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Abstract: The deep network model relies on sufficient training samples to achieve superior processing
performance, which limits its application in hyperspectral image (HSI) classification. In order to
perform HSI classification with noisy labels, a robust weakly supervised feature learning (WSFL)
architecture combined with multi-model attention is proposed. Specifically, the input noisy labeled
data are first subjected to multiple groups of residual spectral attention models and multi-granularity
residual spatial attention models, enabling WSFL to refine and optimize the extracted spectral and
spatial features, with a focus on extracting clean samples information and reducing the model’s
dependence on labels. Finally, the fused and optimized spectral-spatial features are mapped to
the multilayer perceptron (MLP) classifier to increase the constraint of the model on the noisy
samples. The experimental results on public datasets, including Pavia Center, WHU-Hi LongKou,
and HangZhou, show that WSFL is better at classifying noise labels than excellent models such as
spectral-spatial residual network (SSRN) and dual channel residual network (DCRN). On Hangzhou
dataset, the classification accuracy of WSFL is superior to DCRN by 6.02% and SSRN by 7.85%,
respectively.

Keywords: hyperspectral images; weakly supervised classification; noisy labels; multilayer
perceptron

1. Introduction

Hyperspectral remote sensing uses a large number of narrow electromagnetic wave
channels to obtain spatial, radiation, and spectral triple information of ground objects,
which obtains information about ground objects through the band range of visible light and
infrared light in the electromagnetic spectrum [1,2]. Due to the characteristic of “combina-
tion of image and spectrum” in hyperspectral images, they contain a much higher degree of
ground information. By fully utilizing this feature, accurate classification of ground objects
can be achieved [3]. Therefore, hyperspectral remote sensing has been widely applied in
urban planning [4], environmental monitoring [5], and precision agriculture [6,7].

Early hyperspectral image classification mostly used supervised classification methods,
whose performance relied on high-quality labels [8]. Pal et al. mapped hyperspectral data
to a high-dimensional space, and found an optimal segmentation hyperplane in the space to
maximize the distance between different types and achieve the best classification effect [9].
Cui et al. considered the relationship between hyperspectral data classes, effectively
combining a sparse representation classifier and K-nearest neighbor to increase classification
accuracy [10].

Due to intra-class complexity and the scarcity of labeled samples, it is challenging to
achieve high-precision ground object classification only through spectral features [11]. Gu
et al. proposed a multi-kernel learning (MKL) architecture to learn spectral and spatial
information, combined with a support vector machine (SVM) [12]. Liu et al. proposed a
multi-morphic superpixel method to extract spectral and spatial features and complete the
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classification task [13]. The extracted features of these methods require manual adjustment,
which is a complex process.

Recently, owing to the powerful automatic feature extraction ability of deep learning,
great progress has been made in supervised learning algorithms. With the local feature
extraction capability of convolutional neural networks (CNN) [14,15], 2DCNN [16,17] and
3DCNN [18,19] have achieved impressive results in spectral, spatial, and spectral-spatial
feature extraction. The use of supervised classification methods to process hyperspectral
images requires manual annotation of data. In the process of obtaining labeled data,
due to the high complexity of terrain, the lack of on-site surveys by legal persons, and
the subjective influence of human factors on the quality of annotated data labels, the
existence of noise in labels cannot be avoided; that is, the labels do not match their actual
categories [20]. When the labels in the training data are incomplete, inaccurate, or only
partially labeled, this is a weakly supervised learning method [21].

At present, there are roughly two methods for dealing with noise labeling problems,
one of which is noise removal. For example, Kang et al. utilized domain transformation
recursive filtering to enhance the distinguishability of spectral-spatial features and used a
constrained energy minimization strategy to correct noisy samples [22]. Tu et al. proposed a
spatial density peak clustering algorithm that utilizes a local density strategy to obtain inter-
sample density values, where noisy samples are removed through decision functions [23,24].
Fang et al. used a confidence learning framework to accurately detect label errors [25].

The noise samples also have rich spatial-spectral information, which is also beneficial
and can be effectively utilized. Another method is to design a more robust network model
that directly utilizes a training set with incorrect labels [26,27]. Sukhbaatar et al. introduced
a constrained linear “noise” layer on the softmax layer, so that the network output can
simulate the noise label distribution and significantly improve the performance of the
deep network [28]. Jiang et al. learned noisy labels through a small loss strategy, which
indicates that deep neural networks will use small loss samples as “clean” samples and
only use such samples for feedback propagation to update network parameters [29]. These
methods have excellent noise processing capabilities, but their ability to handle complex
noisy samples is limited, which limits the further improvement of classification accuracy.
Xu et al. proposed a simple and efficient dual channel residual network (DCRN), which,
respectively, extracted more refined features from the spectral and spatial dimensions of
hyperspectral data to reduce the impact of noisy labels on the model to achieve an excellent
training effect [30].

The presence of noisy samples brings many uncertainties to hyperspectral image
classification, which limits the performance of many network models. However, due to
the scarcity of hyperspectral image data, even noise samples cannot be easily discarded,
otherwise a lot of information will be lost. In addition, deep learning models have the
problem of easily memorizing clean samples in the early stages and gradually memorizing
noisy samples in the later stages. As the number of iterations increases, the model gradually
begins to fit noisy samples, which leads to the model continuously learning the features of
noisy samples in later training and ignoring more important clean samples. Finally, there
is a supervised learning model that is highly dependent on correctly labeled data, which
will lead to the influence of noise samples being equal to clean samples. How to reduce
the dependence of the model on noisy samples and further improve the performance of
weakly supervised classification models has become a research hotspot in hyperspectral
image classification.

Therefore, this paper designs a novel weakly supervised feature learning (WSFL)
classification model for processing HSI with noisy samples. In order to better utilize noisy
samples and preserve the diversity of features, this method adaptively learns features
through multi-model attention feature learning. By comparing the similarity between
samples, it obtains clean samples’ features with higher information content, reducing the
weight of noisy samples and the impact of noisy samples on the model. Secondly, in
order to reduce the ability of the model to fit noisy samples in the later stage, multiple
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sets of residual spectral attention models were designed in the spectral dimension. The
spectral features in the later stage were differentiated in the space of multiple sets of spectral
features to avoid excessive concentration of single layer spectral features and memory of
noisy samples. In addition, in order to obtain more high-quality features and reduce the
dependence of the model on samples, a multi-granularity residual spatial attention model
was designed in the spatial dimension. In the multi-granularity space, the spatial features
were further refined to obtain finer spatial features. Finally, in order to eliminate the adverse
effects of local connectivity in the model and focus on the spatial structure information
of more data, a MLP model was introduced, with a focus on learning spectral-spatial
features to enhance the overall model’s feature capture ability. The main contributions are
summarized as follows:

1. This paper proposes a weakly supervised feature learning architecture combined with
multi-model attention, which can build a more robust network that can classify noisy
samples more stably and accurately;

2. In order to enhance the constraint of spectral dimension on noisy samples, multiple
sets of residual spectral attention models were designed to enhance the ability to learn
clean samples and weaken the model’s fitting ability for noisy samples;

3. In order to improve the utilization of clean samples in weakly supervised models,
a multi-granularity residual spatial attention model was designed to gradually ex-
tract clean sample information from spatial dimensions and obtain more significant
features;

4. We introduced a MLP model to further extract spectral-spatial features, eliminate the
adverse effects of local connectivity of the model, pay more attention to the spatial
structure information of the data, and improve the overall model’s anti-interference
ability against noise.

2. Methodology

In this section, we will introduce the main architecture of WSFL in detail as shown
in Figure 1, including multi-group residual spectral attention model (MGRSAM), multi-
granularity residual spatial attention model (MRSAM), MLP model, noise loss function
and Lion optimizer. In addition, samples labeled incorrectly are called noisy samples,
and samples labeled correctly are called clean samples. First, the 3D data cube is input
to MGRSAM and MRSAM to extract spectral and spatial features. In MGRSAM, the first
two convolutional layers are used to perform coarse feature extraction on the spectral
dimension. Subsequently, the extracted features are mapped to multiple sets of spectral
feature spaces through the Group Convolution (GConv) layer to reduce the model’s ability
to fit noise samples. In addition, the features of the first layer are mapped into this space by
means of skip connections, which solves the problem of gradient descent due to the increase
in network depth. Secondly, the output features are mapped to the spectral feature attention
space, focusing on extracting clean samples’ features and suppressing the influence of noisy
samples.

2.1. Spectral and Spatial Feature Extraction

In order to improve the robustness and generalization ability of image classification
with noisy labels, this paper addresses two aspects separately. On the one hand, in response
to the fact of neural networks easily remembering clean samples in the early stage and
gradually remembering noisy samples in the later stage, this paper designs multiple sets of
residual spectral attention models in the spectral dimension of hyperspectral data. In the
early training of the spectral dimension, rough extraction of spectral dimension features is
performed to obtain higher quality feature maps and enhance noise resistance. Secondly, in
the later training, in order to avoid the model overfitting the features of noisy samples, the
input features are mapped to multiple sets of spectral feature spaces, and the later spectral
features are processed in a grouping manner. Each set of spectral features is finely extracted
to avoid a single layer of spectral features being too concentrated, thus memorizing the
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noisy samples. Secondly, while reducing the fitting of noise samples, the ability to fit clean
samples is strengthened, and more clean spectral features are learned through the spectral
attention model.
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On the other hand, a multi-granularity residual spatial attention model is designed in
the spatial dimension of HSI to solve the problem that supervised learning is too dependent
on labeled samples and easy to overfit noisy samples. In early training of spatial dimensions,
learning more discriminative spatial features through the spatial attention space weakens
the spatial feature weights of noisy samples. Secondly, we map the input features to
a multi-granularity space, extract important features in the spatial domain, obtain the
similarity features of a large number of positive and negative sample pairs, mine the
feature representation information of the dataset, obtain predictive tags, and reduce the
dependence of supervised learning on labels. These two parts will be introduced in detail
as follows.

2.1.1. Spectral Feature Extraction

This paper carefully designed the network architecture in the spectral dimension of
hyperspectral data. In the early training of spectral dimension, the focus is on obtaining
higher quality feature maps to improve the anti-noise ability of spectral dimension in the
early stage. Secondly, in order to prevent the model from overfitting noisy samples in the
later training, different channels are grouped to avoid excessive concentration of noise
features in one layer, reducing the ability of spectral dimension to overfitting noisy samples
in the later stage. However, this approach also reduces the ability to fit clean samples.
To achieve this, spectral feature attention space is used to focus on more discriminative
clean sample features among numerous features, while suppressing unnecessary noise
information and enhancing the spectral dimension’s ability to fit clean samples in the later
stage. Multiple residual spectral attention models are composed of convolutional layers,
spectral feature attention spaces, multiple spectral feature spaces, and residual blocks, as
shown in Figure 2.
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Figure 2. Multiple groups residual spectral attention model.

In the early training process of spectral dimension, we use a 1 × 1 × 7 convolutional
layer for coarse feature extraction. The step of the first convolutional kernel is (1, 1, 2) to
remove information redundancy in adjacent bands, allowing the model to focus on more
important spectral features and maintain the original spatial correlation, improving the
early noise resistance of the spectral dimension model.

In the later stage of spectral dimension training, when the concatenated features of
the spectral dimension are mapped to multiple sets of spectral feature spaces, different
channels are grouped to prevent noise features from being too concentrated in one layer,
and to avoid fitting noisy samples in that layer and affecting the overall training of the
spectral dimension in the later stage. Multiple spectral feature spaces can reduce the ability
of later models to fit noisy samples. In addition, feature extraction for each group of spectral
features can also better explore spectral information and enhance the noise resistance of
multiple spectral feature spaces.

As shown in Figure 3, there are multiple groups of spectral feature spaces, where
Group = 3 and the size of each group of feature maps is H×W × C1/3, which corresponds
to the height, width, and number of channels. The size of each group of convolution kernels
is h1 × w1 × C1/3, which corresponds to the height, width, and number of channels of the
convolution kernels. Convolution is performed in the corresponding group, and the output
features are obtained by stacking the output features.
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Although the fitting ability of noisy samples can be effectively reduced in multiple
sets of feature spectral spaces, it also reduces the fitting ability of clean samples. In order to
enhance the feature capture ability of clean samples in the later stage of spectral dimension,
the features Zc output from multiple sets of spectral feature spaces are mapped to the
spectral attention space. In this space, different features have different weights, and the
allocation of weights is based on similarity. Features with high similarity are considered
clean sample features, while features with low similarity are considered noisy sample
features.

Firstly, we transform Zc from top to bottom to obtain Kc, Qc, and Vc representing the
key vector, query vector, and numerical vector, respectively. The subscript c represents the
channel attention module, P × P is the spatial dimension with a channel count of 48. We
calculate and compare the similarity between Kc and Qc, as shown in Formula (1).

fc = KcQT
c (1)

Then, the Softmax classifier is used to obtain the pixel weight matrix Wc, where Wc(i, j)
represents the similarity of pixel i to pixel j.

Wc(i, j) =
e f (i,j)

p×p
∑

j=1
e f (i,j)

(2)

The spectral attention feature is obtained by multiplying Vc and Wc
T, and the spectral

attention feature obtained by weighting Vc with Wc
T is a discriminative feature.

Ac = WT
c Vc (3)

Finally, we transform the channel attention feature into A∗c , so that its dimension is the
same as the input feature, and add the spectral attention feature to the later training, as
shown in Formula (4).

Z∗c = A∗c + Zc (4)

2.1.2. Spatial Feature Extraction

For spatial feature extraction, residual networks can effectively extract spatial features
and prevent overfitting. However, the presence of noise samples can easily lead to a
portion of the noise sample features being transmitted to the lower layer after each jump
connection. In order to obtain more significant semantic features, noise information around
the target pixel is suppressed at different spatial positions, highlighting clean sample
features, improving the model’s efficiency in feature utilization, and reducing the model’s
dependence on annotated data.

This paper designs a network architecture in the hyperspectral spatial dimension. In
the early training of the spatial dimension, the attention space of spatial features is used
to generate a weight value for each pixel in the input patch. This is done to suppress
the negative impact of noisy samples on feature extraction and thereby strengthen spatial
texture features. The size of the patch is 7 × 7. Compared to smaller domains, larger
domains mean that the input contains more spatial information, which will also increase
the number of noisy samples. Hence, relying solely on spatial feature attention space cannot
completely reduce the interference of noise samples in spatial dimensions. Therefore, in
the later training of the spatial dimension, each layer of feature maps is separated from
one another through multi-granularity space, and each feature map is further subdivided
into 3 × 3 regions, where multi-granularity refers to the processing and extraction of
features in feature maps at different levels. In a multi-granularity space, emphasis is placed
on the ground feature information within the granularity to obtain more discriminative
spatial features and further enhance the feature capture ability for clean samples. The
multi-granularity residual spatial attention model consists of convolutional layers, spatial
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feature attention spaces, multi-granularity spaces, and residual blocks, with an architecture
shown in Figure 4.
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In early training of the spatial dimensions, 3D convolution is first used to map hyper-
spectral data to a multi-granular residual spatial attention model with only one band, and
the convolution kernel size is 1 × 1 × 102. Then the coarse feature extraction is performed
using the first layer of convolution, and the domain patch size of 7 × 7 is mapped to the
attention space of spatial features. In order to better process spatial information, both the
second and third convolutional layers use a 2D convolution size of 3 × 3 extracts of spatial
features, and after each convolution, they are cascaded with a BatchNorm (BN) layer and a
ReLU layer.

Firstly, a convolution operation is performed on input Zs to obtain three feature maps,
namely Ks, Qs, and Vs from top to bottom, where the subscript s represents the weight of
the convolutional layer for spatial attention modules WK, WQ, and WV , respectively. BK, BQ,
and BV represent bias terms. The three feature maps are obtained as shown in Formula (5).

Ks = Conv(Zs, WK) + BK
Qs = Conv(Zs, WQ) + BQ
Vs = Conv(Zs, WV) + BV

(5)

We transform three feature maps to obtain KT
s , Qs, and Vs, and multiply KT

s by Qs to
calculate the correlation of pixels in the spatial feature map, as shown in Formula (6).

fs = KT
s Qs (6)

Then, Softmax is used to obtain the pixel weight matrix Ws, where Ws(i, j) represents
the impact of pixel i on pixel j. Similarly, a larger weight value indicates a stronger
correlation between spatial pixels, as shown in Equation (7).

WS(i, j) =
e f (i,j)

p×p
∑

j=1
e f (i,j)

(7)
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Subsequently, by multiplying Vs and Ws
T to obtain spatial attention features, the

spatial features with significant weight are more helpful in improving classification results,
as shown in Formula (8).

As = WT
s Vs (8)

Finally, we transform the spatial attention feature into A∗S, and add the spatial attention
feature to the input until convergence, as shown in Formula (9).

Z∗S = A∗S + ZS (9)

During the space dimension post training, we use residual blocks to concatenate the
output of the first layer network with the output Z∗s of the spatial attention feature space in a
spatial dimension of 7 × 7, which is divided into 3 × 3 regions in a multi-granularity space.
The region forms different particles, with varying levels of information contained within
each particle. The purpose of multi-granularity is to reduce the concentration of noisy
sample features in a certain part of the feature map, thereby affecting the feature information
of adjacent clean samples. The multi-granularity space is shown in Figure 5. After multi-
granularity, the features exist in the form of particles, weakening the interference of other
particles and re-extracting more significant feature information from each particle. The
particle size is the size of the convolution kernel in deep convolution. Assuming that the
feature map of the multi-granularity residual spectral attention model is I′ ∈ Rw×h×c, deep
convolution divides the feature map into several semantic markers of different granularity.
w is the width of the feature map and h is the height of the feature map; c is the number of
bands. Ti can be obtained by Formula (10).

Ti = DWConv2Di(I′), i = 1, 2, . . . (10)

i represents the ith granularity branch, and DWConv2D represents a two-dimensional
deep convolution operation. By setting the size of deep convolution, the granularity can be
adjusted.
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2.2. Spectral-Spatial Feature Extraction

At present, most algorithms for noise label classification only use a single network
model for classification, which has lower binding force on noise labels and higher mis-
judgment rate compared to multiple network models. Based on the above reasons, after
redesigning the architecture of spectral and spatial dimensions, this article also uses the
MLP model to further obtain spectral-spatial features for the fused spectral-spatial features.
The MLP model is cascaded with multiple sets of residual spectral attention models and
multi-granularity residual spatial attention models to form a weakly supervised feature
learning architecture, and noise labels are constrained by different models in different
dimensions.

As a neural network with fewer constraints, MLP can eliminate the adverse effects of
local connectivity, thus enabling the model to have strong discrimination ability for small
differences in the local field of view, effectively extract deep features, achieve accurate
acquisition of spectral-spatial structure information, and further reduce the interference of
noisy samples in the model [31].Therefore, this paper introduces the MLP neural network
as the final model for processing spectral-spatial dimensions.
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In this section, first, the concat function is used to simultaneously integrate spectral
and spatial information of the data, integrating dimension 128 × 7 × 7 spectral information
and dimension 24 × 7 × 7 spatial information, resulting in dimension 152 × 7 × 7 feature
maps that combine spectral and spatial information, followed by the use of the average
pooling layer size of 7 × 7 to reduce the size of feature maps while maintaining spatial
information, thereby reducing the number of parameters that need to be optimized in
the network, resulting in a vector size of 152 × 1. Finally, the vector is input to an MLP
composed of the full connection layer, the GELU activation function, and the Dropout
layer, and propagates forward to complete the final classification. Through the multi-layer
perceptron classifier, the spectral-spatial dimension feature information can be further
obtained, and the feature information of the noise label can be constrained to the greatest
extent.

Next, MLP will be introduced as shown in Figure 6, which consists of three parts:
full connection layer (FC), the GELU activation function, and the Dropout layer, in which
the layers are fully connected. By introducing the GELU activation function to process
data, when the input is negative, the input will be mapped to a non-zero value, so as to
avoid the problem that some neurons of the ReLU activation function are invalid, and
retain the characteristic information of the model in the negative signal, increasing the
learning ability of MLP models for small differences within local features. In addition, by
randomly discarding the values of 0.1% of neurons through the Dropout layer, overfitting
of the model is avoided.
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2.3. Lion Optimization

Hyperspectral data contain noise samples, which makes each batch of training have
many confounding data points. If a small training batch is used, when the number of noise
samples extracted from the batch is greater than the number of clean samples, the model
will not be able to fully learn the features of clean samples. Therefore, we increase the
number of batch sizes and the number of learnable samples per batch during each training
phase. However, the currently popular AdamW optimizers often apply small batch sizes.

AdamW :=



mt = β1 ×mt−1 + (1− β1)× gt
vt = β2 × vt−1 + (1− β2)× g2

t
m̂t = mt/(1− βt

1)
v̂t = vt/(1− βt

2)
ut = m̂t/(

√
v̂t + ε) + λtθt−1

θt = θt−1 − ηtµt

(11)

Compared to AdamW and various adaptive optimizers that require both first-order
and second-order moments to be saved simultaneously, Lion only requires momentum,
reducing the additional memory footprint by half, which will be beneficial for training
large models and batch sizes [32]. Therefore, this paper introduces the Lion optimizer to
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simplify the process of parameter updating. Taking the tth iteration of gradient descent as
an example, the Lion optimizer process is shown in Formula (15).

Lion :=


ut = sign(β1 ×mt−1 + (1− β1)× gt) + λtθt−1
θt = θt−1 − ηtµt
mt = β2 ×mt−1 + (1− β2)× gt

(12)

When the input value is positive, sign is 1, and when the input value is negative, sign
is −1. mt and vt are the first order momentum term and the second order momentum term,
respectively, β1 and β2 are the default values of the hyperparameters with 0.9 and 0.99, the
deviation correction values of mt and vt are m̂t and v̂t, and gt is the gradient of the loss
function of the current sample.

3. Results

In order to verify the accuracy and efficiency of the proposed model, experiments
were conducted on three datasets, and the model was evaluated using three evaluation
criteria: overall accuracy (OA), average accuracy (AA), and Kappa coefficient. At the same
time, this paper also studied the running time of each model to evaluate its efficiency.

3.1. The Description of Public HSI Datasets

In this paper, three widely used HSI datasets, including Pavia Center (PC) [33], WHU-
Hi-LongKou (LK) [34], and HangZhou (HZ) [35], are employed in the experiments.

The Pavia Center dataset was captured by the ROSIS sensor during a flight campaign
over Pavia, Northern Italy. It consists of 1906 × 715 pixels with a spatial resolution of 1.3m.
After removing 13 bad bands, it has 102 bands(430~860nm). The ground truth contains
nine classes representing a typical urban site. The WHU-Hi-LongKou dataset covers a
simple agricultural area and was captured by an 8mm focal length steeple-wall Headwall
Nano-HyperSpec sensor equipped with a receiver Matrix 600 Pro UAV platform with six
kinds of crops. The image size was 550 × 400 pixels, with 270 bands ranging from 400
to 1000 nm. The Hangzhou dataset was obtained by the EO-1 Hyperion hyperspectral
sensor, which kept 198 bands after removing 22 bad bands and 590 × 230 pixels. The
false-color images and corresponding ground-truth maps of the three datasets can be seen
in Tables 1–3.

Table 1. The Number of Samples of the PC Dataset.

Class Class Name Samples Color False-Color Map Ground-Truth Map

C1 Water 65,971
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form with six kinds of crops. The image size was 550 × 400 pixels, with 270 bands rang-
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Class Name Samples Color False-Color Map Ground-Truth Map 
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C2 Cotton 8374  
C3 Sesame 3031  
C4 Broad-leaf soybean 63,212  
C5 Narrow-leaf soybean 4151  
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C7 Water 67,056  
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C9 Mixed weed 5229  

 Background   
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Remote Sens. 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

3.1. The Description of Public HSI Datasets 
In this paper, three widely used HSI datasets, including Pavia Center (PC) [33], 

WHU-Hi-LongKou (LK) [34], and HangZhou (HZ) [35], are employed in the experi-
ments. 

The Pavia Center dataset was captured by the ROSIS sensor during a flight cam-
paign over Pavia, Northern Italy. It consists of 1906 × 715 pixels with a spatial resolution 
of 1.3m. After removing 13 bad bands, it has 102 bands(430~860nm). The ground truth 
contains nine classes representing a typical urban site. The WHU-Hi-LongKou dataset 
covers a simple agricultural area and was captured by an 8mm focal length steeple-wall 
Headwall Nano-HyperSpec sensor equipped with a receiver Matrix 600 Pro UAV plat-
form with six kinds of crops. The image size was 550 × 400 pixels, with 270 bands rang-
ing from 400 to 1000 nm. The Hangzhou dataset was obtained by the EO-1 Hyperion 
hyperspectral sensor, which kept 198 bands after removing 22 bad bands and 590 × 230 
pixels. The false-color images and corresponding ground-truth maps of the three da-
tasets can be seen in Tables 1–3.  

Table 1. The Number of Samples of the PC Dataset. 

Class Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Water 65,971  

 

C2 Trees 7598  
C3 Asphalt 3090  
C4 Self-blocking Bricks 2685  
C5 Bitumen 6584  
C6 Tiles 9248  
C7 Shadows 7287 
C8 Meadows 42,826  
C9 Bare soil 2863  

 Background   
Total 148,152    

Table 2. The Number of Samples of the LK Dataset. 

Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Corn 34,511  

  

C2 Cotton 8374  
C3 Sesame 3031  
C4 Broad-leaf soybean 63,212  
C5 Narrow-leaf soybean 4151  
C6 Rice 11,854  
C7 Water 67,056  
C8 Roads and houses 7124  
C9 Mixed weed 5229  

 Background   
Total 204,542    

  

C8 Meadows 42,826

Remote Sens. 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

3.1. The Description of Public HSI Datasets 
In this paper, three widely used HSI datasets, including Pavia Center (PC) [33], 

WHU-Hi-LongKou (LK) [34], and HangZhou (HZ) [35], are employed in the experi-
ments. 

The Pavia Center dataset was captured by the ROSIS sensor during a flight cam-
paign over Pavia, Northern Italy. It consists of 1906 × 715 pixels with a spatial resolution 
of 1.3m. After removing 13 bad bands, it has 102 bands(430~860nm). The ground truth 
contains nine classes representing a typical urban site. The WHU-Hi-LongKou dataset 
covers a simple agricultural area and was captured by an 8mm focal length steeple-wall 
Headwall Nano-HyperSpec sensor equipped with a receiver Matrix 600 Pro UAV plat-
form with six kinds of crops. The image size was 550 × 400 pixels, with 270 bands rang-
ing from 400 to 1000 nm. The Hangzhou dataset was obtained by the EO-1 Hyperion 
hyperspectral sensor, which kept 198 bands after removing 22 bad bands and 590 × 230 
pixels. The false-color images and corresponding ground-truth maps of the three da-
tasets can be seen in Tables 1–3.  

Table 1. The Number of Samples of the PC Dataset. 

Class Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Water 65,971  

 

C2 Trees 7598  
C3 Asphalt 3090  
C4 Self-blocking Bricks 2685  
C5 Bitumen 6584  
C6 Tiles 9248  
C7 Shadows 7287 
C8 Meadows 42,826  
C9 Bare soil 2863  

 Background   
Total 148,152    

Table 2. The Number of Samples of the LK Dataset. 

Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Corn 34,511  

  

C2 Cotton 8374  
C3 Sesame 3031  
C4 Broad-leaf soybean 63,212  
C5 Narrow-leaf soybean 4151  
C6 Rice 11,854  
C7 Water 67,056  
C8 Roads and houses 7124  
C9 Mixed weed 5229  

 Background   
Total 204,542    

  

C9 Bare soil 2863

Remote Sens. 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

3.1. The Description of Public HSI Datasets 
In this paper, three widely used HSI datasets, including Pavia Center (PC) [33], 

WHU-Hi-LongKou (LK) [34], and HangZhou (HZ) [35], are employed in the experi-
ments. 

The Pavia Center dataset was captured by the ROSIS sensor during a flight cam-
paign over Pavia, Northern Italy. It consists of 1906 × 715 pixels with a spatial resolution 
of 1.3m. After removing 13 bad bands, it has 102 bands(430~860nm). The ground truth 
contains nine classes representing a typical urban site. The WHU-Hi-LongKou dataset 
covers a simple agricultural area and was captured by an 8mm focal length steeple-wall 
Headwall Nano-HyperSpec sensor equipped with a receiver Matrix 600 Pro UAV plat-
form with six kinds of crops. The image size was 550 × 400 pixels, with 270 bands rang-
ing from 400 to 1000 nm. The Hangzhou dataset was obtained by the EO-1 Hyperion 
hyperspectral sensor, which kept 198 bands after removing 22 bad bands and 590 × 230 
pixels. The false-color images and corresponding ground-truth maps of the three da-
tasets can be seen in Tables 1–3.  

Table 1. The Number of Samples of the PC Dataset. 

Class Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Water 65,971  

 

C2 Trees 7598  
C3 Asphalt 3090  
C4 Self-blocking Bricks 2685  
C5 Bitumen 6584  
C6 Tiles 9248  
C7 Shadows 7287 
C8 Meadows 42,826  
C9 Bare soil 2863  

 Background   
Total 148,152    

Table 2. The Number of Samples of the LK Dataset. 

Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Corn 34,511  

  

C2 Cotton 8374  
C3 Sesame 3031  
C4 Broad-leaf soybean 63,212  
C5 Narrow-leaf soybean 4151  
C6 Rice 11,854  
C7 Water 67,056  
C8 Roads and houses 7124  
C9 Mixed weed 5229  

 Background   
Total 204,542    

  

Background

Remote Sens. 2023, 14, x FOR PEER REVIEW 11 of 24 
 

 

3.1. The Description of Public HSI Datasets 
In this paper, three widely used HSI datasets, including Pavia Center (PC) [33], 

WHU-Hi-LongKou (LK) [34], and HangZhou (HZ) [35], are employed in the experi-
ments. 

The Pavia Center dataset was captured by the ROSIS sensor during a flight cam-
paign over Pavia, Northern Italy. It consists of 1906 × 715 pixels with a spatial resolution 
of 1.3m. After removing 13 bad bands, it has 102 bands(430~860nm). The ground truth 
contains nine classes representing a typical urban site. The WHU-Hi-LongKou dataset 
covers a simple agricultural area and was captured by an 8mm focal length steeple-wall 
Headwall Nano-HyperSpec sensor equipped with a receiver Matrix 600 Pro UAV plat-
form with six kinds of crops. The image size was 550 × 400 pixels, with 270 bands rang-
ing from 400 to 1000 nm. The Hangzhou dataset was obtained by the EO-1 Hyperion 
hyperspectral sensor, which kept 198 bands after removing 22 bad bands and 590 × 230 
pixels. The false-color images and corresponding ground-truth maps of the three da-
tasets can be seen in Tables 1–3.  

Table 1. The Number of Samples of the PC Dataset. 

Class Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Water 65,971  

 

C2 Trees 7598  
C3 Asphalt 3090  
C4 Self-blocking Bricks 2685  
C5 Bitumen 6584  
C6 Tiles 9248  
C7 Shadows 7287 
C8 Meadows 42,826  
C9 Bare soil 2863  

 Background   
Total 148,152    

Table 2. The Number of Samples of the LK Dataset. 

Class Name Samples Color False-Color Map Ground-Truth Map 
C1 Corn 34,511  

  

C2 Cotton 8374  
C3 Sesame 3031  
C4 Broad-leaf soybean 63,212  
C5 Narrow-leaf soybean 4151  
C6 Rice 11,854  
C7 Water 67,056  
C8 Roads and houses 7124  
C9 Mixed weed 5229  

 Background   
Total 204,542    

  

Total 148,152



Remote Sens. 2023, 15, 4994 11 of 24

Table 2. The Number of Samples of the LK Dataset.

Class Name Samples Color False-Color Map Ground-Truth Map

C1 Corn 34,511
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Table 3. The Number of Samples of the HZ Dataset.

Class Name Samples Color False-Color Map Ground-Truth Map

C1 Water 18,043
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demonstrated that the WSFL model is still the best performing model without adding 
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3.2. Experimental Setting

The GPU server used in this article is manufactured by Finehoo Technology Co.,
Ltd., located in Shanghai, China. The Python version used is 3.7. The experimental
environment was an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor, 128 GB
running memory (RAM), and NVIDIA GeForce RTX 2080Ti GPU. In addition, the deep
learning framework was Pytorch and Tensorflow. The initial learning rate was set to
0.00012, the Lion optimization algorithm was used for training models, and the number of
iterations was set to 6000. At the same time, in order to reduce the randomness brought
by training samples, each experiment was repeated 10 times and the average accuracy is
taken as the final experimental result. In order to evaluate the effectiveness of the model
in this paper, the model in this paper is compared with five other algorithms, including
Depthwise separable neural network (DSNN) [36], 2DCNN [37], 3DCNN [38], SSRN [39],
and the advanced classification network with noisy samples, dual channel residual network
(DCRN) [30]. The learning rate of DSNN, 2DCNN, 3DCNN, SSRN, and DCRN was set to
0.001, the optimizer was AdamW, the early stop method was used to train the network,
and the epoch was set to 4000.

3.3. Classification Results of Different Methods

Tables 4–6, respectively, show the classification results of different methods in 24 clean
samples of each class for PC, LK, and HZ data. It can be found that the OA of WSFL is
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the highest, with 98.77%, 97.58%, and 80.14%, respectively. Taking HZ data as an example,
WSFL increased by 0.62%, 0.95%, 3.74%, 5.63%, and 3.05% compared to DCRN, SSRN,
3DCNN, 2DCNN, and DSNN, respectively. In summary, it can be fully demonstrated that
the WSFL model is still the best performing model without adding noise samples.

Table 4. The classification results of the PC dataset by different methods.

Class DSNN 2DCNN 3DCNN SSRN DCRN WSFL

C1 99.71 ± 0.09 99.60 ± 0.01 99.27 ± 0.49 99.73 ± 0.14 99.48 ± 0.10 99.81 ± 0.14
C2 90.19 ± 9.44 82.21 ± 3.70 92.25 ± 1.80 94.51 ± 4.90 92.51 ± 1.97 91.82 ± 0.95
C3 59.90 ± 12.25 95.21 ± 0.82 90.24 ± 3.44 98.19 ± 0.56 96.46 ± 0.35 97.92 ± 0.77
C4 73.76 ± 9.60 73.91 ± 9.52 86.52 ± 7.75 99.77 ± 0.09 98.82 ± 0.17 99.71 ± 0.06
C5 73.71 ± 10.33 86.72 ± 7.86 90.37 ± 2.94 85.84 ± 3.10 93.07 ± 1.83 97.59 ± 1.78
C6 67.40 ± 12.41 99.22 ± 0.06 90.95 ± 4.59 99.21 ± 0.20 99.86 ± 0.10 98.52 ± 0.39
C7 77.62 ± 5.93 67.45 ± 9.44 86.45 ± 3.79 97.36 ± 1.67 93.54 ± 5.03 95.39 ± 2.80
C8 96.33 ± 0.98 99.07 ± 0.06 96.56 ± 2.16 99.46 ± 0.34 99.74 ± 0.11 99.51 ± 0.16
C9 99.96 ± 0.09 100.00 ± 0.00 95.51 ± 0.98 100 ± 0.00 99.93 ± 0.01 98.42 ± 0.32

OA (%) 92.68 ± 1.81 95.87 ± 0.28 96.10 ± 0.43 98.60 ± 0.61 98.58 ± 0.27 98.84 ± 0.40
AA (%) 82.06 ± 3.26 89.26 ± 1.09 92.01 ± 0.54 97.11 ± 1.32 97.04 ± 0.66 97.75 ± 0.55
Kappa 89.56 ± 2.53 94.33 ± 0.39 94.54 ± 0.59 98.01 ± 0.86 98.01 ± 0.38 98.36 ± 0.32

Table 5. The classification results of the LK dataset by different methods.

Class DSNN 2DCNN 3DCNN SSRN DCRN WSFL

C1 96.97 ± 2.58 87.62 ± 6.14 95.94 ± 2.51 97.51 ± 1.02 98.94 ± 0.09 92.62 ± 0.35
C2 83.04 ± 10.08 68.48 ± 9.36 63.42 ± 8.84 94.97 ± 4.06 98.96 ± 0.92 99.27 ± 0.66
C3 68.86 ± 11.83 73.83 ± 7.90 85.10 ± 3.90 99.54 ± 0.10 99.84 ± 0.12 99.92 ± 0.06
C4 82.64 ± 10.30 70.87 ± 4.07 75.54 ± 1.52 86.71 ± 6.28 93.95 ± 2.23 98.12 ± 0.98
C5 55.38 ± 16.30 56.25 ± 10.30 74.73 ± 7.86 97.63 ± 2.06 99.37 ± 0.50 97.82 ± 1.16
C6 74.41 ± 6.93 90.11 ± 3.73 94.94 ± 4.08 99.07 ± 0.20 99.74 ± 0.08 99.13 ± 0.22
C7 99.93 ± 0.01 99.92 ± 0.02 99.84 ± 0.07 99.72 ± 0.18 99.41 ± 0.15 99.56 ± 0.30
C8 80.67 ± 12.56 89.15 ± 3.92 79.41 ± 4.48 95.38 ± 3.87 93.02 ± 2.92 96.97 ± 2.08
C9 55.37 ± 13.39 72.96 ± 8.30 83.30 ± 2.53 95.44 ± 2.08 96.51 ± 1.53 96.04 ± 1.25

OA (%) 88.79 ± 1.26 84.67 ± 2.72 88.05 ± 1.61 94.77 ± 1.50 97.34 ± 0.59 97.69 ± 0.26
AA (%) 77.47 ± 6.92 78.79 ± 6.62 83.58 ± 3.34 96.21 ± 2.36 97.74 ± 0.39 97.71 ± 0.51
Kappa 85.39 ± 1.47 80.70 ± 3.37 84.71 ± 2.06 93.25 ± 1.89 96.52 ± 0.77 96.86 ± 0.33

Table 6. The classification results of the HZ dataset by different methods.

Class DSNN 2DCNN 3DCNN SSRN DCRN WSFL

C1 81.10 ± 4.16 88.68 ± 2.65 93.92 ± 2.85 88.62 ± 1.73 89.30 ± 1.15 91.79 ± 1.29
C2 64.96 ± 10.71 71.94 ± 5.08 70.71 ± 2.67 74.35 ± 3.47 76.35 ± 4.63 77.25 ± 4.87
C3 98.65 ± 0.60 73.11 ± 10.52 79.57 ± 3.47 84.20 ± 1.09 81.32 ± 6.31 80.79 ± 2.98

OA (%) 77.07 ± 7.99 74.54 ± 4.80 76.41 ± 1.48 79.17 ± 2.00 79.52 ± 1.21 80.23 ± 1.82
AA (%) 81.57 ± 3.76 77.91 ± 1.39 81.40 ± 1.06 82.39 ± 1.01 82.32 ± 0.95 83.27 ± 0.80
Kappa 62.51 ± 10.40 59.19 ± 4.75 60.66 ± 2.32 64.95 ± 3.05 65.41 ± 1.77 66.51 ± 2.19

3.3.1. Results of PC Datasets with Different Numbers of Noise Samples

The results of using different methods to classify PC datasets are shown in Table 7. In
the PC dataset, 24 samples were taken from each class of clean samples and four, eight, and
12 noisy samples were taken from each class to verify the processing ability of different
deep learning models. It was found that WSFL had the best overall classification results,
reaching 98.52%, 97.50%, and 96.77%, respectively. In addition, the number of training
samples selected in this paper accounts for approximately 0.1944% of the total sample size.
Compared with the approximately 3% training sample size required for other popular
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depth models, the sample size required in this paper is greatly reduced, which can also
prove that the model proposed has a reduced dependence on labeled samples.

Table 7. The classification results of the PC dataset with 24 clean + 4/8/12 noisy samples.

Class

The Number of Clean and Noisy Training Samples

24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL
C1
Std

98.33
0.84

98.88
0.54

98.35
0.53

99.87
0.12

94.07
3.70

97.32
1.39

97.49
1.31

99.53
0.15

86.15
3.39

94.56
4.10

98.14
0.12

98.23
0.10

C2
Std

82.22
1.62

94.75
2.46

93.13
2.84

96.00
2.47

70.41
3.62

91.17
4.99

92.51
3.03

91.07
2.81

54.34
10.35

89.30
6.78

91.00
4.53

92.83
2.39

C3
Std

82.15
2.41

89.77
6.92

91.70
0.48

90.74
1.46

74.38
5.95

87.84
6.90

94.12
1.98

94.22
1.30

62.42
12.65

63.44
4.71

93.89
2.30

86.32
3.50

C4
Std

79.01
3.59

95.62
1.63

96.28
3.21

98.81
1.08

52.66
3.15

88.30
7.29

91.01
4.08

97.99
1.42

44.74
1.73

91.00
8.79

94.50
2.29

92.34
3.25

C5
Std

75.53
6.29

92.55
3.30

96.29
2.67

96.91
2.33

62.45
10.71

92.59
2.33

89.34
1.74

91.02
2.27

47.53
10.01

85.03
8.64

92.03
4.32

92.04
2.91

C6
Std

81.60
7.80

94.42
2.05

96.04
1.06

98.21
0.74

62.99
8.02

89.92
2.37

98.96
0.76

98.28
1.25

50.35
3.66

81.70
1.94

95.73
2.62

98.33
1.22

C7
Std

72.25
2.43

94.70
3.28

94.78
1.07

92.42
1.95

61.85
5.57

91.19
4.77

93.62
1.07

90.81
1.92

52.28
9.03

77.83
5.02

93.59
2.06

91.84
2.37

C8
Std

83.54
6.46

91.24
0.61

97.06
1.25

98.77
0.19

68.04
4.14

91.69
1.59

96.48
2.09

97.54
0.32

56.75
4.26

90.38
2.47

93.28
5.06

97.49
1.00

C9
Std

91.95
7.20

97.60
1.46

98.39
0.32

98.67
0.58

79.55
8.09

95.94
3.72

99.57
0.13

99.62
0.07

75.85
6.19

87.68
7.12

91.16
5.91

96.36
2.13

OA(%)
Std

89.09
2.79

95.42
0.28

97.12
0.80

98.52
0.45

78.98
3.93

94.02
0.95

96.34
1.95

97.50
0.12

68.98
2.00

90.20
2.56

95.44
3.82

96.77
0.71

AA(%)
Std

82.95
2.53

94.39
1.31

95.78
1.60

96.71
1.34

69.60
3.50

91.77
1.21

94.79
0.79

95.57
0.40

58.93
1.31

84.55
0.70

93.70
4.42

93.97
1.81

Kappa
Std

84.82
3.68

93.69
0.40

95.82
1.13

97.91
0.64

71.44
4.85

91.68
1.31

94.87
2.61

96.48
0.17

58.64
1.21

86.40
3.33

93.62
5.99

95.48
1.00

Table 7 shows that in 24 clean samples and four noisy samples, the OA of the proposed
WSFL model reached 98.52%, which is 1.4%, 3.1%, and 9.43% higher than DCRN, SSRN,
and 3DCNN, respectively. Among 24 clean samples and eight noisy samples, our OA
reached 97.50%, which was 1.16%, 3.48%, and 17.52% higher than DCRN, SSRN, and
3DCNN, respectively. Among 24 clean samples and 12 noisy samples, our OA reached
96.77%, which was 1.33%, 6.57%, and 27.79% higher than DCRN, SSRN, and 3DCNN,
respectively. In summary, it can be found that WSFL significantly improves OA under
different noise sample sizes. Although the method proposed in this paper cannot achieve
the best accuracy for each class, out of 24 clean samples and four noisy samples, seven
classes are the best in this paper. Out of 24 clean samples and eight noise samples, six
categories are the best category, and out of 24 clean samples and 12 noise samples, six
categories are the best category. This can also prove that WSFL can better handle noisy
samples compared to models such as DCRN, SSRN, and 3DCNN. As the number of noisy
samples increases, the OA of WSFL decreases by only about 1%, which is acceptable as
a multiple of the number of noisy samples. This fully demonstrates the effectiveness of
WSFL in HSI classification tasks with noisy labels.

Finally, Figure 7 shows the pseudo-color images of the classification results of various
classification methods in the PC dataset. False-color images, as a subjective evaluation
indicator, can more intuitively display the classification effect. From Figure 7, it can be seen
that WSFL has a significant improvement in classification performance compared to DCRN,
SSRN, and 3DCNN. The area of misclassification is greatly reduced, and it is closer to the
true distribution of ground objects.
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Figure 7. The classification results of PC dataset. (a) 3DCNN; (b) SSRN; (c) DCRN; (d) WSFL.

3.3.2. Results of LK Datasets with Different Numbers of Noise Samples

The classification results of LK dataset are shown in Table 8. There are abundant anno-
tated samples in each category of the LK dataset, so all methods perform well. Compared
to other models, the proposed WSFL model achieved the best classification performance,
showing significant improvements in most categories. Although the method proposed
in this paper cannot achieve the best accuracy for each class, out of 24 clean samples and
four noisy samples, as well as out of 24 clean samples and eight noisy samples, all six
classes are considered the best class. Among the 24 clean samples and 12 noisy samples,
seven were the optimal categories, which also proves that WSFL can better handle noisy
samples compared to models such as DCRN, SSRN, and 3DCNN, fully demonstrating the
effectiveness of WSFL in HSI classification tasks with noisy labels.
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Table 8. The classification results of the LK dataset with 24 clean + 4/8/12 noisy samples.

Class

The Number of Clean and Noisy Training Samples

24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

C1
Std

79.28
9.23

94.03
1.45

95.79
2.22

94.97
1.13

60.90
9.68

88.49
4.86

90.38
4.84

94.18
3.62

50.76
7.42

80.23
1.41

87.94
4.02

92.46
3.20

C2
Std

47.53
7.56

92.53
4.32

89.40
5.61

92.86
2.45

44.77
7.54

79.26
11.0

90.30
7.06

81.54
2.97

46.53
3.98

74.26
7.27

86.31
8.84

82.57
4.42

C3
Std

67.64
8.18

91.49
1.60

98.63
0.81

97.73
1.93

55.33
10.02

90.50
5.67

89.52
5.90

90.73
3.41

50.34
7.55

83.88
4.73

86.63
9.83

91.29
5.49

C4
Std

61.17
6.26

89.50
5.24

91.42
4.13

93.33
5.07

48.21
6.79

83.85
5.38

81.86
6.45

82.05
4.49

42.85
3.18

79.11
5.57

77.52
3.02

76.35
2.35

C5
Std

64.15
9.81

89.74
3.60

89.20
4.23

94.42
1.27

44.40
6.80

83.49
8.73

86.42
6.79

91.07
3.85

45.92
10.05

75.83
7.76

81.88
8.45

88.31
7.01

C6
Std

82.62
7.59

96.51
1.60

98.55
1.06

94.13
1.20

62.05
6.20

92.57
5.34

91.83
3.24

93.86
1.17

57.35
8.55

89.79
5.14

80.19
6.15

82.72
4.55

C7
Std

98.63
0.49

98.20
1.06

98.38
0.66

99.70
0.02

96.11
0.83

97.11
1.98

98.23
0.55

99.57
0.18

92.59
1.20

95.01
4.96

96.64
2.31

99.32
0.29

C8
Std

71.44
3.38

87.52
4.91

91.45
2.54

92.34
1.91

58.44
7.05

77.55
7.59

82.76
7.60

83.93
3.60

52.18
2.46

70.39
8.34

76.85
11.07

78.51
8.09

C9
Std

57.81
10.65

88.09
3.83

89.36
1.06

89.52
2.71

47.52
6.75

77.32
3.51

82.75
4.12

80.71
2.50

42.77
6.20

70.33
5.61

73.01
6.31

75.50
2.55

OA(%)
Std

77.63
3.92

93.58
2.00

94.78
1.42

95.68
0.71

67.09
3.80

89.01
2.85

89.85
3.01

90.85
1.58

61.99
2.87

84.42
2.06

86.15
3.73

87.74
1.85

AA(%)
Std

70.03
4.46

91.96
1.07

93.58
1.25

94.33
1.06

57.52
2.50

85.57
2.82

88.23
3.87

88.63
2.26

53.48
4.25

79.87
0.32

83.00
4.42

85.23
2.78

Kappa
Std

71.73
4.72

91.67
2.53

93.22
1.82

94.36
0.88

58.94
4.47

85.82
3.62

86.89
3.78

88.18
2.01

53.07
3.48

79.98
2.49

82.23
4.64

84.28
2.39

Finally, Figure 8 shows the pseudo-color images of various classification methods on
LK dataset. Taking 24 clean + four noise as an example, the broad-leaf soybeans in the
middle part have severe classification confusion. Compared with the DCRN, SSRN, and
3DCNN, the model proposed in this paper has fewer misclassification phenomena and is
closer to the true distribution of ground objects.

3.3.3. Results of HZ Datasets with Different Numbers of Noise Samples

The HZ dataset has the characteristics of small inter-class differences and large intra-
class differences. Therefore, the accuracy rates of various methods are relatively low, among
which the indicators of WSFL are at the best, and OA reaches 79.44%, 72.90%, and 63.57%,
respectively. The classification results of the HZ dataset are shown in Table 9.

Table 9 shows that in 24 clean samples and four noisy samples, the OA of this article
reached 79.44%, which is 1.93%, 2.37%, and 4.72% higher than DCRN, SSRN, and 3DCNN,
respectively. Among 24 clean samples and 12 noisy samples, our OA reached 63.57%,
which was 1.26%, 2.39%, and 4.38% higher than DCRN, SSRN, and 3DCNN, respectively.
For WSFL, out of 24 clean samples and four noisy samples, one class is the best class in this
article. Among 24 clean samples and eight noise samples, as well as 24 clean samples and
12 noise samples, there are two optimal categories.

Finally, Figure 9 shows the pseudo-color images of the classification results on the HZ
dataset. Compared to DCRN, SSRN, and 3DCNN, WSFL has the smallest staggered area of
water.
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Figure 8. The classification results of the LK dataset. (a) 3DCNN; (b) SSRN; (c) DCRN; (d) WSFL.

3.4. The Numbers of Clean and Noisy Samples

In the classification with noisy labels, the number of clean samples is crucial, and even
when there are few available clean samples, the proposed WSFL framework can perform
well in classification. As shown in Tables 10–12, when the number of clean samples in each
category is limited, the proposed WSFL still has relatively good performance. Compared
with DCRN, SSRN, and 3DCNN, the WSFL model has a more robust network structure,
resulting in a significant improvement in performance. In addition, as the number of noise
samples increases, WSFL exhibits a slow performance decline. Therefore, compared to
other methods, WSFL has higher stability.
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Table 9. The classification results of the HZ dataset with 24 clean + 4/8/12 noisy samples.

Class

The Number of Clean and Noisy Training Samples

24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

C1
Std

86.43
4.55

81.07
9.46

81.43
4.13

88.37
3.86

77.53
5.09

71.54
8.98

73.39
5.81

83.05
3.34

77.06
4.86

75.88
8.70

69.43
7.41

81.33
3.20

C2
Std

71.20
5.98

79.61
5.96

76.85
5.35

78.97
2.24

60.06
8.90

58.05
5.60

64.80
3.49

73.07
2.39

51.85
8.49

57.98
9.17

59.52
8.70

62.45
4.57

C3
Std

76.26
2.13

70.40
8.89

77.03
7.67

76.35
3.26

62.12
7.36

75.63
5.30

67.95
7.68

68.03
3.82

65.33
8.46

60.75
9.60

64.51
8.10

57.76
4.37

OA(%)
Std

74.72
3.90

77.07
5.51

77.51
2.87

79.44
1.19

62.99
6.17

65.05
3.31

66.88
2.58

72.90
1.96

59.19
6.37

61.18
3.62

62.31
3.42

63.57
3.28

AA(%)
Std

77.96
2.78

77.03
6.04

78.44
2.90

81.23
1.86

66.57
4.28

68.41
1.70

68.71
1.40

74.72
0.94

64.75
4.90

64.87
1.52

64.49
2.04

67.18
2.02

Kappa
Std

57.61
5.95

60.30
8.62

61.49
4.39

64.84
2.29

40.81
8.50

44.08
4.15

68.71
3.52

54.69
2.39

36.00
8.62

37.42
2.94

39.46
3.90

40.32
3.01
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Table 9 shows that in 24 clean samples and four noisy samples, the OA of this arti-
cle reached 79.44%, which is 1.93%, 2.37%, and 4.72% higher than DCRN, SSRN, and 
3DCNN, respectively. Among 24 clean samples and 12 noisy samples, our OA reached 
63.57%, which was 1.26%, 2.39%, and 4.38% higher than DCRN, SSRN, and 3DCNN, re-
spectively. For WSFL, out of 24 clean samples and four noisy samples, one class is the 
best class in this article. Among 24 clean samples and eight noise samples, as well as 24 
clean samples and 12 noise samples, there are two optimal categories.  

Finally, Figure 9 shows the pseudo-color images of the classification results on the 
HZ dataset. Compared to DCRN, SSRN, and 3DCNN, WSFL has the smallest staggered 
area of water.  
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Figure 9. The classification results of the HZ dataset. (a) 3DCNN; (b) SSRN; (c) DCRN; (d) WSFL.

Table 10. The classification results of the PC dataset with different numbers of clean samples and
noisy samples.

Class

The Numbers of Clean and Noisy Training Samples

8(clean) + 4(noisy) 8 (clean) + 8(noisy) 8(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

67.60
3.91

84.09
4.80

90.96
4.61

94.02
3.03

52.78
4.96

79.55
3.04

82.05
5.41

85.92
4.61

41.50
5.11

61.68
4.97

67.08
8.72

71.35
7.16

AA(%)
Std

57.81
7.67

79.92
7.97

84.36
3.06

86.78
3.21

42.80
5.97

70.72
3.57

67.39
3.63

85.26
2.79

32.65
5.08

55.81
1.63

57.90
6.96

64.29
6.02

Kappa
Std

57.05
5.15

79.01
6.47

87.35
6.21

91.53
4.05

40.60
4.71

72.31
3.36

75.21
7.14

80.74
5.14

27.63
5.22

50.26
5.45

56.60
10.37

62.51
8.15

20(clean) + 4(noisy) 20(clean) + 8(noisy) 20(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

82.16
2.50

94.41
0.81

96.76
0.61

97.61
0.94

73.48
0.46

93.36
1.55

93.92
3.77

96.63
2.05

62.58
3.92

86.14
1.06

91.82
6.25

96.38
2.43

AA(%)
Std

73.83
2.56

92.68
1.85

95.17
0.86

94.04
1.22

63.30
1.01

89.16
1.44

89.89
3.49

94.65
1.77

54.09
1.67

79.85
1.88

88.01
6.64

93.49
3.01

Kappa
Std

75.58
3.44

92.15
1.15

95.43
0.87

96.61
1.32

64.24
0.30

90.69
2.10

91.51
5.12

95.25
2.80

51.74
4.43

81.00
1.44

88.69
8.54

94.89
3.39

24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

89.09
2.79

95.42
0.28

97.12
0.80

98.52
0.45

78.98
3.93

94.02
0.95

96.34
1.95

97.50
0.12

68.98
2.00

90.20
2.56

95.44
3.82

96.77
0.71

AA(%)
Std

82.95
2.53

94.39
1.31

95.78
1.60

96.71
1.34

69.60
3.50

91.77
1.21

94.79
0.79

95.57
0.40

58.93
1.31

84.55
0.70

93.70
4.42

93.97
1.81

Kappa
Std

84.82
3.68

93.69
0.40

95.82
1.13

97.91
0.64

71.44
4.85

91.68
1.31

94.87
2.61

96.48
0.17

58.64
1.21

86.40
3.33

93.62
5.99

95.48
1.00
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Table 11. The classification results of the LK dataset with different numbers of clean samples and
noisy samples.

Metrics
The Numbers of Clean and Noisy Training Samples

8(clean) + 4(noisy) 8 (clean) + 8(noisy) 8(clean) + 12(noisy)
3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

58.65
2.84

80.42
3.72

80.58
5.35

84.63
3.39

51.42
5.28

66.12
7.23

66.40
4.74

68.17
3.79

45.25
4.54

55.71
5.47

56.87
3.71

60.93
3.54

AA(%)
Std

46.53
2.73

74.66
2.33

78.51
1.67

78.45
2.86

36.50
4.83

60.84
4.15

65.69
3.18

66.81
4.05

32.91
2.73

47.92
4.81

51.97
3.09

52.57
2.62

Kappa
Std

49.13
2.96

75.17
4.38

75.55
6.37

80.39
4.02

40.69
6.01

58.16
8.04

58.63
5.56

60.50
4.02

34.25
4.61

46.18
5.94

47.02
3.93

52.10
3.74

Metrics
20(clean) + 4(noisy) 20(clean) + 8(noisy) 20(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

69.08
2.20

87.52
4.74

92.12
2.60

94.83
1.74

66.98
3.09

79.70
3.76

87.63
6.29

89.54
2.79

55.47
5.70

74.68
6.44

81.10
5.51

85.21
2.52

AA(%)
Std

61.24
3.14

86.80
1.20

91.58
1.19

92.19
1.06

55.51
1.02

77.96
3.49

85.63
4.33

88.54
2.15

45.17
5.82

70.92
3.57

79.17
6.98

80.63
2.97

Kappa
Std

61.44
2.56

84.03
5.58

89.82
3.31

93.27
2.22

58.50
3.37

74.53
4.69

84.10
7.87

86.41
3.57

45.17
6.63

68.13
7.64

76.02
7.04

81.07
3.06

Metrics
24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

77.63
3.92

93.58
2.00

94.78
1.42

95.68
0.71

67.09
3.80

89.01
2.85

89.85
3.01

90.85
1.58

61.99
2.87

84.42
2.06

86.15
3.73

87.74
1.85

AA(%)
Std

70.03
4.46

91.96
1.07

93.58
1.25

94.33
1.06

57.52
2.50

85.57
2.82

88.23
3.87

88.63
2.26

53.48
4.25

79.87
0.32

83.00
4.42

85.23
2.78

Kappa
Std

71.73
4.72

91.67
2.53

93.22
1.82

94.36
0.88

58.94
4.47

85.82
3.62

86.89
3.78

88.18
2.01

53.07
3.48

79.98
2.49

82.23
4.64

84.28
2.39

Tables 10–12 show the impact of different numbers of clean and noisy samples on
the PC, LK, and HZ datasets. Taking the PC dataset as an example, the OA of the WSFL
model reached 98.52%, 97.50%, and 96.77%, respectively. Although the OA of WSFL is
also decreasing, compared to other models this model has higher performance. When the
number of noise samples is fixed, the value of OA continuously increases as the number of
clean samples increases. By comparing different clean sample numbers and noise sample
numbers, it can be found that when the clean sample number is 24 and the noise sample
number is four, WSFL has the optimal indicator. In summary, the model in this paper has
better processing ability when dealing with noisy samples, which can also prove that WSFL
has a more robust network structure and stronger feature learning ability.

3.5. Investigation of Running Time

Table 13 gave the computation time comparison for three HSI datasets. In addition,
compared to complex models such as DCRN and SSRN, WSFL is 4.47s faster than DCRN
in PC datasets and 27.4s slower than SSRN. In summary, compared to single model neural
networks such as DSNN, 2DCNN, 3DCNN, etc., WSFL has a significant improvement in
performance despite being slower in time, and the model has stronger anti-interference
ability against noise labels. Secondly, compared to complex models such as DCRN and
SSRN, it ranks second on the PC and LK datasets and third on the HZ dataset. Considering
the balance between accuracy and efficiency, WSFL as proposed in this paper is optimal.
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Table 12. The classification results of the HZ dataset with different numbers of clean samples and
noisy samples.

Metrics

The Numbers of Clean and Noisy Training Samples

8(clean) + 4(noisy) 8(clean) + 8(noisy) 8(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

58.03
4.59

62.36
5.29

62.82
7.45

66.26
5.06

41.66
5.94

44.89
4.76

48.66
8.29

54.97
3.30

35.53
8.79

35.68
4.51

36.60
6.92

43.34
5.26

AA(%)
Std

63.96
3.85

62.26
3.84

67.65
7.73

65.43
5.74

46.75
6.77

47.44
7.91

50.83
10.2

63.48
3.62

38.35
6.02

36.71
5.41

40.64
7.52

40.23
4.79

Kappa
Std

34.77
6.43

38.11
6.51

42.32
10.5

44.69
6.12

10.06
8.20

16.30
7.94

21.04
11.3

32.64
4.89

5.82
4.46

6.44
4.95

7.36
8.21

11.18
4.47

Metrics
20(clean) + 4(noisy) 20(clean) + 8(noisy) 20(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

68.35
4.25

71.09
6.25

73.21
5.03

77.64
4.71

58.25
3.25

64.82
4.67

65.64
5.48

66.62
4.94

58.03
3.72

59.73
4.73

61.70
4.47

61.96
3.27

AA(%)
Std

71.75
2.43

75.48
3.69

75.65
2.70

80.65
2.55

63.30
3.40

68.48
2.11

70.13
3.96

70.96
3.09

62.53
2.70

61.21
2.43

62.39
4.54

65.68
3.97

Kappa
Std

49.23
6.00

52.84
7.93

55.43
6.27

62.26
5.71

33.69
4.90

43.07
5.91

70.13
7.71

45.84
5.49

33.84
5.36

34.69
5.33

37.66
6.36

38.13
4.82

Metrics
24(clean) + 4(noisy) 24(clean) + 8(noisy) 24(clean) + 12(noisy)

3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL 3DCNN SSRN DCRN WSFL

OA(%)
Std

74.72
3.90

77.07
5.51

77.51
2.87

79.44
1.19

62.99
6.17

65.05
3.31

66.88
2.58

72.90
1.96

59.19
6.37

61.18
3.62

62.31
3.42

63.57
3.28

AA(%)
Std

77.96
2.78

77.03
6.04

78.44
2.90

81.23
1.86

66.57
4.28

68.41
1.70

68.71
1.40

74.72
0.94

64.75
4.90

64.87
1.52

64.49
2.04

67.18
2.02

Kappa
Std

57.61
5.95

60.30
8.62

61.49
4.39

64.84
2.29

40.81
8.50

44.08
4.15

68.71
3.52

54.69
2.39

36.00
8.62

37.42
2.94

39.46
3.90

40.32
2.39

Table 13. Computation time comparison for three HSI datasets(s).

Dataset
Algorithm

DSNN 2DCNN 3DCNN SSRN DCRN WSFL

Pavia Center 203.60 207.69 161.21 241.27 273.14 268.67
WHU-Hi-LongKou 89.74 84.97 298.79 390.17 330.76 375.81

HangZhou 56.06 55.83 118.26 151.64 151.92 158.27

4. Discussion
4.1. Effectiveness of the Attention Model

In order to verify the effectiveness of MGRSAM and MRSAM on WSFL, this paper
conducted ablation experiments and compared the OA, AA, and Kappa coefficients of
MGRSAM, MRSAM, and MGRSAM + MRSAM as shown in Table 14. It can be seen that
the simultaneous presence of MGRSAM and MRSAM has indeed improved OA, AA, and
Kappa on the three datasets. However, on the WHU-Hi-LongKou dataset, the AA value of
MRSAM is 0.26% higher than that of MGRSAM and MRSAM, as the accuracy of a certain
class of MRSAM is slightly higher than that of the final method. Although the AA value of
MRSAM has increased on the WHU-Hi-LongKou dataset, compared by OA, Kappa, and
overall, the coexistence of MGRSAM and MRSAM is superior.
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Table 14. The classification effectiveness of different attention models.

Dataset
Algorithm

Index MGRSAM MRSAM MGRSAM + MRSAM

Pavia Center
OA 98.27 98.26 98.52
AA 96.47 96.54 96.71

Kappa 97.55 97.54 97.91

WHU-Hi-LongKou
OA 95.34 95.28 95.68
AA 91.02 94.59 94.33

Kappa 93.93 93.86 94.36

HangZhou
OA 77.78 78.91 79.44
AA 79.14 80.13 81.23

Kappa 62.01 81.23 64.84

4.2. Effectiveness of the MLP Model

In order to verify the effectiveness of the MLP model in the model proposed in this
paper, ablation experiments were conducted as shown in Table 15. It can be observed that
after adding the MLP model, OA, AA and Kappa show a significant increase.

Table 15. The effectiveness of the MLP model on classification results.

Dataset
Algorithm

Index Without MLP With MLP

Pavia Center
OA 98.23 98.52
AA 96.34 96.71

Kappa 97.50 97.91

WHU-Hi-LongKou
OA 95.01 95.68
AA 94.11 94.33

Kappa 93.21 94.36

HangZhou
OA 78.48 79.44
AA 78.38 81.23

Kappa 62.06 64.84

4.3. Effectiveness of the Number of Groups on the Model

In this section, in order to verify the impact of the number of groups in MGRSAM on
the WSFL model, this paper selects two, three, four, six, and eight groups for comparison.
From Figure 10, it can be seen that when the number of groups is three, OA, AA, and Kappa
reach their highest values. Although the AA of three groups in the PC dataset is slightly
lower than the AA of two groups, the improvement in OA, Kappa, and the value of three
in the LK and HZ data are all in the optimal solution, which is acceptable. In addition,
when the group value is changed from three to six, the overall indicator shows a decline
phenomenon, which is because the features are too scattered in the later training of the
spectral dimension. Although the model’s ability to fit noisy labels is significantly reduced,
it also reduces the ability to fit clean samples. Therefore, this paper selects three groups to
train our model, in order to reduce the fitting of noisy samples while retaining the ability to
fit clean samples.
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5. Conclusions

In this article, we propose WSFL, a novel weakly supervised feature learning architec-
ture with the core goal of exploring the robustness of the model to different noise levels.
The uniqueness of WSFL lies in its specific feature learning strategy for noisy labels, where
it can adaptively learn features through multi-model attention adaptive feature learning
without removing noisy samples. This preserves the diversity of features and reduces the
influence of noisy samples on the model.

In addition, different architectures have been designed based on the characteristics
of hyperspectral data in spectral, spatial, and spectral-spatial dimensions. Compared
with other methods, WSFL can effectively capture information in hyperspectral data and
transform it into discriminative feature representations. Specifically, multiple sets of resid-
ual spectral attention models were carefully designed in the spectral dimension, which
differentiated features through multiple sets of spectral feature spaces to avoid excessive
concentration of single layer spectral features and memory of noisy samples. Secondly,
more clean spectral features were learned in the spectral attention space. In addition,
a multi-granularity residual spatial attention model has been carefully designed in the
spatial dimension. In the spatial feature attention space, the similarity between samples
is calculated to reduce the weight of noisy samples and improve the influence of clean
samples. Then, the spatial features are refined in the multi-granularity space to obtain more
discriminative spatial features, improving the quality of capturing spatial features and
enhancing the model’s constraint on noise samples. Finally, the MLP model is introduced
to eliminate the adverse effects of local connectivity in the model, obtaining more spatial
structure information from the HSI dataset.

A large number of experimental results indicate that the framework proposed in this
article surpasses state-of-the-art algorithms and can still achieve good accuracy even in
the presence of a large number of noisy samples. Therefore, the architecture of this article
is more suitable for HSI classification with noisy labels. The future work direction of this
article is to apply the proposed framework to other hyperspectral images, rather than just
processing the aforementioned open-source datasets, in order to enhance the universality
of the model in practice.
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