA (%) 70.8 91.5 95.5 67.7 80.0 91.7 80.0 60.0 88.9 80.5 97.8
UA (%) 89.5 82.7 95.5 72.4 68.6 91.7 80.0 100.0 95.2 82.5 94.6

Area (km2) 12.8 60.3 50.8 265.5 435.0 156.4 1.1 0.3 7.0 53.2 23.9
Area Percentage (%) 1.2 5.7 4.8 24.9 40.8 14.7 0.1 0.03 0.7 5.0 2.3

Notes: MP: Masson pine; CF: Chinese fir; OC: Other coniferous forests; MCB: Mixed coniferous and broadleaf
forest; BL: Broadleaf forest; BB: Bamboo forest; SL: Shrubland; GL: Grassland; FL: Farmland; TP: Tea plantation;
NV: Non-vegetated lands.

Analysis of the classification result (Figure 3) indicates that forest area accounts for 91%
of the national park area, with broadleaf forest, mixed coniferous and broadleaf forest, and
bamboo forest the dominant forest types. The vegetation types relating to human activities
(such as Masson pine, Chinese fir, farmland, and tea plantation) accounts for approximately
12.5% of the total park area. Non-vegetated areas account for approximately 2.25% of the
total area. Masson pine and Chinese fir are mainly located in the southeastern part of the
national park, while other coniferous forests are found in the western and northern parts
of the park. Mixed coniferous and broadleaf forest, broadleaf forest, and bamboo forest
are widely distributed throughout the entire national park. Farmland and tea plantation
are mainly concentrated on both sides of the main road. Non-vegetated areas are mainly
located at high-elevation mountain tops and steep cliffs, as well as internal roads and
residential areas. Shrubland and grassland are relatively scarce and sparsely distributed
within the national park.
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Figure 3. Spatial distribution of vegetation types in Wuyishan National Park.

4.2. Vertical Characteristics of Vegetation Distribution in Wuyishan National Park

The distribution of Masson pine and Chinese fir extends over a wide range of altitudes,
but primarily in the low-elevation zones (200–500 m and 200–600 m). Other coniferous
species are mainly distributed in the range of 1300–1750 m, exhibiting higher main distri-
bution zone and narrower vertical distribution range than Masson pine and Chinese fir
(Figure 4 and Table 5). Mixed coniferous and broadleaf forest, broadleaf forest, and bamboo
forest have similar vertical distribution ranges. However, the main distribution zone of
mixed coniferous and broadleaf forest (200–1400 m) has a higher upper boundary than the
other two vegetation types (200–1000 m, 200–1050 m). The mixed coniferous and broadleaf
forest exhibits two peaks around the 500 m and 1400 m zones (Figure 4).
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Figure 4. The vertical distribution range and significance of differences in the distribution patterns
among vegetation types. (Significances of differences between vegetation types in vertical distribution
patterns are represented by labeling letters. If the labels of two vegetation types contain any of the
same letter, it indicates a non-significant difference between the two vegetation types; otherwise, a
significant difference exists between the two vegetation types in the vertical distribution. For example,
the difference test between Masson pine and Chinese fir is significant, because they do not share the
same letter, but it is non-significant between Masson pine and grassland, since they share the same
letter b.)
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Table 5. The vertical distribution range and core and main distribution zones for each vegetation type.

Vegetation Types Distribution Upper/Lower
Limits (m) Core Distribution Zone (m) Main Distribution Zone (m)

Masson pine 200–1450 / 200–500
Chinese fir 200–1950 / 200–600

Other coniferous forests 1300–2150 / 1300–1750
Mixed coniferous and

broadleaf forest 200–1950 / 200–1400

Broadleaf forest 200–1950 / 200–1000
Bamboo forest 200–2000 / 200–1050

Shrubland 900–2200 / 2150–2200
Grassland 200–1750 200–300 /
Farmland 200–1650 200–350 /

Tea plantation 200–1750 / 200–450
Non-vegetated lands 200–2200 / 200–450

Non-forest vegetation types exhibit distinct polarization in their vertical distribution.
Shrubland is predominantly concentrated in high-altitude areas, with the core distribution
zone (2150–2200 m) spatially corresponding to the summit area of Huanggang Mountain
(the highest peak in WNP). Grassland, farmland, and tea plantation share a similar vertical
distribution range. Grassland and farmland have core distribution zones (200–300 m,
200–350 m) concentrated in low-altitude areas, while tea plantation has a higher and more
dispersed distribution range, with the main distribution zone at 200–450 m. Non-vegetated
area shows the widest range of vertical distribution (spanning across all vertical zones),
with the main distribution zone concentrated in low-altitude areas (200–450 m).

The Wilcoxon signed-rank test showed that there are significant differences in the
vertical distribution between coniferous forest types and broadleaf forest, and both Masson
pine, Chinese fir, and other coniferous forests exhibit significant differences in vertical
distribution range (Table 5) and distribution patterns (Figure 4) compared to broadleaf
forest and bamboo forest. The three coniferous forest types, Masson pine, fir, and other
coniferous forests, also show significant differences in distribution between them. Other
coniferous forests show non-significant differences compared to shrubland. Farmland,
tea plantation, and non-vegetated, which are directly influenced by human activities,
demonstrate significant differences in their vertical distribution patterns compared to
species such as other coniferous forests, mixed coniferous and broadleaf forest, broadleaf
forest, and bamboo forest. However, their vertical distribution patterns do not significantly
differ from those of Masson pine and Chinese fir.

There are transitional zones among different vegetation types along the vertical gradi-
ent according to the dominant belts and compound dominant zones (Table 5 and Figure 5).
The transitional zones are observed in the entire vertical gradient, with four compound
dominant zones and five dominant belts appearing alternatively. There is an obvious tran-
sitional relationship among vegetation types within the compound dominant zone groups.
In the low-elevation range of 200–600 m, the compound dominant zone is dominated by
non-vegetated areas, farmland, tea plantation, Chinese fir forest, and broadleaf forest in
sequence. In the mid-elevation range (900–1350 m), a compound dominant zone appears
with a dominance of broadleaf forest, bamboo forest, and mixed coniferous and broadleaf
forest. In the mid-high elevation range (1550–1600 m), a compound dominant zone emerges
with a dominance of mixed coniferous and broadleaf forest, broadleaf forest, and other
coniferous forests.
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Figure 5. The areal proportion of each vegetation type in different vertical zones, and compound
dominant zones and altitudinal belts (represented by letters as follows: A: low-elevation compound
dominant zone group; B: dominant belt of broadleaf forest; C: mid-elevation compound dominant
zone group; D: dominant belt of mixed coniferous and broadleaf forest; E: mid-high elevation
compound dominant zone group; F: dominant belt of other coniferous forests; G: high-elevation
compound dominant zone; H: dominant belt of non-vegetated areas; I: dominant belt of shrubland).

4.3. Influence of Human Factors on the Vertical Characteristics of Vegetation Distribution
4.3.1. Vegetation Distribution in Five Subregions under Different Protection Levels

There are differences in the proportions of vegetation types among the five subregions
(Table 6), but none of them reach a significant difference. The dominant vegetation types
in the Nature Reserve (including core area, experimental area, and buffer area) are other
coniferous forests, mixed coniferous and broadleaf forest, broadleaf forest, and bamboo
forest. The core area and buffer area have similar areal proportions of vegetation types,
but the experimental area has a significantly higher proportion of bamboo forest and
tea plantation. The proportions of Chinese fir and tea plantation increase successively
from the Nature Reserve to the ecological protection area and scenic area. The vegetation
composition in the scenic area differs from other regions, with a higher proportion of
Masson pine, Chinese fir, tea plantation, and non-vegetated area.

Table 6. Areal proportions of vegetation types in five subregions of Wuyishan National Park (%).

MP CF OC MCB BL BB SL GL FL TP NV

Core Area (A1) 0.14 0.30 10.62 33.14 43.19 10.60 0.23 0.00 0.18 0.75 0.86
Experimental Area (A2) 0.04 0.44 7.22 41.92 35.97 12.58 0.17 0.00 0.03 0.80 0.82

Buffer Area (A3) 0.14 1.43 0.06 21.77 37.66 33.96 - 0.01 0.09 3.06 1.82
Ecological Protection Area (A4) 1.52 10.80 1.01 15.91 45.41 16.57 0.01 0.03 0.65 6.33 1.75

Scenic Area (A5) 8.94 17.95 - 3.94 14.32 1.33 - 0.24 5.48 31.01 16.78

Notes: MP: Masson pine; CF: Chinese fir; OC: Other coniferous forests; MCB: Mixed coniferous and broadleaf
forest; BL: Broadleaf forest; BB: Bamboo forest; SL: Shrubland; GL: Grassland; FL: Farmland; TP: Tea plantation;
NV: Non-vegetated.

The Wilcoxon signed-rank test on the cumulative sum of areal proportion for each
subregion showed that the five subregions exhibit variations in the vertical distribution
of each vegetation type, with a total of 83 significant difference in all vegetation types
and regions. There are discrepancies in the cumulative frequency of vertical distribution
differences among the five subregions (Figure 6). The scenic area exhibits the largest
differences in vertical distribution patterns and shows significant differences in 36 instances
across nine vegetation types. The core area, experimental area, and ecological protection
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area have 34, 35, and 33 instances of significant differences, respectively, and the buffer
area has 28 instances of significant differences. Vegetation types also exhibit varying
frequencies of significant differences among different regions. Masson pine shows no
significant difference among the five subregions, representing the category with the lowest
frequency of distinct differences of vertical distributions.
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Figure 6. Significant analysis results of vertical distribution differences among different vegetation
types in regions of different protection levels (a–k represent the p-values of significant analysis
for each type; subplot l represents the cumulative matrix of significant differences, which is the
cumulative number of significant differences in the test results displayed in a–k). A1–A5 represent
five regions: A1: Core Area of Nature Reserve; A2: Experimental Area of Nature Reserve; A3: Buffer
Area of Nature Reserve; A4: Ecological Protection Area; A5: Scenic Area.

4.3.2. Vegetation Distribution with Road Distance

The proportion of each vegetation type varies with road distance increases, and there
are differences in the sequence of changes in proportion among different types (Figure 7).
The areas of Masson pine and Chinese fir show a decreasing trend with increasing road
distance. The proportions of broadleaf forest and bamboo forest show little change along
the road distance. Mixed coniferous and broadleaf forest, as well as other coniferous
forests, exhibit significant changes in proportions across different intervals, but they do
not show a clear gradient with increasing road distance. The areal proportions of all non-
forest types (such as grassland, farmland, tea plantation, and non-vegetated areas) show
a decreasing trend with increasing road distance. There are significant differences in the
trends between most types (p < 0.05), except for the pairs of Masson pine—Chinese fir,
Masson pine—non-vegetated, Chinese fir—non-vegetated, grassland—farmland, and tea
plantation—non-vegetated (Figure 7).
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5. Discussion
5.1. Fine Classification of Vegetation Types Based on High-Resolution Remotely Sensed Data

Compared to traditional field surveys, combining remote sensing and GIS techniques
can help better understand the vertical spatial patterns of vegetation distribution in moun-
tainous areas. Previous studies have generally described the altitudinal spectrum in WNP
as a transition from evergreen broadleaf forest to mixed coniferous and broadleaf forest,
coniferous forest, elfin wood, and alpine meadows [36]. However, these studies lack
detailed descriptions of the spatial distribution of specific tree species and the elevation
ranges of transitional zones between different distribution belts. In this study, we refined
the vertical distribution of vegetation types in WNP from low to high elevation and intro-
duced compound transitional zone groups between various vertical zones (e.g., adding
a low-altitude compound transitional zone before the dominant belt of broadleaf forest,
including species such as Chinese fir), which enables an accurate description of the transi-
tion relationships between different vegetation types across vertical zones. High spatial
resolution remote sensing data have the potential to provide fine classification results of
vegetation types [41,42].

The diversity and complexity of mountainous vegetation types pose challenges for tra-
ditional vegetation mapping based on medium- or low-resolution remote sensing data [43].
The fine-grained features offered by high-resolution data have improved the issue of mixed
pixels caused by heterogeneity among vegetation types. This enables the extraction of
major vegetation types in mountainous areas and allows for a detailed characterization of
their vertical distribution characteristics [44]. However, the vertical distribution patterns
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of vegetation types in mountainous areas based on remote sensing vegetation mapping
results often rely on low-resolution classification products, which generally have only a
very limited number of categories and reduce the applicability of analyzing the vertical
differentiation patterns of complex mountainous vegetation landscapes [45]. This study
identified some important tree species, such as Masson pine and Chinese fir, as well as
farmland and tea plantation, by integrating Sentinel-2 and GF-6 data. It contributes to
a better understanding of the vertical distribution patterns of vegetation types in moun-
tainous areas. The PA and UA of Masson pine and Chinese fir are all greater than 70%.
Furthermore, the classification accuracies of broadleaf forest, bamboo forest, and other
types are higher than or comparable to those reported in previous studies [46–48]. We did
not further subdivide broadleaf forest in this study, which limited the analysis of vegetation
vertical differentiation patterns. The limited number of samples for different tree species
and the capability of high-resolution multispectral data to identify tree species are key
limiting factors for achieving fine-scale tree species recognition. With the advancement of
satellite and airborne hyperspectral remote sensing, as well as the availability of a large
number of tree species training samples and high-resolution DEM obtained from near-
surface remote sensing such as an unmanned aerial vehicle (UAV), it becomes possible to
achieve finer-scale tree species classification [49–51].

5.2. Vertical Characteristics of Vegetation Distribution in Wuyishan National Park

By leveraging the advantages of remote sensing technology in achieving spatially
realistic analysis and combining the concept of “space-for-time substitution” commonly
used in ecology, the spatial differences in the vertical distribution of vegetation types
can provide insights into forest dynamics [52,53]. For example, the distribution peak of
mixed coniferous and broadleaf forest at lower elevations indicates the change trend from
Masson pine and Chinese fir to mixed coniferous and broadleaf forest [54]. Additionally,
the similarities in vertical distribution (upper and lower limits and main distribution belts)
between bamboo forest and broadleaf forest provide evidence for the competitive relation-
ship between two vegetation types [55,56]. This study provided a detailed characterization
of the vegetation altitudinal spectrum in WNP. Previous studies indicated that tree lines in
different regions have been shifting upwards due to the influence of climate change and
land-use changes caused by human activities [57–59]. Comparing the vertical distribution
of major tree species in the 1980s [36], the upper limits of major tree species except bamboo
forest in WNP have risen, with an elevation range of approximately 300–500 m (Table 7).
This is larger than a previous study that reported the tree line moving upward by about
100 m due to increased average temperatures in WNP [34]. Considering the advantages
of remote sensing technologies in obtaining vegetation types over field surveys, more
research is needed to validate the vertical gradient changes. Bamboo forest did not show
a significant change in the vertical distribution range. It might be due to insensitivity to
the increased temperature, because the potential distribution of bamboo forest in China
showed a tendency to contract inland and expand southwestward [60], and also decreased
in northern China and other regions [61,62].

Table 7. Comparison of vertical distribution ranges of major forest types with historical data.

Vegetation Type 1980s (m) [36]
2019 (This Study)

Distribution Upper Limit/
Lower Limit (m) Main Distribution Zone (m)

Masson pine 200–1100 200–1450 200–500
Chinese fir 500–1400 200–1950 200–600

Other coniferous forests Southern hemlock 1500–1800
Huangshan pine 1200–1900 1300–2150 1300–1750

Mixed coniferous and broadleaf
forest 500–1700 200–1950 200–1400

Broadleaf forest 350–1400 200–1950 200–1000
Bamboo forest 200–2158 200–2000 200–1050
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5.3. Influences of Human Activities on Vertical Distribution of Vegetation Types

The vertical distribution of vegetation types in five different protection-level sub-
regions reflects the roles of human activities and highlights the horizontal distribution
patterns from the periphery to interior of the national park. Specifically, the areal propor-
tions of vegetation types related to human activities (such as Chinese fir and tea plantation)
show a decreasing trend along the horizontal gradient from the outer to the inner areas of
the national park. This horizontal gradient of human disturbance-induced changes also
contributes to the differences in vertical distribution patterns among different regions. For
example, the scenic area exhibits more pronounced variations in the vertical distribution
of vegetation types than the ecological and natural protection areas. Fan et al. [33] found
that conservation measures effectively preserved the initial spatial pattern of vegetation
coverage in WNP. Muise et al. [63] proved significant differences in forest structural at-
tributes (such as height, coverage, and biomass) between protected and unprotected areas
in the network of protected areas in British Columbia, Canada. However, we still know
very little about the vertical distribution change patterns in these complicated mountainous
ecosystems. The gradient and zonal changes of vegetation types along the periphery to
the interior of WNP highlight the unique research value of examining the effects of zoning
and hierarchical conservation management on the distribution of vegetation types in the
national park.

The various change trends of vegetation types with road distance partially indicate
that their distribution is influenced by human factors. Historically, considering the value
of bamboo in timber, textiles, and food, some studies have found that human activities
influence the spatial distribution of bamboo forest, leading to the so-called “invasion
phenomenon” [64,65]. Our study found that bamboo forests are more distributed along
the roadsides from Tongmu in the north to Guanping and in the south to Huangkeng
(Figure 1c). These bamboo forests appear near the foothills along roads and residential
areas and show the transition to broadleaf forest or mixed coniferous and broadleaf forest
as elevation increases. However, it should be noted that bamboo forest exhibited a con-
sistent distribution pattern as broadleaf and did not show significant changes along the
distance from roads. It suggests that bamboo forest are not significantly affected by human
influences, because they may have formed as a stable vegetation community type following
the early destruction of existing broadleaf or coniferous forests. The differences in the areal
proportions of vegetation types along road distance may have distinct underlying causes.
Due to the multifaceted drivers of spatial distribution in vegetation types, the gradient
changes may not be solely influenced by a single factor such as elevation or human factors.
Within nature reserves, these influences may result from past large-scale afforestation
activities and the current strict management measures [66,67]. For example, the similar
changes trend between Masson pine and Chinese fir can be attributed to the fact that both
are heavily influenced by human activities and exhibit close spatial proximity to each other
(Figure 5). In addition, the areal proportions of mixed coniferous and broadleaf forest, other
coniferous forests, and shrubland with the road distances showed similar change trends to
elevation, indicating that there were similar factors influencing the change patterns of the
horizontal gradient. The comprehensive analysis of road distance and DEM data reveals a
similar trend of increasing elevation and then decreasing along the road distance, indicating
that elevation factors partially influence the areal proportional distribution of each type
along the road distance. This suggests that there may be a certain degree of relationship
between the observed vertical distribution characteristics and the distribution patterns
influenced by human activities. Separating the effects between these factors is one of the
future research goals to deepen our understanding.

6. Conclusions

This research employed a modified hierarchy-based classifier based on the fused
high-resolution remotely sensed data to produce the spatial distribution of vegetation types
and then examined vertical characteristics of vegetation distributions in WNP. Our results
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show that (1) the classification results accurately depict the vegetation distribution, with
an overall accuracy of 87.11% and Kappa coefficient of 0.85. The forests account for 91%
of the total area in this park, with broadleaf forest, mixed coniferous and broadleaf forest,
and bamboo forest being the predominant types; (2) Vegetation types show significant
differences in vertical distribution with defined four compound dominant zone groups
and five dominant belts; (3) There are variations in the areal proportions and vertical
distribution characteristics of vegetation types in different subregions. The vegetation
composition in the scenic area differs significantly from other subregions. The frequency
of vertical distribution differences also varies among different vegetation types, with non-
vegetated areas exhibiting the highest frequency of significant differences. The proportions
of various vegetation types change with the distance from the road, and there are variations
among different types (except for two pairs of types). The proportions of Masson pine and
Chinese fir show a noticeable decreasing trend, while the changes in broadleaf forest and
bamboo forest are less pronounced. This study presents a new means and perspective for
understanding vertical vegetation distributions in a typical mountainous ecosystem, which
will have positive implications for future environmental management in national parks or
protected zones.
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