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Abstract: According to current research, machine learning algorithms have been proven to be
effective in detecting both optical and non-optical parameters of water quality. The use of satellite
remote sensing is a valuable method for monitoring long-term changes in the quality of lake water.
In this study, Sentinel-2 MSI images and in situ data from the Dianshan Lake area from 2017 to
2023 were used. Four machine learning methods were tested, and optimal detection models were
determined for each water quality parameter. It was ultimately determined that these models could
be applied to long-term images to analyze the spatiotemporal variations and distribution patterns
of water quality in Dianshan Lake. Based on the research findings, integrated learning algorithms,
especially CatBoost, have achieved good results in the retrieval of all water quality parameters.
Spatiotemporal analysis reveals that the overall distribution of water quality parameters is uneven,
with significant spatial variations. Permanganate index (CODMn), Total Nitrogen (TN), and Total
Phosphorus (TP) show relatively small interannual differences, generally exhibiting a decreasing
trend in concentrations. In contrast, chlorophyll-a (Chl-a), dissolved oxygen (DO), and Secchi Disk
Depth (SDD) exhibit significant interannual and inter-year differences. Chl-a reached its peak in 2020,
followed by a decrease, while DO and SDD showed the opposite trend. Further analysis indicated
that the distribution of water quality parameters is significantly influenced by climatic factors and
human activities such as agricultural expansion. Overall, there has been an improvement in the
water quality of Dianshan Lake. The study demonstrates the feasibility of accurately monitoring
water quality even without measured spectral data, using machine learning methods and satellite
reflectance data. The research results presented in this paper can provide new insights into water
quality monitoring and water resource management in Dianshan Lake.

Keywords: machine learning; water quality parameters; spatiotemporal distribution; Dianshan Lake;
Sentinel-2

1. Introduction

The effective provision of water resources is closely intertwined with the progress of
cities, ecological equilibrium, and economic prosperity [1,2]. Inland water bodies such as
lakes are vital in maintaining ecological balance, supporting industrial production, and
ensuring human well-being [3,4]. However, in recent years, the compounded impacts of
human activities and climate change have posed severe threats to the ecological equilibrium
of water bodies, resulting in intensified global freshwater eutrophication and deterioration
of water quality [2,5]. Against this backdrop, the effective assessment of lake water quality
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is paramount in maintaining ecosystem stability. This evaluation relies on key nutrient
indicators, namely, Chl-a, TP, TN, SDD, and CODMn [6–8]. Chl-a, a primary pigment in
phytoplankton, functions as a biomarker for phytoplankton biomass, thereby significantly
influencing the overall health of the ecosystem [9]. SDD, quantified using the Secchi disk
transparency method, provides insights into the nutrient status of the lake and assumes a
critical role in monitoring water quality [3,10,11]. Elevated levels of TN and TP serve as
indicators of potential eutrophication concerns [12,13]. The measurement of DO, which is
closely correlated with Chl-a, plays a pivotal role in evaluating water quality and its impact
on aquatic life [14,15]. The proper management and interpretation of these key indicators
are imperative for ensuring sustainable water resource management and safeguarding the
delicate balance of lake ecosystems [16].

Traditional water quality monitoring involves manual in situ sampling and lab anal-
ysis, providing accurate data but with limited spatial coverage and efficiency. Unlike
time-consuming conventional techniques, satellites offer high-frequency, wide-ranging,
and long-term water quality data, thus overcoming limitations [4,17–21]. Specialized water-
color satellites have been developed for aquatic environments and are widely used [22,23].
However, lakes smaller than 100 sq. km constitute 63% of the total lake area [24]. Due
to watercolor satellites’ relatively low spatial resolution, smaller lakes may not be fully
monitored. In contrast, Landsat and Sentinel satellite data have higher spatial resolution
and are more suitable for monitoring small inland water bodies [18,25,26]. Some studies
have effectively employed Sentinel-2 and Landsat imagery for coastal and inland lake
water quality monitoring [27–30].

Methods for evaluating water quality parameters using satellite remote sensing data
can be categorized into two types: empirical modeling and bio-optical modeling [14]. In
recent years, bio-optical modeling has made some progress; however, it is severely con-
strained by data limitations and challenges in atmospheric correction accuracy [18], because
atmospheric correction is a factor that must be considered in aquatic remote sensing [31–35].
A subset of researchers has initiated exploration into direct modeling methods utilizing
satellite reflectance data. Their goal is to mitigate errors and uncertainties arising from
atmospheric correction to the greatest extent possible. In recent years, with the develop-
ment of the field of artificial intelligence, the application of machine learning algorithms
in water quality assessment has been increasing gradually [14]. Machine learning models
can uncover underlying complex nonlinear relationships, thus providing a general and
optimized approach for water quality parameter detection [36–38]. Its application in water
quality modeling and detection shows a continuous growth trend [39–42]. Common ma-
chine learning methods used for water quality assessment include Support Vector Machine
Regression (SVR) and Random Forest Regression (RF). In recent years, XGBoost Regression
(XGBoost) and CatBoost Regression (CatBoost) have also gained increasing popularity.

Current research utilizing machine learning combined with satellite data for the re-
trieval of water quality parameters has been successfully applied in multiple
cases [14,18,24,25,29,42]. However, there are significant differences in the water quality
parameters used, and the spatial and radiometric resolution of sensors in different regions,
leading to variations in retrieval algorithms [43]. Dianshan Lake, which receives water
from Taihu Lake and is influenced by agricultural activities and residential wastewater
discharge in the surrounding areas, has experienced several water pollution incidents over
the past two decades. Water quality monitoring has been a focal point for government
water authorities and the research community [44]. Presently, there is limited research
on the spatiotemporal characteristics of water quality evolution and driving factors in
Dianshan Lake using remote sensing algorithms, making it challenging to provide tar-
geted recommendations for environmental protection, management, and control measures.
Therefore, the central objective of this study is to directly utilize satellite reflectance data
to develop and validate models for retrieving water quality parameters. The specific ob-
jectives are as follows: (1) Utilize four machine learning methods (RF, XGBoost, CatBoost,
and SVR) to establish optimal retrieval models for various water quality parameters (Chl-a,
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CODMn, DO, SDD, TN, TP). (2) Employ Sentinel-2 satellite remote sensing imagery from
2017 to 2023 to retrieve various water quality parameters for spatiotemporal change analy-
sis. The study aims to provide a scientific basis for lake management and environmental
protection efforts.

2. Materials and Methods
2.1. Study Area

Dianshan Lake (31◦04′–31◦12′N, 120◦54′–121◦01′E) is situated on the border of Qingpu
District in Shanghai and Kunshan City in Jiangsu Province, China. Its location in China is
shown in Figure 1a. With an area of approximately 62 square kilometers and an average
depth of 2.5 m, the lake plays a pivotal role in various social and ecological functions. It
serves as the receiving end of water from the Wujiang area of Taihu Lake and functions as
the headwaters of the Huangpu River.
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Figure 1. (a) Location schematic diagram of the study area, (b) Distribution of sampling points in
Taihu Lake, (c) Distribution of sampling points in Dianshan Lake, (d) Schematic diagram of the
relative positions of Taihu Lake and Dianshan Lake.

2.2. Dataset

This study employed three types of datasets: (1) Sentinel-2 MSI satellite imagery
data spanning the period from 2017 to 2023, utilized to retrieve water quality parameters;
(2) Concentration data of Chl-a, CODMn, DO, SDD, TN, and TP acquired through sampling
in Dianshan Lake. These data were employed for the development and evaluation of ma-
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chine learning methods; (3) Measured Chl-a, CODMn, DO, SDD, TN, and TP concentration
data from Taihu Lake were utilized to further validate the model’s applicability.

2.2.1. Satellite Data

Both Sentinel-2 MSI and Landsat offer high-resolution remote sensing image data for
Earth observation and environmental monitoring. Considering Sentinel-2 MSI’s distinct
advantages over Landsat, which include shorter revisit periods, a greater number of
spectral bands, higher spatial resolution, and an open data policy, this study harnessed
the capabilities of Sentinel-2 MSI. Specifically, we utilized a dataset of 100 Sentinel-2 MSI
images acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/,
accessed on 15 June 2023) spanning the period from 2017 to April 2023. The selection of
these downloaded images adhered to strict criteria, ensuring cloud-free conditions above
the lake and minimal sun glint on the lake surface. The distribution of data according to
the quantity of time is shown in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 28 
 

 

Concentration data of Chl-a, CODMn, DO, SDD, TN, and TP acquired through sampling 
in Dianshan Lake. These data were employed for the development and evaluation of 
machine learning methods; (3) Measured Chl-a, CODMn, DO, SDD, TN, and TP 
concentration data from Taihu Lake were utilized to further validate the model’s 
applicability.  

2.2.1. Satellite Data 
Both Sentinel-2 MSI and Landsat offer high-resolution remote sensing image data for 

Earth observation and environmental monitoring. Considering Sentinel-2 MSI’s distinct 
advantages over Landsat, which include shorter revisit periods, a greater number of 
spectral bands, higher spatial resolution, and an open data policy, this study harnessed 
the capabilities of Sentinel-2 MSI. Specifically, we utilized a dataset of 100 Sentinel-2 MSI 
images acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/, 
accessed on 15 June 2023) spanning the period from 2017 to April 2023. The selection of 
these downloaded images adhered to strict criteria, ensuring cloud-free conditions above 
the lake and minimal sun glint on the lake surface. The distribution of data according to 
the quantity of time is shown in Figure 2. 

 
Figure 2. Temporal and Quantitative Distribution of Sentinel-2 MSI Images Used in This Study. 

The radiation received by sensors at the top of the atmosphere (TOA) can be primarily 
attributed to Rayleigh scattering and aerosol scattering [45]. Atmospheric correction is a 
process aimed at mitigating the impacts of Rayleigh scattering, Mie scattering, 
atmospheric absorption, and aerosol influence on remote sensing images. Some 
researchers have proposed that using uncorrected TOA images can yield superior results 
compared to images that have undergone atmospheric correction [46]. In this study, we 
employed the SNAP software for Rayleigh correction of the images, resulting in 
dimensionless Rayleigh-corrected reflectance. Following this, the image resolution was 
resampled to 20 m, and the Normalized Difference Water Index (NDWI) [47] was utilized 
to delineate water regions. Before performing water quality modeling, and to mitigate 
uncertainties stemming from aerosols and other factors, an enhanced MD09 method 
[48,49] was implemented for aerosol correction. This method involves a straightforward 
Rayleigh reflectance correction technique that entails subtracting the minimum value 
from the shortwave infrared band (Band 11 in MSI images) within the visible and near-
infrared bands. The resulting value is then divided by π. 

  

Figure 2. Temporal and Quantitative Distribution of Sentinel-2 MSI Images Used in This Study.

The radiation received by sensors at the top of the atmosphere (TOA) can be primarily
attributed to Rayleigh scattering and aerosol scattering [45]. Atmospheric correction is a
process aimed at mitigating the impacts of Rayleigh scattering, Mie scattering, atmospheric
absorption, and aerosol influence on remote sensing images. Some researchers have
proposed that using uncorrected TOA images can yield superior results compared to
images that have undergone atmospheric correction [46]. In this study, we employed
the SNAP software for Rayleigh correction of the images, resulting in dimensionless
Rayleigh-corrected reflectance. Following this, the image resolution was resampled to 20 m,
and the Normalized Difference Water Index (NDWI) [47] was utilized to delineate water
regions. Before performing water quality modeling, and to mitigate uncertainties stemming
from aerosols and other factors, an enhanced MD09 method [48,49] was implemented for
aerosol correction. This method involves a straightforward Rayleigh reflectance correction
technique that entails subtracting the minimum value from the shortwave infrared band
(Band 11 in MSI images) within the visible and near-infrared bands. The resulting value is
then divided by π.

2.2.2. Field Data

From 2017 to 2022, a monthly routine water sampling campaign was conducted in
Dianshan Lake to collect data on water quality parameters. The study specifically selected
data points falling within a ±5-day range of the satellite overpass time as the focal dataset,
resulting in a total of 398 datasets. The statistical description of the data is shown in Table 1.
The precise locations of the sampling sites within Dianshan Lake are illustrated in Figure 1c.

https://scihub.copernicus.eu/
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Table 1. Statistical description of measured water quality parameters in Dianshan Lake.

Water Quality
Parameter Range Mean ± Std Median CV N

Chl-a (mg/m3) 1.34–51 15.04 ± 10.35 12.80 0.69 398
CODMn (mg/L) 2.10–7.00 3.96 ± 0.80 3.80 0.20 398

DO (mg/L) 3.90–13.84 8.73 ± 1.97 8.60 0.23 398
TN (mg/L) 0.33–5.23 2.04 ± 1.00 1.87 0.49 398
TP (mg/L) 0.03–0.26 0.10 ± 0.05 0.090 0.45 398
SDD (m) 0.1–1.1 0.42 ± 0.4 0.17 0.41 398

The water samples collected during in situ experiments were transported to the
laboratory for analysis of water quality parameters. The laboratory analysis methods
adhered to the water quality parameter determination procedures outlined in the Chinese
National Standard GB3838-2002. Table A1 presents a compilation of the names of different
water quality parameters, alongside their corresponding determination methods.

To assess the transferability of the optimal model to different geographical regions,
additional data were collected from 2018 to 2022 at 32 monitoring stations situated around
Taihu Lake. Due to the high level of eutrophication in Taihu Lake, surface blooms of
cyanobacteria are frequent. To ensure water body consistency as much as possible, we
utilized a visual interpretation method to identify sampling points unaffected by cyanobac-
terial blooms in satellite true-color images as supplementary data. There were a total of 161
validation points in Taihu Lake. The statistical description of the data is shown in Table 2
and the sampling site locations in the Taihu Lake region are visually depicted in Figure 1b.

Table 2. Statistical description of measured water quality parameters in Taihu Lake.

Water Quality
Parameter Arrange Mean ± Std Median CV N

Chl-a (mg/m3) 6.34–63.38 21.41–9.63 19.62 0.45 130
CODMn (mg/L) 3.37–5.15 4.24–0.42 4.30 0.10 130

DO (mg/L) 6.10–11.55 7.98–1.20 7.70 0.15 130
TN (mg/L) 0.24–0.53 0.36–0.07 0.34 0.19 130
TP (mg/L) 0.83–3.51 1.73–0.54 1.60 0.31 130
SDD (m) 0.066–0.329 0.112–0.029 0.111 0.26 130

2.3. Modeling

Based on the latitude and longitude coordinates of the actual measurement sites,
the corresponding image reflectance for the respective dates is extracted. To ensure data
consistency, a 3 × 3 pixel window surrounding each site is considered. The average
reflectance within this window is then computed and utilized as the matched data.

In the investigation of the six water quality parameters, our study explored four dis-
tinct machine learning methods, namely: (1) Random Forest Regression (RF), (2) XGBoost
Regression (XGB), (3) CatBoost Regression (CatBoost), and (4) SVR. The selection of these
methods was grounded in their performance and characteristics across various data sce-
narios. Moreover, these techniques have been demonstrated as successful applications in
estimating water quality parameters in several inland lakes previously [18,24,29,38,50–54].

These methods possess distinct characteristics. In the landscape of ensemble learning
techniques, Random Forest Regression (RF) has garnered substantial interest due to its
commendable performance and robust characteristics. By constructing multiple decision
trees and aggregating their predictions, RF not only mitigates the risk of overfitting but also
accommodates a diverse range of data types, including both continuous and categorical
features. In contrast, XGBoost Regression (XGB) distinguishes itself through its efficient
gradient boosting algorithm, which facilitates exceptional performance on large-scale
datasets. XGB incorporates regularization techniques to control model complexity and



Remote Sens. 2023, 15, 5001 6 of 26

exhibits considerable proficiency in handling missing values and feature engineering.
Conversely, CatBoost Regression (CatBoost) specializes in the treatment of categorical
features, autonomously affecting feature transformations without necessitating additional
preprocessing steps. This confers it with advantages in certain domains. Support Vector
Regression (SVR) is one of the most frequently used methods in recent years. SVR excels
in regression with high dimensions, noise, and nonlinearity. Its adaptable kernels and
robustness with small datasets contribute to its significance in ensemble learning.

For each model, an identical set of input features was chosen to assess the ultimate
outcomes. In this study, we utilized the Pearson correlation coefficient to ascertain the rela-
tionships between various water quality parameters and some widely employed spectral
band combinations.

Prior researchers have demonstrated the robustness of band ratio algorithm (Rrs(λ1)−
Rrs(λ2)) and band difference algorithm ( Rrs(λ1)

Rrs(λ2) ) when applied to the retrieval of water qual-
ity in optical complex inland lakes [38]. In this study, we also incorporated the Normalized
Difference Band Calculation algorithm ( Rrs(λ2)−Rrs(λ1)

Rrs(λ2)+Rrs(λ1) ) [40] and the three-band combina-

tion form (Rrs(λ3)×
(

1
Rrs(λ2) −

1
Rrs(λ1)

)
) [39] to assess their correlations with water quality

parameters. The objective was to identify the optimal inputs for the machine learning
models. In the process of constructing retrieval models for each water quality parameter,
a comprehensive set of 13 input features was employed. Among these input variables,
the combination of these 13 variables exhibited the most optimal performance. These
encompassed the initial 9 visible and near-infrared bands from the MSI image, alongside
the band combinations from each method that exhibited the highest correlation with the
concentration of water quality parameters. Please refer to Table 3 for the most relevant
band combinations for each water quality parameter.

Table 3. Input features for various water quality parameters (only wavelength combinations listed).

Band Combination Form Chl-a CODMn DO SDD TN TP

Rrs(λ1)− Rrs(λ2) B7 1 B9 B7 B2 B6 B7 B5 B2 B2 B3 B7 B6
Rrs(λ1)
Rrs(λ2)

B4 B5 B6 B7 B6 B7 B2 B5 B6 B7 B7 B6
Rrs(λ2)−Rrs(λ1)
Rrs(λ2)+Rrs(λ1)

B4 B5 B6 B7 B6 B7 B5 B2 B7 B6 B6 B7

Rrs(λ3)×
(

1
Rrs(λ2) −

1
Rrs(λ1)

)
B5 B4 B2 B7 B6 B5 B6 B7 B1 B3 B5 B6 B6 B7 B1 B7 B6 B2

1 The wavelengths of Sentinel-2 MSI image bands.

It is noteworthy that the selection of hyperparameters in machine learning substan-
tially influences the model’s performance and generalization capability. This process di-
rectly impacts the model’s robustness and governs its complexity to mitigate overfitting. In
our study, the Python programming language was employed to conduct a grid search tech-
nique for determining the model’s hyperparameters. Each training session incorporated a
fivefold cross-validation strategy to comprehensively evaluate the model’s performance.

In SVR, the C parameter controls the degree of regularization, the kernel parameter
defines the type of kernel function, and the gamma parameter influences the range of
the kernel function’s impact. By judiciously adjusting these parameters, a balance be-
tween model complexity and regularization can be achieved to enhance performance.
Optimizing the performance of the XGBoost model depends on the selection of several
key hyperparameters. Smaller learning rates and larger gamma values contribute to im-
proved generalization performance, while parameters like min child weight, max depth,
and reg alpha help stabilize the model, preventing overfitting. Random Forest (RF) can
effectively control the number and depth of trees in the forest by tuning parameters such as
n estimators, max depth, min samples split, min samples leaf, and max features, thereby
enhancing model performance. CatBoost can optimize model complexity and regulariza-
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tion by adjusting parameters like iterations, learning rate, depth, and l2 leaf reg, resulting
in improved performance.

The grid search strategies for each model are summarized in Table 4, and the optimal
parameters chosen for different water quality parameters in each model are presented in
Table A2.

Table 4. Hyperparameter grid search table for each model.

Model Hyperparameters Options

RF

n_estimators np.arange 1 (10, 600, 10)
max_depth np.arange (10, 50, 5)

min_samples_split np.arange (1, 50, 1)
min_samples_leaf np.arange (1, 12, 1)

SVR
C np.arange (1, 10, 0.01)

kernel [‘linear’, ‘rbf’,’sigmoid’]
gamma np.arange (1, 100, 0.001)

XGBoost

learning_rate np.arange (0.15, 0.2, 0.005)
gamma np.arange (0.001, 0.005, 0.001)

min_child_weight np.arange (5, 10, 1)
max_depth np.arange (2, 10, 1)
sub_sample [0.8, 1]
reg_alpha [0.001, 0.01, 0.1, 1]

CatBoost

iterations np.arange (50, 500, 10)
learning_rate np.arange (0.01, 0.05, 0.01)

depth np.arange (2,10,1)
l2_leaf_reg np.arange (1,10,1)

1 ‘np.arange(10, 600, 10)’ generates a sequence of numbers, starting at 10 and increasing by 10 at each step, until it
is just below 600.

2.4. Accuracy Evaluation

The metrics chosen for assessing the models’ performance encompassed the coefficient
of determination (R2), mean absolute percentage error (MAPE), root mean squared error
(RMSE), and bias.

R2(y, ŷ) = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (1)

MAPE =
1
N

N

∑
i=1
|yi − ŷi

yi
| × 100% (2)

RMSE (y, ŷ) =

√
∑N

i=1(yi − ŷi)
2

N
(3)

bias =
1
N

N

∑
i=1

(yi − y) (4)

where N represents the sample size, yi is the value of the i-th observed data point, ŷi is the
value of the i-th predicted data point, and y is the mean value of N observed data points.

3. Results and Analysis
3.1. Model Calibration and Validation

Out of the entire synchronized dataset, 80% of the data (N = 318) was randomly
allocated for constructing the models, whereas the remaining 20% of the data (N = 80) was
employed to assess the models’ performance. It is essential to emphasize that a consistent
training dataset was utilized across all experiments for training and validation.

Regarding Chl-a estimation (Figure 3), it was observed that all models tended to under-
estimate high-concentration values, possibly due to the limited availability of data points
for such values. Nevertheless, the CatBoost, RF, and XGBoost models exhibited significantly
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improved performance in accurately predicting true values across both the training and test
datasets when compared to the SVR models. In particular, the CatBoost model showcased
a well-distributed scatter around the 1:1 line for both the training set (RMSE = 3.26 mg/m2,
MAPE = 15.18%) and the test set (RMSE = 11.11 mg/m2, MAPE = 28.12%). This signifies a
higher level of accuracy. Consequently, the CatBoost model emerges as the optimal choice
for Chl-a retrieval.
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Regarding the CODMn index (Figure 4), all models exhibited an overestimation of val-
ues with CODMn < 4.5 mg/L and an underestimation of values with CODMn > 4.5 mg/L.
This phenomenon was particularly prominent in the SVR model. Although the MAPE val-
ues for all models remained below 15%, the performance of CatBoost stood out as notably
superior to that of XGBoost, RF, and SVR. Among these models, CatBoost yielded the most
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favorable results for CODMn estimation (training set: RMSE = 0.33 mg/L, MAPE = 6.85%;
test set: RMSE = 0.55 mg/L, MAPE = 10.55%). Thus, the RF model emerges as a preferred
choice for CODMn estimation.
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blue, and red lines represent the 1:1 line and regression lines between measured and estimated values
on the training and test datasets, respectively. The blue dots and red dots represent the training set
and test set, respectively.

Concerning the DO index (Figure 5), all models consistently displayed a slight overes-
timation of low-concentration values and an underestimation of high-concentration values.
It is important to highlight that all models exhibited a high degree of accuracy in estimating
DO concentrations on both the training and test sets (RMSE < 1.5 mg/L, MAPE < 15%). In
terms of various error metrics, it is obvious that the SVR model yields the poorest perfor-
mance. Although the training set results are similar for CatBoost and XGBoost, XGBoost
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performs slightly better than CatBoost on the test set. As a result, the XGBoost model (train-
ing set: RMSE = 1.01 mg/L, MAPE = 9.78%; test set: RMSE = 1.2 mg/L, MAPE = 12.11%)
is considered the optimal choice for DO retrieval.
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In the case of the transparency index (Figure 6), the XGBoost, RF, and CatBoost
models exhibited favorable results in the training set. Notably, all four models tended to
overestimate SDD values when SDD < 0.4 m and underestimate values when SDD > 0.6 m.
In summary, the XGBoost model showcased the best performance across both the training
and test sets (training set: RMSE = 0.07 m, MAPE = 15.12%; test set: RMSE = 0.155 m,
MAPE = 34.14%). Consequently, it is deemed the optimal choice for SDD retrieval.
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In terms of the TN index (Figure 7), the results retrieved by the four models exhibit
a notable similarity. Concerning the training dataset, both the Random Forest (RF) and
XGBoost models show superior performance. Their MAPE is below 20%. Analyzing the
bias, RF outperforms all other models. Specifically, for the training set, RF demonstrates an
RMSE of 0.45 mg/L, a MAPE of 19.45%, and a bias of 0. For the test set, the metrics are an
RMSE of 0.54 mg/L, a MAPE of 21.83%, and a bias of −0.01. These outcomes underscore
RF’s heightened accuracy and stability in predictions, compared to the alternative models.
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Regarding the TP index (Figure 8), CatBoost notably outperformed the other models,
exhibiting the best outcomes (training set: RMSE = 0.02 mg/L, MAPE = 19.2%; test set:
RMSE = 0.036 mg/L, MAPE = 29.34%). Notably, the R2 values for both the training and
test sets surpassed 0.75, and the MAPE values remained below 30%. Conversely, SVR
showcased less favorable results, yielding MAPE values exceeding 65% across the training
and test sets.
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Distinct characteristics are observed among various machine learning algorithms when
predicting water quality parameters. By ranking the assessment results of the six water
quality parameters, it is evident that CatBoost consistently achieves the most favorable
outcomes across all four instances. XGBoost ranks within the top two positions in five out
of six cases, whereas SVR consistently yields relatively inferior results across all six water
quality parameters. Overall, in the evaluation of retrieval results for the six water quality
parameters, CatBoost performs the best, followed by XGBoost in second place, RF in third,
and SVR in the last position.

3.2. Spatiotemporal Patterns of Diandao Lake Water Quality Based on Sentinel-2
3.2.1. Temporal Variation

According to Section 3.1, it can be observed that the best models for Chl-a, CODMn,
DO, SDD, TN, and TP are CatBoost, CatBoost, XGBoost, XGBoost, RF, and CatBoost,
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respectively. For ease of understanding and readability, we shall refer to them as BM-Chl-a,
BM-CODMn, BM-DO, BM-SDD, BM-TN, and BM-TP. In this section, the best models were
employed to estimate the concentrations of Chl-a, DO, CODMn, SDD, TN, and TP. Yearly
average images (Figure 9) for these water quality parameters were calculated from 2017 to
2022 (data for 2023 were available only for the first four months and were excluded from
this analysis). In addition, we also plotted the overall monthly average image (Figure 10)
from 2017 to 2023. To gain a more intuitive understanding of the temporal changes in
various water quality parameters, we have compiled their quarterly averages for each year
(Figure 11).
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 Figure 10. Images depicting the monthly average concentrations of (a) Chl-a, (b) CODMn, (c) DO,
(d) SDD, (e) TN, and (f) TP in Dianshan Lake, retrieved using Sentinel-2 MSI imagery, for the years
2017 to 2023.
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Figure 11. Bar charts illustrating the seasonally average concentration distribution of (a) Chl-a,
(b) CODMn, (c) DO, (d) SDD, (e) TN, and (f) TP in Dianshan Lake from 2017 to 2023. The black
dashed line represents the average value of water quality parameters calculated using six years of
data from 2017 to 2022.
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Upon analysis, the average Chl-a concentration over the six years was found to be
13.53 ± 2 mg/m3. The lowest recorded value occurred in 2017 at 10.86 mg/m3, while
the highest was observed in 2020 at 15.03 mg/m3. There was a continuous upward trend
in Chl-a concentration from 2017 to 2020, with relatively minor interannual differences
between 2020 and 2022. However, during the summer, autumn, and winter seasons, the
concentrations showed a decreasing trend compared to 2020 (Figure 11a). The average
CODMn concentration was determined to be 3.94 ± 0.4 mg/L. CODMn exhibited overall
small fluctuations, with seasonal averages ranging between 3.5 and 4.5 mg/L across
the years (Figure 11b). The lowest value was observed in 2019 at 3.9 mg/L, while the
highest was recorded in 2020 at 4.04 mg/L. The average DO concentration amounted to
9.89 ± 0.42 mg/L. The lowest concentration was observed in 2020 at 9.37 mg/L, while
the highest concentration was noted in 2018 at 10.38 mg/L. DO also showed a declining
trend from 2017 to 2020, with an increase in concentration observed in the spring and
winter of 2021, followed by another decrease in 2022 (Figure 11c). For SDD, the average
value was 0.44 ± 0.04 m. SDD did not exhibit a clear pattern of change, but overall,
it showed a trend of initially decreasing and then increasing. SDD values were higher
in 2017–2019, lower in 2020 and 2021, and increased again in 2022 (Figure 11d). The
average TN concentration was calculated to be 2.08 ± 0.1 mg/L. The lowest concentration
occurred in 2019 at 1.91 mg/L, and the highest was observed in 2021 at 2.21 mg/L. TN
displayed relatively small interannual differences, indicating stable changes over the years
(Figure 11e). Lastly, the average TP concentration was measured at 0.109 ± 0.003 mg/L.
The lowest value was registered in 2022 at 0.105 mg/L, whereas the highest value was
recorded in 2020 at 0.111 mg/L.

The seasonal variations in water quality parameters mirror their monthly fluctuations.
Chl-a, CODMn, and TN concentrations exhibit higher levels in the summer and autumn,
while they demonstrate lower levels in the spring and winter. Conversely, other water
quality parameters display the opposite trend (Figures 10 and 11).

3.2.2. Spatial Variation

To explore the spatial variations of various water quality parameters within Dianshan
Lake, we conducted a comprehensive analysis by computing the mean values based
on data collected from 100 images. The annual average values obtained for Dianshan
Lake were 13.73 mg/m3 for Chl-a, 3.94 mg/L for CODMn, 8.92 mg/L for DO, 0.44 m for
SDD, 2.09 mg/L for TN, and 0.11 mg/L for TP, respectively. The corresponding standard
deviations were recorded as 4.4 mg/m3, 0.29 mg/L, 1.47 mg/L, 0.11 m, 0.74 mg/L, and
0.013 mg/L.

The mean images of each water quality parameter reveal distinct spatial patterns
within Dianshan Lake. There is a clear negative correlation between Chl-a and SDD distri-
butions, wherein areas with higher Chl-a concentrations tend to exhibit lower transparency
(Figure 12a,d). Within the lake area, the northern and southwestern regions demonstrate
elevated Chl-a concentrations, particularly near the entrances of Jishuigang Harbor in
the northeast and the western region, where Chl-a concentrations reach their peaks. In
contrast, the central open areas of the lake and the southeastern region exhibit lower
Chl-a concentrations.

Similar to Chl-a, the spatial distribution of CODMn and TN also displays a correlation
(Figure 12b,e). CODMn exhibits a discernible distribution pattern throughout the lake, with
higher concentrations observed along the lake’s edges and lower concentrations in the
open areas within the lake. DO concentrations are lowest near the entrance of Jishuigang
Harbor in the southwestern region, while the central open areas and northern regions of
the lake demonstrate higher DO concentrations (Figure 12c).

Regarding nitrogen content, TN concentrations are lower in the lake’s edge regions
and higher in the open areas within the lake (Figure 12e). Similarly, the spatial distribution
trend of TP resembles that of TN (Figure 12f). The southwestern and northeastern regions
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of the lake exhibit lower TP concentrations, while the eastern areas and central open regions
display higher TP concentrations.
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Figure 12. Average concentration maps of (a) Chl-a, (b) CODMn, (c) DO, (d) SDD, (e) TN, and (f) TP
in Dianshan Lake from 2017 to 2022.

To investigate the spatial variations of Dianshan Lake more comprehensively, we
calculated the coefficient of variation map for the entire lake area (Figure 13). It can be
observed that regions with higher concentrations of DO, TN, and TP tend to exhibit larger
variability. Similarly, SDD follows a similar pattern, with regions showing higher values
appearing in red hues, indicating greater coefficients of variation. In contrast, the standard
deviation of CODMn remains relatively consistent across the entirety of the lake, suggesting
an overall lower variability, which is in line with its temporal variation image. The situation
for Chl-a is slightly different, whereby regions with lower average concentrations across
the lake display relatively unstable conditions, implying significant variability.
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4. Discussion
4.1. Applicability of the Models

In the practical application of Dianshan Lake, promising outcomes have been achieved
through the construction of models utilizing both actual measurement data from Dianshan
Lake and satellite reflectance data, enabling the prediction of various water quality parame-
ters. To comprehensively assess the applicability of the established best models for various
water quality parameters, further in-depth research was conducted. Considering Dianshan
Lake as a representative small lake with poor-to-low nutrient levels, we extended our inves-
tigation to Taihu Lake—a larger lake characterized by higher nutrient levels. The primary
objective was to validate the generality and stability of BM-Chl-a, BM-CODMn, BM-DO,
BM-SDD, BM-TN, and BM-TP across diverse environmental contexts. The performance of
the best model for each parameter in the Taihu Lake dataset is shown in Table 5.

Based on the outcomes, noteworthy shifts were observed in the prediction perfor-
mance of Chl-a. The RMSE of Chl-a escalated to 19.88 mg/m2, while the MAPE surged to
45%, nearly doubling the previous values. Consequently, BM-Chl-a exhibited substantial
errors in predicting Chl-a, signifying a diminished predictive capacity for this parameter.
The prediction errors of BM-CODMn and BM-DO also displayed some increase. The
RMSE values (0.74 mg/L and 1.69 mg/L) and MAPE values (15% and 15%) both grew by
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approximately half. Although the prediction outcomes remained within a certain range,
in comparison to the prior test data, these two models exhibited heightened uncertainty
in predicting CODMn and DO. Regarding BM-SDD, the model’s predictive performance
showed improvement, as reflected by diminished RMSE (0.07 m) and MAPE (16%) values,
indicating enhanced accuracy in forecasting water transparency concentrations. However,
in the instances of BM-TN and BM-TP, the models’ performance faltered. The predictive
errors for these two indicators markedly increased when contrasted with the test data from
Dianshan Lake, particularly the MAPE values (55% and 68%), which tripled. Consequently,
BM-TN and BM-TP demonstrated marked limitations, with their forecasts significantly
diverging from actual conditions.

Table 5. Performance of the best model of each parameter on Taihu Lake.

Water Quality Parameter RMSE MAPE Bias

Chl-a 19.88 mg/m3 44.88% −12.14 mg/m3

CODMn 0.74 mg/L 14.61% 0.08 mg/L
DO 1.69 mg/L 14.88% −1.25 mg/L

SDD 0.07 m 15.7% −0.013 m
TN 1.5 mg/L 54.78% 10.45 mg/L
TP 0.05 mg/L 67.56% 0.034 mg/L

In light of the models’ predictive outcomes compared to the authentic test data from
Taihu Lake, it can be deduced that the predictive performance of parameters such as Chl-a,
CODMn, DO, TN, and TP exhibited varying degrees of decline or fluctuation. Only the
predictive performance for SSD maintained a relatively favorable state. In essence, the best
models for Dianshan Lake displayed specific restrictions and inadequacies in predicting
water quality parameters for Taihu Lake. Further enhancement and optimization are
imperative through the incorporation of localized data to augment its predictive prowess.

4.2. Performance and Evaluation of Machine Learning Algorithms
4.2.1. Analysis of Error Sources Affecting Model Performance

In the realm of machine learning, the quality of the dataset has a direct bearing on
the performance of the model. Additionally, the congruence between field estimations
and satellite-derived estimations stands as a crucial criterion for evaluating the efficacy of
the proposed Chl-a algorithm. Given the foundation of our study in employing satellite
reflectance and measurement data to construct retrieval models, the quality of satellite
reflectance data becomes particularly salient.

First and foremost, atmospheric correction presents itself as a principal source of error.
Particularly, in comparison to expansive oceanic regions, atmospheric correction for inland
water body imagery proves to be a more intricate endeavor due to intricate interactions with
neighboring land pixels. Rectifying atmospheric effects over water surfaces is particularly
demanding, often requiring a higher degree of precision compared to correction procedures
applied over terrestrial areas. In this study, a specialized atmospheric correction method
tailored for inland water bodies [48,49] was employed. Following Rayleigh correction, the
“dark pixel method” was transferred to the shortwave near-infrared band [32,45,50,55] to
mitigate aerosol effects. This approach ensures a maximum level of correction accuracy,
even in the presence of unavoidable errors.

Furthermore, the alignment of time windows [56] and pixel window [57] sizes for on-
site estimations and satellite data introduces error sources within the retrieval model. While
Sentinel-2 MSI imagery follows a five-day orbital cycle, practical limitations arising from
adverse weather conditions considerably restrict the number of images that effectively align
with measured data. According to statistics from pertinent water management authorities
in Shanghai, Dianshan Lake has an approximate water turnover cycle of seven days.
Accordingly, we extended the time window to five days to secure a more substantial dataset
alignment. Apart from Chl-a, the correlation between other water quality parameters and
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single-band reflectance remains relatively low (Figure 14). Encouragingly, correlations
involving combinations of bands display improved trends. Looking ahead, enhancing the
frequency of in situ measurements to shorten the time window and acquire more aligned
data warrants consideration.
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SVR 13.99  38.15  12.99  35.15  13.99  39.15  
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CODMn 
(mg/L) 

CatBoost 0.58  11.29  0.57  11.24  0.59  11.87  
RF 0.60  11.33  0.58  11.28  0.62  12.19  

SVR 0.61  11.63  0.60  11.10  0.61  12.11  
XGBoost 0.57  10.60  0.55  10.55  0.57  11.32  

DO 
(mg/L) 

CatBoost 1.27  12.89  1.25  12.77  1.31  13.16  
RF 1.32  13.24  1.32  13.16  1.35  13.68  

SVR 1.24  12.29  1.20  12.11  1.24  12.29  
XGBoost 1.34  13.14  1.24  12.56  1.28  12.97  
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(m) 

CatBoost 14.44  34.38  14.73  34.26  14.65  34.63  
RF 14.69  34.44  14.77  34.28  14.75  34.90  

Figure 14. Machine learning input features and correlation coefficients of each water quality parame-
ter. B1~B8a represent the corresponding bands of the Sentinel-2 MSI image, and T1~T4 represent the
band combination with the greatest correlation with each water quality parameter (Rrs(λ1)− Rrs(λ2),
Rrs(λ1)
Rrs(λ2) , Rrs(λ2)−Rrs(λ1)

Rrs(λ2)+Rrs(λ1) , Rrs(λ3)× ( 1
Rrs(λ2) −

1
Rrs(λ1) )).

Moreover, to demonstrate the effectiveness of satellite reflectance pixel windows,
different window sizes were employed in constructing retrieval models, including single-
pixel windows, 3 × 3 pixel window averages, and 5 × 5 pixel window averages.

RMSE and MAPE are employed as performance metrics. As illustrated in Table 6, for
both RMSE and MAPE, the 3 × 3 pixel window consistently yields the lowest error across
various water quality parameter retrievals. This aligns with our predicted outcomes. The
single-pixel window exhibits higher variability, potentially stemming from greater noise.
The 5 × 5 pixel window, with a ground resolution of 100 m × 100 m, might excessively
“smooth” the data, thus diminishing spectral features. In contrast, the 3 × 3 pixel window
effectively eliminates noise while retaining significant water feature information in the
region, thereby maximizing water quality uniformity.

Table 6. Accuracy display of water quality parameters using different pixel windows and different
methods to build models.

Parameters Methods
1 × 1 3 × 3 5 × 5

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Chl-a
(mg/m3)

CatBoost 11.19 29.12 11.11 28.12 11.21 29.12
RF 10.94 29.87 10.94 29.57 10.99 31.57

SVR 13.99 38.15 12.99 35.15 13.99 39.15
XGBoost 10.46 29.86 10.46 30.86 10.96 31.86

CODMn
(mg/L)

CatBoost 0.58 11.29 0.57 11.24 0.59 11.87
RF 0.60 11.33 0.58 11.28 0.62 12.19

SVR 0.61 11.63 0.60 11.10 0.61 12.11
XGBoost 0.57 10.60 0.55 10.55 0.57 11.32

DO
(mg/L)

CatBoost 1.27 12.89 1.25 12.77 1.31 13.16
RF 1.32 13.24 1.32 13.16 1.35 13.68

SVR 1.24 12.29 1.20 12.11 1.24 12.29
XGBoost 1.34 13.14 1.24 12.56 1.28 12.97
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Table 6. Cont.

Parameters Methods
1 × 1 3 × 3 5 × 5

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

SDD
(m)

CatBoost 14.44 34.38 14.73 34.26 14.65 34.63
RF 14.69 34.44 14.77 34.28 14.75 34.90

SVR 14.80 34.14 14.74 34.14 14.81 34.57
XGBoost 14.38 34.03 14.15 33.22 14.35 34.31

TN
(mg/L)

CatBoost 0.72 25.83 0.63 24.01 0.68 26.14
RF 0.82 26.08 0.68 25.15 0.65 26.33

SVR 0.73 24.80 0.65 24.26 0.62 25.07
XGBoost 0.69 25.81 0.61 24.68 0.61 24.76

TP
(mg/L)

CatBoost 0.04 33.13 0.04 32.14 0.04 32.91
RF 0.06 78.09 0.06 75.45 0.06 74.07

SVR 0.04 32.47 0.04 31.71 0.04 32.02
XGBoost 0.04 30.20 0.04 29.34 0.04 31.88

4.2.2. Evaluation of the Models

Based on the previous analysis, it is evident that CatBoost has the greatest potential
for application in inland water quality assessment. It demonstrated superior performance
in predicting Chl-a, CODMn, SDD, and TP. The convincing results are particularly evident
in Table 6, where changes in pixel window size did not affect the accuracy trend. The main
challenge of machine learning modeling is the need for extensive samples. CatBoost excels
with small datasets, effectively curbing overfitting and providing valuable insights into
feature importance, aiding in understanding model performance and predictions [58].

Among the models, SVR exhibited the weakest performance. It notably erred sig-
nificantly in predicting TP (Figure 8). SVR’s performance might excel with high-quality
data [38], which could explain its unsatisfactory performance when modeling satellite
reflectance data due to atmospheric correction errors. XGBoost and RF also show promise,
as prior studies highlight their utility in inland lake water quality assessment [24,38].

4.3. Spatiotemporal Change Analysis

After analysis, it was found that there were minimal overall differences in the temporal
variations of CODMn, TN, and TP, which may be related to the nutrient status of Dianshan
Lake. The lake’s overall eutrophication is not severe, with occasional occurrences of algae
blooms in late summer and early autumn. Except for TN, almost all other parameters
indicate better water quality during the winter and spring seasons compared to the summer
and autumn seasons. TN, in particular, exhibits a pronounced seasonal variation trend
over six years, with notably high values during the winter. This phenomenon may result
from the combined influence of multiple factors.

Environmental and meteorological factors such as water temperature, air temperature,
and precipitation can affect water quality [59]. We compiled monthly average values of
environmental factors (water temperature, pH, conductivity) and meteorological factors
(air temperature, precipitation, wind speed) for Dianshan Lake and examined their re-
lationships with water quality parameters through correlation analysis (Table 7). Water
temperature, air temperature, and precipitation showed strong correlations with various
water quality parameters, while pH and conductivity were significantly correlated only
with Chl-a and TP, and wind speed exhibited weak correlations with all parameters. Due
to climate-related factors, both air and water temperatures reach their lowest points in
winter (December, January, February) and peak in late summer and early autumn (August,
September). Similarly, precipitation is very high in summer and very low in winter. These
factors can influence the intensity of chemical reactions in the water, as well as the variation
of nutrients and chemicals released from sediments, leading to changes in water chem-
istry and characteristics. Precipitation also drives the input of nutrients from the lake’s
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surroundings, which can promote algal growth and increase concentrations of Chl-a, thus
improving water quality in spring and winter compared to summer and autumn.

Table 7. Pearson correlation coefficient of water quality parameters and environmental factors.

Index Chl-a CODMn DO SDD TN TP

Water temperature 0.38 0.71 * −0.94 * −0.86 * −0.32 −0.1
PH 0.73 * 0.46 −0.35 −0.19 −0.24 −0.25

Conductivity −0.4 −0.12 0.43 0.56 0.38 0.39
Air temperature 0.41 0.82 * −0.97 * −0.82 * −0.35 −0.13

Precipitation 0.78 * 0.45 −0.72 * −0.42 −0.67 * −0.37
Wind speed 0.15 0.43 −0.42 −0.21 −0.49 −0.33

* Represents significant correlation, Pearson correlation coefficient > 0.6.

Agricultural nonpoint source pollution is widely recognized as one of the most impor-
tant nutrient sources contributing to water quality deterioration [60]. Therefore, changes in
land use, especially in the area of farmland, can also impact water quality parameters [43].
Dianshan Lake is designated as a protected area for drinking water resources, with re-
strictions on industrial development and a ban on livestock farming. Previous research
has indicated that agriculture is the primary source of pollution leading to deteriorating
water quality in this region [61]. One of the primary reasons for agricultural pollution
of water quality is the widespread use of agricultural chemicals such as fertilizers and
pesticides. These chemicals are washed into lakes by rainwater, leading to an increase in
the concentrations of TN and TP in the water, thereby triggering eutrophication issues. As
TN and TP levels rise, the content of Chl-a also increases, resulting in the overgrowth of
algae in the water body. This leads to a decline in water quality, characterized by severe
eutrophication, and a potential decrease in the concentration of DO, adversely affecting
aquatic organisms. Additionally, due to soil erosion and wastewater discharges, there
may be an increase in suspended solids in the water, leading to increased water turbidity
and reduced water transparency. These changes in the range of water quality parame-
ters can be attributed to the adverse impact of agricultural activities on the water body.
Data obtained from the Statistical Yearbook website (http://www.tjnjw.com/, accessed on
4 September 2023) show that the farmland area in Qingpu District decreased from 25,466
hectares in 2017 to 20,581 hectares in 2019 and then increased to 25,400 hectares in 2021.
The farmland area decreased initially and then increased, with the smallest area recorded
in 2019, coinciding with the year when various parameters reached extreme values over the
six years (as observed in Section 3.2.1). This suggests a strong correlation between the area
of farmland around Dianshan Lake and water quality: when the farmland area decreases,
water quality improves, and when the farmland area increases, water quality deteriorates.

As indicated in Section 3.2.2, water quality parameters exhibit noticeable spatial
differences, which could be related to the uneven distribution of water flow, sediment,
and nutrient inputs. It is noteworthy that there are significant differences between the
water quality parameters at the inlet and outlet of Dianshan Lake. The inlet is typically
a critical area for water quality changes, as it is directly influenced by the surrounding
environment, while the outlet may be influenced by internal lake ecosystems and processes.
Based on the mean values of water quality parameters (Figure 12), at the inlet of Dianshan
Lake, the Chl-a concentration and CODMn concentration are higher, while DO and SDD
concentrations are lower. Conversely, at the outlet, the opposite trend is observed. Jishui
Port takes the shipping channel as the main water function, and the traffic discharge enters
the lake area along with the entrance. The influx of water from tributaries introduces a
large amount of suspended sediment and organic matter, increasing the concentrations of
Chl-a and CODMn. The water near the inlet of the lake is much turbid compared to the
open areas within the lake, resulting in lower transparency.

http://www.tjnjw.com/
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4.4. Strengths and Limitations of the Study

This study possesses significant strengths across various dimensions. Firstly, our
study adopts a direct model built upon image reflectance data. This strategy mitigates the
influence of atmospheric correction on research outcomes to a certain extent, effectively
curtailing error propagation from modeled measured data to satellite image application.
Consequently, this approach bolsters the stability of the proposed model. Secondly, our
study transcends the limitations of assessing algorithm performance solely based on indi-
vidual water quality parameters. Instead, we amalgamate multiple pivotal water quality
parameters and gauge the efficacy of six distinct machine learning methods. In comparison
to appraising methods solely on a singular water quality parameter, our all-encompassing
evaluation strategy is more holistic and precise. This curtails uncertainty in evaluation
findings and enhances the trustworthiness of research conclusions. Lastly, our study ven-
tures beyond the exploration of modeling techniques. It encompasses a spatiotemporal
analysis of diverse water quality parameters within Dianshan Lake. This examination of
spatiotemporal distribution furnishes invaluable insights into water quality retrieval within
small lakes. Moreover, our study deepens the comprehension of small lake ecosystems,
delivering substantial groundwork for informed decisions regarding lake water quality
management and preservation. The analytical results furnish novel viewpoints and avenues
for research and practical applications in related spheres.

While this study has made commendable advancements, it is important to address
a few noteworthy considerations. Firstly, regarding the distribution of the dataset, we
acknowledge that there are certain limitations in terms of data samples within high- and
low-concentration ranges. In our application of the model to the Taihu Lake region, we
observed that predictions only for SDD (water transparency) were notably accurate. There-
fore, there might be room for improvement in predicting other water quality parameters.
This disparity could potentially arise from the distinct characteristics of Dianshan Lake
and Taihu Lake, but it has not impeded the model’s practical applicability across different
regions. Secondly, when machine learning is used for prediction, the precision of measured
parameter concentrations can significantly impact the model’s performance, as evident in
the prediction of TP and SDD. Since TP concentrations are typically quite low, often below
0.1 mg/L, and our actual measurements are controlled only up to 0.001 mg/L, this results
in multiple identical TP concentration values in the measured data. This accuracy issue
leads to a situation where a specific TP concentration may correspond to multiple different
reflectance spectral data, increasing the difficulty for the model to distinguish similar values
and, consequently, resulting in poorer model performance. The same holds true for SDD.
Future work could consider improving measurement precision based on the concentration
distribution of measured water quality parameters to enhance model performance. Finally,
we employed a time window of five days to synchronize the measured and satellite data. It
is acknowledged that changes within the water body could transpire during this period,
and future research could contemplate the integration of additional observational data to
expand the dataset’s scope.

5. Conclusions

This study utilized satellite data and in situ measurements to determine the optimal
models for Chl-a, CODMn, DO, SDD, TN, and TP from four machine learning models
(RF, SVR, XGBoost, and CatBoost), which were identified as CatBoost, CatBoost, XGBoost,
XGBoost, RF, and CatBoost, respectively. The applicability of these models was validated
using data from Taihu Lake. These models were then applied to Sentinel-2 imagery from
2017 to 2023 to obtain the spatiotemporal distribution of water quality parameters in Dian-
shan Lake. Image inversion results indicated that the overall distribution of water quality
parameters in the study area was uneven, with significant spatial variation, relatively minor
interannual differences, and significant seasonal patterns. Further analysis revealed that
the spatiotemporal variation of water quality parameters was influenced by climatic factors
such as temperature and precipitation, as well as human activities including agriculture



Remote Sens. 2023, 15, 5001 23 of 26

and industry. The results of this study indicate that constructing models using multispectral
satellite image reflectance and in situ water quality parameter sampling data is effective.
Furthermore, in the future, model enhancement can be further achieved by improving the
precision of in situ data, reducing the data time window, such as utilizing multisource
satellite data, and implementing other methods. In conclusion, our study demonstrates
advantages in methodology, data processing, and practical implementation. It provides
valuable practical experience for the accurate monitoring of water quality parameters in
small water bodies using satellite data and offers essential data support for local water
resource management and environmental protection.
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Appendix A

Table A1. Methods for Determining Some Water Quality Parameters in Chinese National Standard
GB3838-2002.

Water Quality
Parameter Determination Method

Chl-a Nitrite Reduction Method and Continuous-Flow Analysis
CODMn High-Temperature Oxidation Method and Continuous-Flow Analysis

DO Electrode Method and Continuous-Flow Analysis
SDD Potassium Permanganate Spectrophotometric Method and Continuous-Flow Analysis
TN Ether Extraction–Spectrophotometric Method
TP Transparency Meter Measurement

Table A2. The best hyperparameters found by grid optimization of the models.

Model Hyperparameters Chl-a CODMn DO SDD TN TP

RF

n_estimators 450 500 360 390 490 300
max_depth 40 25 10 45 20 20

min_samples_split 5 4 5 11 7 3
min_samples_leaf 3 5 7 2 3 7

SVR
C 4.91 2 8.67 9.82 7.52 2.94

kernel ‘rbf’ ‘rbf’ ‘rbf’ ‘rbf’ ‘rbf’ ‘linear’
gamma 88.109 58.907 29.329 80.078 66.251 16.369

XGBoost

learning_rate 0.16 0.015 0.085 0.04 0.035 0.155
gamma 0.001 0.003 0.003 0.001 0.001 0.003

min_child_weight 9 5 8 8 9 6
max_depth 2 2 10 6 6 8
sub_sample 1 1 0.8 1 0.8 1
reg_alpha 0.1 1 1 0.01 1 0.01

CatBoost

iterations 200 170 370 430 230 450
learning_rate 0.03 0.03 0.01 0.04 0.02 0.01

depth 6 9 8 8 6 9
l2_leaf_reg 2 1 2 9 2 2
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58. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54,
1937–1967. [CrossRef]

59. Chen, Z.; An, C.; Tan, Q.; Tian, X.; Li, G.; Zhou, Y. Spatiotemporal analysis of land use pattern and stream water quality in
southern Alberta, Canada. J. Contam. Hydrol. 2021, 242, 103852. [CrossRef] [PubMed]

60. Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G.B. Characterizing the river water quality in China: Recent
progress and on-going challenges. Water Res. 2021, 201, 117309. [CrossRef] [PubMed]

61. Wang, S.; Ma, X.; Fan, Z.; Zhang, W.; Qian, X. Impact of nutrient losses from agricultural lands on nutrient stocks in Dianshan
Lake in Shanghai, China. Water Sci. Eng. 2014, 7, 373–383.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.watres.2019.115403
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.2166/wqrj.2018.025
https://doi.org/10.1080/01431161.2016.1256508
https://doi.org/10.1016/j.isprsjprs.2022.07.017
https://doi.org/10.1109/JSTARS.2019.2936403
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.jconhyd.2021.103852
https://www.ncbi.nlm.nih.gov/pubmed/34214919
https://doi.org/10.1016/j.watres.2021.117309
https://www.ncbi.nlm.nih.gov/pubmed/34116294

	Introduction 
	Materials and Methods 
	Study Area 
	Dataset 
	Satellite Data 
	Field Data 

	Modeling 
	Accuracy Evaluation 

	Results and Analysis 
	Model Calibration and Validation 
	Spatiotemporal Patterns of Diandao Lake Water Quality Based on Sentinel-2 
	Temporal Variation 
	Spatial Variation 


	Discussion 
	Applicability of the Models 
	Performance and Evaluation of Machine Learning Algorithms 
	Analysis of Error Sources Affecting Model Performance 
	Evaluation of the Models 

	Spatiotemporal Change Analysis 
	Strengths and Limitations of the Study 

	Conclusions 
	Appendix A
	References

