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Abstract: A smartphone equipped with a Global Navigation Satellite System (GNSS) module can
generate positional information for location-based services. However, GNSS signals are susceptible
to fragility, multipath (MP), and Non-Line-Of-Sight (NLOS) interference, which can lead to a degra-
dation in the accuracy of GNSS positioning on smartphones. Due to limitations in the smartphone’s
antenna, GNSS signal strength is typically lower. Moreover, in urban areas, where smartphones rely
on GNSS, MP and NLOS signals are the primary factors impeding accurate positioning. In this paper,
with the goal of enhancing both the accuracy and robustness of smartphone GNSS positioning, we
propose two methods. Firstly, an optimized particle filter method employing a Krill Herd Algorithm
(KHA) is suggested for the integration of GNSS and Pedestrian Dead Reckoning (PDR). Secondly, a
probabilistic approach is presented to identify faulty GNSS measurements using step distance infor-
mation obtained from the PDR. Experimental tests were conducted using smartphones to evaluate
the performance of the proposed method. The results demonstrate that both the KHA and fault
detection methods effectively enhance the performance of integrated PDR and GNSS.

Keywords: smartphone; PDR; outliers; GNSS

1. Introduction

The smartphone has brought about significant societal changes, incorporating various
sensors such as the Global Navigation Satellite System (GNSS), Inertial Measurement Unit
(IMU), and Magnetometer to provide location services for individuals [1,2]. Typically,
GNSS serves as the primary source for Position, Navigation, and Timing (PNT) information
in a smartphone. However, it’s important to note that GNSS signals may not always yield
optimal PNT results.

In urban environments, GNSS signals can be obstructed by tall buildings, and the
uneven distribution of satellites can lead to a decline in position estimation accuracy [3,4].
Additionally, in certain circumstances, GNSS signals may experience reflections, resulting
in multipath and Non-Line-Of-Sight (NLOS) occurrences that further compromise pseudo-
range and position accuracy. Given these limitations of GNSS, integrating other sensors
with GNSS in smartphones is a common practice to provide a more reliable navigation
solution for pedestrians [3,4].

The Inertial Measurement Unit (IMU), which senses body motions, is a ubiquitous
component in smartphones and comprises accelerometers and gyroscopes [5,6]. Pedestrian
dead reckoning (PDR), which leverages information about pedestrian walking gaits, is
typically built upon IMU and magnetic sensor measurements. The accelerometer data is
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processed to detect steps and estimate step length. Utilizing the heading angle estimated
from the gyroscope and magnetic readings, the pedestrian’s position is updated [6,7].

However, due to the presence of noise in the measurements, PDR can exhibit position
errors that diverge over time. Extensive efforts have been made by scientists to enhance
the accuracy of PDR, with research focusing on improving step detection, step length
estimation, and heading estimation [8–11]. These endeavors have proven effective in
mitigating PDR drift to a certain extent.

The integration of GNSS and PDR presents a more reliable solution for generating
accurate position information. In normal conditions, GNSS can help calibrate PDR errors
and compensate for its inaccuracies. Even in challenging GNSS signal environments,
PDR remains functional and capable of providing position information. For instance,
Rehman et al. employed an extended Kalman filter (EKF) to merge GNSS with the low-cost
MEMS (Microelectromechanical systems) IMU-based PDR in smartphones, resulting in
more precise pedestrian position estimation, especially in multipath environments [12].
Angrisano et al. also applied an EKF to integrate GPS/GLONASS with PDR, calibrating
PDR drifts by fusing position and yaw information from GNSS [13]. Additionally, a Receiver
Autonomous Integrity Monitoring (RAIM) method was implemented to mitigate outliers
in pseudo-range, Doppler, and carrier phase measurements in urban areas, effectively
reducing position errors [13].

Recognizing the limitations of GNSS in deep urban canyons, HSU et al. explored a
3D map-aided GNSS/PDR integration technique for pedestrian navigation, employing an
adaptive Kalman filter (KF) [14]. The 3D map-aided approach was instrumental in mitigat-
ing GNSS multipath errors, significantly enhancing pedestrian navigation accuracy [14]. In
addition to KF-based GNSS/PDR integration, Jiang et al. introduced a Factor Graph Opti-
mization (FGO) method to fuse GNSS/PDR, leveraging the inherent relationships between
historical measurements and states to enhance position estimation performance [15]. Their
research demonstrated that FGO-GNSS/PDR outperformed KF-GNSS/PDR [15].

In GNSS/PDR integration, the choice of integration filter method, the quality of GNSS
measurements, and the performance of PDR are pivotal factors influencing the ultimate
position accuracy. While a significant portion of research efforts has been directed towards
enhancing PDR performance [8–11], there has been limited focus on the integration filter
and GNSS measurement fault detection [13–15]. While the Extended Kalman Filter (EKF) is
widely utilized in most research, Jiang et al. have explored an alternative FGO-GNSS/PDR
integration method [15]. Particle filters have shown promise in integrating Wi-Fi/PDR
and Map/PDR for indoor positioning [16,17], suggesting their potential applicability in
GNSS/PDR integration.

Regarding GNSS fault detection, various approaches have been proposed to identify
and address faults and outliers in GNSS measurements. Hsu et al. employ clean GNSS mea-
surements for consistency checks to detect faults and enhance GNSS position accuracy in
urban canyons [18]. Yang et al. have introduced a practical method to increase the probabil-
ity of excluding incorrect measurements in the GNSS Fault Detection and Exclusion (FDE)
process, along with a theoretical analysis [19]. Beyond standalone GNSS methods, IMU
measurements are also integrated in GNSS/IMU navigation systems. Sun et al. propose a
fault detection method that processes raw IMU measurements and GNSS pseudo-range
measurements to accurately detect and exclude multiple faults from different satellites [20].
In their pursuit to enhance the reliability of the GNSS/IMU integration system in urban
canyons, Yang and Li et al. have designed an adaptive Kalman filter to mitigate the adverse
effects of abnormal GNSS measurements [21]. Additionally, Zhang et al. have introduced a
novel sliding-window fault detection method, incorporating calculated weight factors to
form a gain matrix that adaptively reduces the negative impact of faulty measurements on
the system [22].

In our prior work, we investigated PDR/GNSS integration based on Factor Graph
Optimization (FGO) [14,23]. We integrated PDR position and step length with GNSS posi-
tion to enhance position accuracy. However, we observed that the occurrence of faults and
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measurement outliers can significantly affect position accuracy. Therefore, a fault detection
module is indispensable to ensure accuracy. This paper emphasizes the importance of fault
detection and outlier mitigation in PDR/GNSS integration. Furthermore, we propose the
exploration of PDR step length as a reliable measurement for aiding GNSS fault detection
and enhancing reliability, an aspect that has not been extensively explored in GNSS/PDR
fault detection.

To enhance GNSS/PDR integration performance, we introduce a novel approach
encompassing an intelligent particle filter and a fault detection method, aiming to bolster
both position accuracy and robustness. The contributions of this paper can be outlined
as follows:

(1) The introduction of an intelligent evolutionary algorithm-optimized particle filter
for integrating GNSS and PDR. By incorporating a Krill Herd (KH) algorithm with
the particle filter, we address the issue of particle degeneracy, effectively enhancing
position accuracy.

(2) We present a probabilistic GNSS fault detection method. This method utilizes the
estimated step length derived from accelerometer measurements to construct a proba-
bilistic model for detecting GNSS faults.

The remainder of the paper is organized as follows: Section 2 presents the PDR
mechanism and the KF-GNSS/PDR integration method; Section 3 explains the particle filter
(PF), the KH algorithm, and the KHA-PF-GNSS/PDR; Section 4 illustrates the probabilistic
GNSS fault detection method, including the models and equations; Section 5 presents the
experimental details, results, and analysis; and finally, the discussion, conclusion, and
reference sections are presented.

2. PDR and KF-PDR/GNSS Integration
2.1. PDR Mechanism

Smartphone pedestrian dead reckoning (PDR) is a relative position method which
generates the location information through estimating the step length and heading angle.
Normally, accelerometers, gyroscope and magnetic sensors measurements are processed to
obtain the position information. Figure 1 presents a schematic illustration of smartphone
PDR. Denoting the pedestrian location at epoch k + 1 is pPDR

k+1 , the heading angle and
the step length from k to k + 1 epoch are θk and Lk,k+1; then, the PDR location updating
procedure is expressed as

pPDR
k+1 =

[
pE

k+1
pN

k+1

]
=

[
pE

k + Lk,k+1 · cos(θk)
pN

k + Lk,k+1 · sin(θk)

]
(1)
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Figure 1. Schematic illustration of the PDR. Figure 1. Schematic illustration of the PDR.

According to the position updating model presented in Equation (1), step length and
heading angle are the two key factors determining the PDR position accuracy. Step length
is usually estimated through processing the three-axis accelerometer measurements. The
step length estimation model is expressed as follows [23,24]:

Lk,k+1 = β · [max(Acck)−min(Acck)]
1
4 (2)
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Acck =

√(
acc2

xk
+ acc2

yk
+ acc2

zk

)
(3)

where β denotes a constant which ranges from 0 to 1, and accx,k, accy,k and accz,k denote
the three-axis accelerometers outputs.

2.2. PDR/GNSS Integration

In view of the fact that PDR position errors diverge over time, PDR is usually integrated
with GNSS for more reliable navigation solutions. While GNSS works well, PDR position
errors can be calibrated after integration. In challenging GNSS signal environments, PDR
can still generate navigation solutions. Kalman Filter (KF)-based GNSS/PDR integration is
presented with following equations.

Normally, state and measurement models are the basis of the integrated model. In the
KF-GNSS/PDR integration model, position correction ∆p is utilized as the state vector, and
the difference between the GNSS position and PDR position is employed to compose the
measurement vector.

The state transformation model is expressed as follows [24]:

∆pk+1 = Γk,k+1 · ∆pk + wk+1 (4)

KF-GNSS/PDR integration measurement model is expressed as

zk+1 = pGNSS
k+1 − pPDR

k+1 = Hk,k+1 · ∆pk+1 + vk+1 (5)

where pGNSS
k+1 denotes the GNSS position measurement at the k + 1 epoch; pPDR

k+1 denotes
the PDR position measurement at the k + 1 epoch; Γk,k+1 denotes the state transformation
matrix; Hk,k+1 denotes the observation matrix; wk+1 denotes the state process noise; and
vk+1 denotes the measurement noise.

The “Prediction” procedure in KF is described as with the state and measurement models.

∆p−k+1 = Γk,k+1 · ∆pk (6)

Θ−k+1 = Γk,k+1 ·Θk · (Γk,k+1)
T + QW (7)

where ∆p−k+1 denotes the predicted state vector, and Θ−k+1 denotes the predicted covari-
ance matrix.

∆p̂k+1 = ∆p−k+1 + Kk+1 ·
(

zk+1 −Hk+1 · ∆p−k+1

)
(8)

Kk+1 = Θ−k+1 · (Hk+1)
T
[
Hk+1 ·Θ−k+1(Hk+1)

T+Rk+1

]−1
(9)

Θk+1 = (I2×2 −Kk+1 ·Hk+1) ·Θ−k+1 (10)

where Kk+1 denotes the Kalman gain matrix, and I2×2 denotes an identity matrix with
2× 2 size. KF functions recursively and estimates the state to correct the PDR position. The
corrected PDR position is employed as the output navigation solutions.

3. PDR and KF-PDR/GNSS Integration
3.1. Particle Filter

The fundamental concept behind the particle filter is to leverage a collection of ran-
domly sampled points in the state space to approximate the posterior probability density
function. The state estimate is then derived by computing the mean values of these samples.
Assuming a nonlinear system, it is represented as follows [25]:

xk = f (xk−1, vk−1) (11)
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yk = h(xk, wk) (12)

where xk denotes the state, f (·) denotes the state function, vk−1 denotes the state noise,
yk denotes the measurement, h(·) denotes the observation function, and wk denotes the
measurement noise.

Supposing the initial probability density values of the state p(x0|y0) = p(x0) , then
the prediction can be expressed as

p
(

xk

∣∣∣yy1:k−1

)
=
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (13)

Then, the state updating is described as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(14)

where
p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (15)

The weight function q(x0:k|y1:k) can re-written as

q(x0:k|y1:k) = q(x0)
k

∏
j=1

q
(
xj
∣∣x0:j−1, y1:j

)
(16)

The weights can be expressed as

Wk =
p(y1:k|x0:k)p(x0:k)

q(xk|x0:k−1, y1:k)q(x0:k−1, y1:k)
(17)

Sampling N points
{

xi
k−1

}N

i=1
from p(xk−1|y1:k−1) , the probability density function is

as follows

p(xk−1|y1:k−1) =
N

∑
i=1

wi
k−1δ

(
xk−1 − xi

k−1

)
(18)

where δ(·) denotes the Dirac delta function, and the weighting updating is described as

Wi
k = Wi

k−1

p
(
yk
∣∣xi

k
)

p
(

xi
k

∣∣∣xi
k−1

)
q
(

xi
k

∣∣∣xi
k−1, yk

) (19)

Finally, normalizing the weights, the estimated state is calculated as

Wi
k = Wi

k/
N

∑
i=1

Wi
k (20)

x̃ =
N

∑
i=1

Wi
kxi

k (21)

3.2. Krill Herd (KH) Algorithm

The Krill Herd (KH) algorithm is a bio-inspired intelligent algorithm proposed by
Gandomi [26,27] which simulates the ecological behavior of krill. In nature, the krill
individuals’ position change mainly depends on the following three aspects:

(1) Induced movement: the movement of krill individuals is affected by the other indi-
viduals in the group;

(2) Foraging behavior of krill individuals;



Remote Sens. 2023, 15, 4993 6 of 20

(3) Random diffusion motion of krill individuals.

Therefore, the movement of a krill individual can be expressed as

∆Mi = Ni + Fi + Di (22)

where ∆Mi denotes the position change of the ith krill individual, Ni denotes the movement
induced by other individuals, Fi denotes the movement induced by the foraging behavior,
and Di denotes the movement caused by the random diffusion.

(1) Induced Movement
Krill individual induced movement can be modeled as follows [26]:

Nnew
i = Nmaxαi + ωnNold

i (23)

αi = αlocal
i + α

target
i (24)

where Nmax denotes the maximum induction speed, αi denotes the individual movement
direction, αlocal

i denotes the sum vector of the movement vector of neighbors around the
individual, α

target
i represents the direction vector provided by the optimal individual, Nold

i
denotes the position change from the last epoch, and ωn denotes the weights which range
between 0 and 1.

(2) Foraging Behavior
The foraging behavior of krill individuals mainly has two parameters: position of the

current food source and position of the previous food source. The movement induced by
foraging behavior is expressed as [26]:

Fi = Vf · βi + ω f · Fold
i (25)

where Vf represents the individual foraging speed, βi represents the attractiveness value,
ω f represents the inertia weight, and Fold

i represents the foraging motion vector of the krill
individual in last epoch.

(3) Random Diffusion Motion
The physical random diffusion process of krill individuals can be expressed as fol-

lows [26]:

Di = Dmax ·
(

1− Iter
Itermax

)
· δ (26)

where Dmax represents the maximum diffusion speed, δ denotes a random vector direction
and δ ∈ [−1, 1], Iter represents the current number of iterations, and Itermax represents the
maximum number of iterations.

3.3. KHA-PF PDR/GNSS

In the KHA-PF PDR/GNSS, the PF and KHA are integrated together to fuse the GNSS
and PDR information. In the PF, the particle degradation problem occurs, and KHA is
utilized here to optimize the particle distribution. Particles from PF move according to the
krill herd movement described in Equations (22)–(26). Then, the PF weights are updated
and normalized to obtain optimal estimates. In the conventional PF, the weights of particles
are concentrated on a few particles, and even after a few steps of recursion, only one particle
may have a non-zero weight. After the optimization, the particle degradation is prevented
or the negative influence can be alleviated.

In the KHA-PF PDR/GNSS, the state vector at the k epoch is the pedestrian position
pk. The state is updated based on the PDR according to Equation (1) where heading angle
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and step length are utilized to update the state. After updating the state, the weights Wi
k

are calculated with the predicted states and the measurements from GNSS.

Wi
k ∝ exp

(
−1

2

(
pGNSS

k − p̂k

)T
R−1

(
pGNSS

k − p̂k

))
(27)

where p̂k denotes the predicted state position, and R denotes the covariance matrix of the
measurements noise.

After calculating the weights, the KHA is employed in the particles resampling step.
These particles move according to the KHA method to avoid particle degradation. The
optimized estimation of the state is expressed as:

p̃k =
N

∑
i=1

Wi
k · p̂

i
k (28)

where N denotes the amount of the particles, and p̃k denotes the estimated state as the
ultimate output of the KHA-PF-PDR/GNSS.

4. Fault Detection

GNSS measurement quality determines the GNSS/PDR integration performance, and
GNSS fault detection is critical for ensuring the reliability of the system. As mentioned
above, in the smartphone-based PDR, step length is estimated by processing the accelerom-
eter’s measurements. Figure 2 shows an example of the estimated step length and its
distributions fitted by a Gaussian model.
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Here, we model it as a Gaussian distribution, which is described as

L ∼ N
(

µL
0 ,
(

σL
0

)2
)

(29)
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where L denotes the PDR step length, µL
0 denotes the mean value,

(
σL

0
)2 represents the

variance, and N(·) denotes the Gaussian distribution function.
The distance between the kth epoch and (k + j)th epoch calculated with the PDR step

distance can be expressed as:

(
DPDR

k+j

)2
=

(
j

∑
i=1

Lk+i−1,k+i · sin(θk+i−1)

)2

+

(
j

∑
i=1

Lk+i−1,k+i · cos(θk+i−1)

)2

(30)

where θk+i−1 denotes the PDR heading angle. Distance calculated with the GNSS position
can be expressed as

DGNSS
k+j =

∥∥∥pGNSS
k+j − pGNSS

k

∥∥∥ (31)

where pGNSS
k+j and pGNSS

k denote the GNSS positions corresponding to the PDR (k + j)th

epoch and kth epoch, respectively.
To simplify the model, Equation (28) can be simplified as in the following equation

with the assumption that the pedestrian walks straight.

DPDR
k+j =

j

∑
i=1

Lk+i−1,k+i (32)

Therefore, DPDR
k+j is also subject to a Gaussian distribution, which is expressed as

DPDR
k+j ∼ N

(
j

∑
i=1

(
µL

0,k+i

)
,

j

∑
i=1

(
σL

0,k+i

)2
)

(33)

Supposing that DGNSS
k+j is subject to a Gaussian distribution, its model is expressed as

DGNSS
k+j ∼ N

(
µGNSS

0,k+j ,
(

σGNSS
0,k+j

)2
)

(34)

The difference between DPDR
k+j and DGNSS

k+j can be modeled as

∆k+j = DPDR
k+j − DGNSS

k+j ∼ N

((
j

∑
i=1

(
µL

0,k+i

))
− µGNSS

0,k+j ,
(

σGNSS
0,k+j

)2
+

(
j

∑
i=1

(
σL

0,k+i

)2
))

(35)

Assuming

µ∆
j =

(
j

∑
i=1

(
µL

0,k+i

))
− µGNSS

0,k+j (36)

(
σ∆

j

)2
=
(

σGNSS
0,k+j

)2
+

(
j

∑
i=1

(
σL

0,k+i

)2
)

(37)

Then, Equation (33) can be expressed as

∆k+j = DPDR
k+j − DGNSS

k+j ∼ N
(

µ∆
j ,
(

σ∆
j

))
(38)

Normally, the step distance difference between the GNSS and PDR is nearly zero
under the condition that the pedestrian walks straight. In the smartphone GNSS position
measurement fault detection, a hypothesis test is carried out with a binary decision form.
Specifically, H0: normal; H1: abnormal. Two different mistakes are possible:

(1) False alarm: the detector decides for H1, but actually H0 is true.
(2) Miss, the detector decides for H0, but H1 is true.
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Under the normal condition, the ∆k+j distribution is expressed as

∆k+j = DGNSS
k+j − DPDR

k+j ∼ N
(

0,
(

σ∆
j

))
(39)

Under the abnormal condition, the ∆k+j distribution is expressed as

∆k+j = DGNSS
k+j − DPDR

k+j ∼ N
(

µ∆
j ,
(

σ∆
j

))
(40)

We set a threshold α for ∆k+j, and while ∆k+j < α, the H0 is true. Under this condition,
the false alarm probability is expressed as

p f a = P
(

∆k+j > α
∣∣∣H0

)
= 1− P

(
∆k+j < α

∣∣∣H0

)
= 1− P

(
∆k+j − 0

σ∆
j

<
α− 0

σ∆
j

∣∣∣∣∣H0

)
(41)

where P(·) denotes the Gaussian probability function.
With Equation (37) above, the threshold α can be expressed as

α = σ∆
j · inv_p

(
1− p f a

)
(42)

where inv_p(·) denotes the inverse function of the Gaussian probability P(·).
Under the condition that ∆k+j > α and the H1 is true, the detection probability can be

expressed as

pd = P
(

∆k+j > α
∣∣∣H1

)
= 1− P

(
∆k+j − µ∆

j

σ∆
j

<
α− µ∆

j

σ∆
j

∣∣∣∣∣H1

)
(43)

Substituting the defined threshold α in Equation (39) with Equation (38), the rela-
tionship between the detection probability and false alarm probability is expressed as

pd = 1− P

(
α− µ∆

j

σ∆
j

)
= 1− P

(
inv_p

(
1− p f a

)
−

µ∆
j

σ∆
j

)
(44)

5. Results

To evaluate the performance of KHA-PF and the probabilistic faulty detection method,
experiments were conducted using a smartphone under various conditions. The Huawei
Mate Pro 40 was utilized to gather datasets in two distinct environments. Further details
regarding the equipment and software for dataset collection can be found in our previously
published paper [15].

Initially, tests were carried out in an open-sky sports track where the available satellites
provided an ideal scenario; as depicted in Figure 3a, the reference trajectory of the collected
dataset is shown. In this setting, there were no tall buildings or obstructions affecting GNSS
signal propagation. Consequently, GNSS signals and their distribution were anticipated to
be ideal for generating reliable position information. Subsequently, datasets were collected
in a typical urban environment, as illustrated in Figure 3b in Google Earth. Notably, there
were tall buildings and dense forests lining the narrow roads, which could potentially
introduce GNSS measurement outliers due to signal reflection from the tall buildings and
signal degradation from the surrounding forest.

5.1. Sports Track Experiments in Open-Sky Environments

Two different persons carrying the smartphone walked around the standard sport
track. The KF-PDR/GNSS, PF-PDR/GNSS and KHA-PDR/GNSS methods were utilized
to process the datasets. The horizontal position errors were calculated and are shown in
Figures 4a and 5a. The red line represents the horizontal position results from the KF-
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PDR/GNSS method, and the green line represents the horizontal position results from the
PF-PDR/GNSS. It can be observed that the KHA-PF has the best performance with the
smaller position errors. Here, the both PF and KHA-PF sample value is set to 200.
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The results of the statistical analysis of the horizontal position errors are listed in
Tables 1 and 2. The mean values and the median values of the horizontal position errors are
presented. It can be observed that KHA-PF performs the best. Specifically, for Dataset#01,
the KHA-PF mean position errors decreased by 39.6% compared with KF-PDR/GNSS, and
the median values of the horizontal position errors decreased by 39.5%; for Dataset#02,
the KHA-PF mean and median horizontal position errors improved by 31.5% and 32.8%.
Furthermore. Figures 3b and 4b show the horizontal position errors distribution, which
also support the conclusion that KHA-PF had the better performance. Basically, the hori-
zontal position results show that the KHA method is effective for optimizing the particle
distribution in the PF, which contributes to better position results.
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Table 1. Statistical analysis results.

Mean (m) Median (m)

KF-PDR/GNSS 2.37 2.45

PF-PDR/GNSS 2.22 1.92

KHA-PDR/GNSS 1.34 1.16

Table 2. Statistical analysis results.

Mean (m) Median (m)

KF-PDR/GNSS 2.04 2.11

PF-PDR/GNSS 2.03 1.74

KHA-PDR/GNSS 1.39 1.17

5.2. Fault Detection Experiments and Analysis

Before analyzing the detection method performance, we first analyzed the relationship
between the detection probability and false alarm probability. Equation (43) describes the
detection probability and false alarm probability, and receiver operating curves are utilized
to assess the detection performance. We denote that ρ = µ∆

j /σ∆
j in Equation (43). Figure 6

denotes the ROC curves with different ρ values. It shows that higher a ρ value contributes
to better detection performance and lower false alarm probability.
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The GNSS and PDR distance difference values distribution is presented in Figure 7;
specifically, Figure 7a presents the distance difference distribution from Dataset#01 in the
last sub-section, and Figure 7b shows the distance distribution from Dataset#02. A Gaussian
model is utilized to fit the distributions, and the red line denotes the fitted Gaussian model
probability density curves. It can be observed that the mean values of the fitted Gaussian
model are not zero. Ideally, the mean values should be zero. We suggest the following two
reasons could account for this: (1) As described in Section 4, we build the probability model
assuming the pedestrian is walking straight, and this assumption is not always satisfied.
(2) The GNSS measurements contain some errors, even if the datasets are collected in an
open-sky environment. Based on the fitted Gaussian model, it is possible to detect the
GNSS measurement outliers with the input distance difference measurements. Based on
the fitted models, Figures 8 and 9 present the distance difference and the corresponding
detection probability results of the two datasets, which shows it is feasible to apply the
fitted model to detect the GNSS outliers after properly selecting the detection threshold.
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5.3. Fault Detection Experiments with Simulated Faults

In order to fully assess the performance of the fault detection method, we collected
another different sports-track dataset (Dataset#03) with a different person walking to
test the proposed method. In Dataset#03, there are about 1000 steps, and we selected
the first 300-step dataset to fit the model. Figure 10a presents the distance difference
distribution and the fitted model. Figure 10b shows the detection probability according
to the distance difference values. Here, we simulated outliers by manually adding bias
to the GNSS position measurement. We added a 30 m bias to the GNSS position at the
500, 550, 600, 650, 700, 750, 800, 850, 900, 950 and 1000 epochs. The detection results
are presented in Figure 11a, and it can be observed that the outliers are detected with a
probability close to 100%. The horizontal position errors from the KF-PDR/GNSS, PF-
PDR/GNSS and KHA-PF-D-PDR/GNSS methods are presented in Figure 11b. It can be
seen that the GNSS outliers degrade the position results, and the KHA-PF-D-PDR/GNSS
with the fault detection module can reduce the negative influence of the GNSS outliers.
The statistical analysis results of the horizontal position data from the 301 epochs to the
end are listed in Table 3. It can be seen that KHA-PF-D-PDR/GNSS performed the best.
In terms of the mean values, the KHA-PF-D-PDR/GNSS mean values decreased by 52.4%
compared with the PF-PDR/GNSS without the fault detection module. In addition, the
median values also improved: specifically, the median values of the horizontal position
errors decreased by 49.6%. Furthermore, Figure 11c presents the horizontal position errors
distribution, which also supports the conclusion that the KHA-PF-D-PDR/GNSS method
had better performance.
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Table 3. Statistical analysis results.

Mean (m) Median (m)

KF-PDR/GNSS 3.36 3.02

PF-PDR/GNSS 3.17 2.78

KHA-PF-D-PDR/GNSS 1.51 1.40

5.4. Fault Detection Experiments in Urban Areas

In this subsection, we analyze another dataset collected in urban areas; the experi-
mental trajectory is described Figure 2b. Figure 12 shows the details of the surrounding
environments of part of the trajectory. The surrounding tall buildings and dense forests
might induce abnormal GNSS measurements.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) example#01 of the trajectory  (b) example#02 of the trajectory 

Figure 12. Surrounding environments of part of the trajectory. 

 
(a) distance difference measurements 

 
(b) distance difference distribution without outliers 

Figure 12. Surrounding environments of part of the trajectory.

We processed this dataset collected in urban areas in which the GNSS contains outliers.
The first 300 step distance difference measurements were fitted to a Gaussian model, and
the results were employed to evaluate the performance of the fault detection method.
Figure 13a shows the distance difference measurements, and it is obvious that there are
many outliers. Here, we set the outliers threshold at 15 m. When the distance difference is



Remote Sens. 2023, 15, 4993 17 of 20

larger than 15 meters, the GNSS measurement is regarded as an abnormal measurement.
In our strategy, the PDR position substitutes the GNSS/PDR integration results under
abnormal GNSS measurement conditions. The Gaussian fitting results based on the distance
difference measurements are presented in Figure 13b. When fitting the model with the first
300 step distance difference measurements, we removed the abnormal GNSS measurements
according to the pre-defined threshold.
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We utilized the fitted model to detect the GNSS outliers for 600 step measurements,
and the horizontal position errors comparisons are shown in Figure 13d. The remaining
300 step measurements are not included when fitting the model, but are employed as
the testing data. Table 4 presents the statistical analysis of the horizontal position errors
for different methods. It shows that using our proposed model, the mean values of the
horizontal position errors decrease by 20.6% and the median values reduce by 13.9%.

Table 4. Statistical analysis of the horizontal position errors.

Mean (m) Median (m)

KF-PDR/GNSS 4.76 2.90

PF-PDR/GNSS 4.73 3.67

KHA-PDR/GNSS 3.54 3.09

KHA-PDR-D-/GNSS 2.81 2.66

6. Discussion and Future Work

Based on four different tests, we demonstrate that the KHA-PF and fault detection
method are effective at reducing the GNSS outliers’ negative influence on position errors,
and improving the robustness. However, we suggest there are still two main limitations
worthy of discussion and investigation in future:

(1) In this paper, we utilize the Gaussian distribution to model the distance difference
measurements; in Equations (28) and (29), we assume that the pedestrian walks
straight when building the model. Although the results show that the Gaussian
distribution fit the data well, it would still be interesting to build a more universal
model with other probability distribution models.

(2) The fault detection method requires some prepared datasets to fit the model, which might
be a disadvantage when extending the method to smartphones for real-time applications.
Different individuals are likely to have different step length parameters in the Gaussian
distribution. GNSS measurements under different conditions have different statistical
parameters. It would be valuable to explore more practical solutions to improve the
smartphone GNSS robustness, Artificial Intelligence (AI) is a prospective method.

In addition, we suggest the following areas are of great interest for investigations in
the future.

(1) In this paper, PDR is integrated with GNSS; however, there are many other sensors in
smartphones, i.e., Wi-Fi, Bluetooth. Integrating more sensors to PDR/GNSS could be
a more reliable solution to generate navigation solutions under different conditions.

(2) In the PDR/GNSS integration method described in this paper, the position from GNSS
is integrated with PDR; in fact, there is potential to carry out investigations integrating
GNSS pseudo-ranges and pseudo-range rates measurements with PDR.

7. Conclusions

This paper proposes a KHA-PF-PDR/GNSS method and a probabilistic fault detection
method to enhance the PDR/GNSS integrated position accuracy under different conditions.
Different datasets were collected with a Huawei Mate 40 Pro to assess the proposed method,
and the experimental results supported the conclusion that the KHA-PF method could
improve the PDR/GNSS horizontal position accuracy, and that the probabilistic method
was feasible to detect the GNSS measurements faults.
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