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Abstract: In the task of classifying high-altitude flying objects, due to the limitations of the target flight
altitude, there are issues such as insufficient contour information, low contrast, and fewer pixels in
the target objects obtained through infrared detection technology, making it challenging to accurately
classify them. In order to improve the classification performance and achieve the effective classification
of the targets, this study proposes a high-altitude flying object classification algorithm based on radiation
characteristic data. The target images are obtained through an infrared camera, and the radiation
characteristics of the targets are measured using radiation characteristic measurement techniques. The
classification is performed using an attention-based convolutional neural network (CNN) and gated
recurrent unit (GRU) (referred to as ACGRU). In ACGRU, CNN-GRU and GRU-CNN networks are
used to extract vectorized radiation characteristic data. The raw data are processed using Highway
Network, and SoftMax is used for high-altitude flying object classification. The classification accuracy
of ACGRU reaches 94.8%, and the F1 score reaches 93.9%. To verify the generalization performance of
the model, comparative experiments and significance analysis were conducted with other algorithms
on radiation characteristic datasets and 17 multidimensional time series datasets from UEA. The
results show that the proposed ACGRU algorithm performs excellently in the task of high-altitude
flying object classification based on radiation characteristics.

Keywords: radiation characteristic measurement technique; flying object classification; convolutional
neural network; gated recurrent unit; attention mechanism

1. Introduction

The classification of high-altitude flying objects has important applications in air traffic
safety management [1], air defense and missile defense, etc. The main types of high-altitude
flying objects include birds, aircraft, and missiles. Accurately identifying birds can provide
accurate information for bird control, ensuring flight safety for aircraft. Rapidly identifying
enemy aircraft and missiles can provide strategic information in a timely manner, ensuring
national security. Being able to quickly and accurately distinguish the type of flying objects
is a pressing problem that needs to be solved.

Infrared detection technology is an important technology in target detection and
other defense fields. It has the advantages of all-weather operation and high reliability,
making it suitable for passive detection. Due to the high sensitivity and penetration
ability of infrared cameras to heat sources, these can detect the radiation of target heat at
relatively long distances. Compared to regular cameras, infrared cameras can provide more
accurate imaging information, especially in high-altitude monitoring. Therefore, many
scholars use infrared imaging to detect high-altitude targets. For example, Deng et al. [2]
improved the top-hat transform technique to address the difficulty of detecting small targets
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using this method and applied it to small target detection in infrared images. The results
show that the proposed method effectively detects small targets in infrared images. In
addition, Zhang et al. [3] proposed a self-regularized weighted sparse model that uses the
overlapping edges of the background structure information in infrared images to constrain
the sparse items, thereby improving the accuracy of target detection. Ju et al. [4] proposed
the ISTDet model, which detects infrared images using an infrared filtering module and an
infrared small-target detection module, achieving excellent results. Li et al. [5] proposed a
dense nested attention network for single-frame infrared images, which can separate small
targets from cluttered backgrounds. They conducted experiments on their self-built dataset
and compared it with publicly available datasets, achieving superior performance. Most of
the scholars mentioned above detect infrared targets based on their single morphological
features. Although these scholars can effectively identify the presence of targets in the
spatial domain using clever methods, it is difficult to distinguish them based on shape
and contour features due to the low contrast of small targets appearing as fewer pixels in
infrared images.

The infrared radiation characteristics of high-altitude flying objects are crucial for
target detection, recognition, and tracking [6]. The infrared radiation characteristics of
these flying objects are determined by their temperature and surface properties. Higher
temperatures result in more and stronger infrared radiation. Different surface materials
have varying degrees of the absorption and reflection of infrared radiation, which also
affects the infrared radiation characteristics of the flying objects, thereby forming the
infrared spectrum of the object and providing characteristic information about the object.
With the growing demand for infrared technology in the aviation field, more and more
experts are conducting research on the infrared radiation characteristics of flying objects.
Wang et al. [7] proposed a method based on the judgment of target-effective imaging pixels
for measuring infrared radiation, distinguishing between small targets and surface targets.
Kou et al. [8] established a dynamic feature model to study the correlation between infrared
radiation characteristic signals and target maneuvering modes. Chen et al. [9] studied the
variation in the infrared radiation brightness of the sky background under different weather
conditions, providing a reference value for infrared target detection and recognition. These
experts have made important contributions to the measurement of infrared radiation from
ground to air. Considering that targets with low contrast in infrared images are difficult to
distinguish based on morphological features, infrared radiation measurement techniques
can be used to obtain target radiation information through radiation inversion, thereby
facilitating target detection and recognition.

The methods for classifying high-altitude flying objects can be divided into tradi-
tional machine learning methods and deep learning methods. After processing the data
source, traditional machine learning methods such as Bayesian decision [10], K-nearest
neighbors [11], and support vector machine [12] are used for classification, or the origi-
nal data source is subjected to feature extraction using deep learning methods based on
CNN [13] or RNN [14]. Traditional machine learning methods have flexibility in feature
engineering and can manually design suitable features according to the problem, making
them applicable to small samples and high-dimensional data. However, traditional ma-
chine learning methods are limited by the constraints of manual feature extraction and may
not be able to discover complex data relationships and patterns. In contrast, deep learning
methods based on deep learning can automatically learn and extract higher-level and more
abstract features from raw data. In deep learning, CNN-based methods are suitable for
processing static data and can identify spatial and location-related features, but they cannot
capture temporal information. RNN-based methods can handle time series data and model
temporal dependencies, but these may face problems of gradient vanishing and exploding
when dealing with long-term dependencies or long sequences [15].

When facing the task of time-series data classification, combining convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) can fully utilize the strengths of
both neural networks. This approach enables the handling of variable-sized inputs, cap-
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turing spatial and temporal dependencies, enhancing feature extraction capabilities, and
mitigating the problem of vanishing gradients. By doing so, the performance of time-series
data classification is improved. For example, Zhu et al. [16] applied the SeqGAN-based text
generation oversampling technique to expand the Self-Admitted Technical Debt (SATD)
dataset for SATD recognition tasks. They serialized the SATD data sample vectors and
padded them to a uniform length. The proposed convolutional neural networks-gated
recurrent unit model was employed for classification, successfully identifying multiple
categories of SATD and assisting with accurate debt localization. Cai et al. [17] proposed a
parallel fusion method based on CNN and GRU for classifying power quality disturbances
(PQDs) in complex power grid environments. CNN was used to extract the short-term
features of PQDs, while GRU was used to extract long-term features. The features extracted
through CNN and GRU were simultaneously fused and transmitted to SoftMax for classifi-
cation. Simulation results showed that this method achieved a high classification accuracy.
In the context of classifying elderly heartbeat sounds, Yadav et al. [18] augmented and ex-
panded the heart sound database and proposed an algorithm based on CNN and bidirectional
GRU. This algorithm achieved a validation accuracy of 90% on the dataset. Kim et al. [19]
employed 1D CNN-GRU for the computation of radar cross-section measurement data
of missiles. The GRU layer effectively processed the radar interface measurement data,
resulting in improved missile classification performance.

When imaging high-altitude flying objects through infrared detection technology, fac-
tors such as the flying distance of the objects can lead to low resolution, limited information,
and blurriness in the targets. Moreover, the targets may be overwhelmed by complex
background noise. In infrared images, it is not possible to classify them solely based on
morphological characteristics. Therefore, the research on classifying high-altitude flying
objects based on infrared detection technology remains a challenge. To address the afore-
mentioned issues, we used an infrared long-wave camera to capture the infrared images of
high-altitude flying objects. We employed infrared radiation inversion techniques [20,21]
to obtain the temporal radiation characteristics of the flying targets, transform image data
into temporal data, and propose corresponding temporal data classification algorithms to
accomplish the task of classifying high-altitude flying objects.

The summary of our main contributions is as follows:

• By using infrared radiation characteristic measurement techniques, infrared images
are inverted into radiation characteristic data. The image data are processed into
temporal data. From the perspective of target radiation characteristics rather than
target morphology, the classification task of high-altitude flying objects is studied.
At the same time, the dataset is expanded by introducing different types of noise.
Multiple radiation characteristic datasets with different temporal lengths are prepared.

• Proposes an attention-based convolutional neural network (CNN) and gated recurrent
unit (GRU) classification algorithm for temporal data (referred to as ACGRU). The
model employs a three-path computation structure, in which two paths are the CNN-
GRU network and GRU-CNN network. By combining CNN and GRU, the model
enhances the feature extraction capability of the radiative characteristic vectorized
data, while addressing the deficiencies of CNN in handling temporal correlations in
data, achieving high-dimensional abstract feature extraction of radiative characteristic
data. The third path is the Highway Network path, which improves the issues
of gradient vanishing and exploding in deep neural networks by introducing gate
mechanisms, enhancing information flow, and improving network training efficiency.
This path performs Highway Network computation on the original data, to some
extent preserving the correlation between original radiative characteristic data. Finally,
the results from the three paths are fused, taking into account the abstractness of data
after complex feature extraction as well as the original attributes of the data, providing
strong support for accurate classification.

• Considering future research, where more flying objects may be included, the variance
of radiation characteristics between different flying objects will affect the content of
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temporal data. Therefore, the generalization ability of our model is an important
aspect of the study. To investigate this, we conduct comparative experiments on the
17 publicly available datasets from UEA [22] using both state-of-the-art and classic
temporal classification models, as well as our proposed ACGRU algorithm. We also
perform significance testing to analyze the performance of the ACGRU model. The
experimental results indicate that our method exhibits a certain generalization ability
and achieves a leading performance on multiple datasets.

The outline of this paper is as follows: Section 2 reviews the related work, Section 3
introduces the establishment of the radiation characteristic dataset, Section 4 elaborates
on the proposed algorithm framework, Section 5 reports the algorithm performance, and
Section 6 summarizes the work and provides an outlook for future work.

2. Related Work
2.1. Measurement of Infrared Radiation Characteristics

The measurement of target infrared radiation characteristics is a significant technique
with important military applications, as it allows for obtaining target features and iden-
tifying them. Through inversion, reliable information such as target radiance, radiation
intensity, and temperature can be obtained. These parameters directly reflect the target’s
physical characteristics and are crucial for assessing target identification. The obtained
data can be directly utilized in fields such as infrared early warning and missile defense.
Infrared radiation measurement, in comparison to ordinary imaging and radar technolo-
gies, not only captures the contour characteristics of high-altitude flying objects but also
acquires their specific physical properties. This aspect is crucial for target classification,
identification, and tracking. Moreover, infrared measurement, relying solely on the target’s
emitted radiation without the need for signal emission, provides better concealment and
stealth compared to radar measurement. It also exhibits better resistance to interference
under adverse weather conditions. The measurement of infrared radiation characteristics
is of great importance to major military powers. For instance, the development of an air-
borne target infrared radiation model [23] involved collaboration among the seven NATO
countries, and the United States established the standard infrared radiation model (SIRRM)
for low-level tail flame [24].

When an object exceeds a temperature of absolute zero, it emits electromagnetic radia-
tion uniformly in all directions due to its internal thermal motion. Using this characteristic
as a basis, the measurement of target objects’ infrared radiation characteristics typically
comprises three steps: the radiation calibration of the infrared detection system, target
detection, and target radiation inversion.

By establishing a response relationship through the radiation calibration of the infrared
detection system between the radiant energy incident on the system’s optical aperture and
the grayscale value displayed by the detector, we can determine the relationship between
the infrared system’s radiation receipt capabilities and the output of the imaging electronic
device. This enables the retrieval of the target’s radiance, radiation intensity, radiation
temperature, and other relevant data through the inversion of the target’s radiation. A linear
relationship between the optical aperture radiation quantity and the displayed grayscale
value exists within the linear response range of the infrared system:

D0 = α(τLT + Lpath) + Ddark (1)

In Equation (1), D0 represents the displayed grayscale output value of the infrared
detection system; α represents the amplitude brightness response of the infrared detec-
tion system. During radiation measurements, calibration can be performed using known
radiation sources. The value of α can be calculated by measuring the radiation values of
known sources and corresponding measurement results; τ represents the average atmo-
spheric transmittance between the target and the infrared measurement system within
the measurement band. It is used to consider possible material absorption and scattering
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losses in the radiation transmission process. The specific value depends on the design of
the measurement system, material characteristics, radiation wavelength, as well as atmo-
spheric composition, humidity, aerosol concentration, gas concentration, etc. Measurement
calculations can be carried out using atmospheric monitoring equipment. LT represents the
radiant luminance of the optical entrance pupil of the infrared detection system, measured
in W/srm2. Lpath is the atmospheric path radiance between the target being measured and
the infrared detection system; Ddark represents the fixed bias caused by the dark current
in the detector. By turning off the radiation source and only measuring the current under
background or dark conditions, the value of Ddark can be obtained.

The radiation brightness of the system’s optical entrance pupil can be inverted accord-
ing to Equation (1), as illustrated in Equation (2). The radiation brightness of the system’s
optical entrance pupil can be derived using Planck’s radiation law [25], represented by
Equation (3). The inversion of the radiation temperature of the optical entrance pupil is
conducted by combining Equations (2) and (3). Equation (4) can be used to obtain the
radiation temperature, T.

LT = (
D0 − Ddark

α
− Lpath)/τ (2)

LT =
ε

π

∫ λ2

λ1

C1

λ5(eC2/λT − 1)
dλ (3)

In Equation (3), λ1, λ2 represents the detector’s measured wavelength range, ε rep-
resents the emissivity of the system’s optical entrance pupil, T represents the operating
temperature of the system’s optical entrance pupil, C1 represents the first radiation con-
stant with a value of (3.7415± 0.0003)× 108(W· m−2 · µm4), and C2 represents the second
radiation constant with a value of (1.43879± 0.00019)× 104(µm ·K).

ε

π

∫ λ2

λ1

C1

λ5(eC2/λT − 1)
dλ− (

D0 − Ddark
α

− Lpath)/τ = 0 (4)

2.2. Attention Mechanism Module

The attention mechanism module is a crucial component in deep learning models [26].
Its primary function is to automatically focus the model’s attention on specific parts of the
input data, enhancing the capture and utilization of important information. By assigning
weights to the input data, the attention mechanism module can adaptively adjust the
weights of each input based on their relevance to the task. This leads to better performance,
reduces redundant information interference, and improves the model efficiency. The at-
tention mechanism module enables the quick localization and utilization of important
information, making it suitable for complex tasks. Common attention mechanism mod-
ules include channel attention (CA), convolutional block attention module (CBAM) [27],
squeeze-and-excitation (SE) module [28], etc. In this algorithm research, the SENet module
is employed as the attention mechanism because it has fewer parameters than CA and
CBAM, and its structure is relatively simple. Considering the speed issue of the algorithm
in high-altitude object recognition, the SENet module is chosen as the attention mechanism.
However, for different tasks, the attention mechanism in this algorithm can be replaced by
other modules.

SENet can dynamically adjust the network’s expressive power by considering the
relationships and weights between channels. The SE module comprises two steps: squeeze
and excitation. During the squeeze step, relevant information is calculated for each channel,
and a global average pooling layer is utilized to compress the feature maps into a single
value. This compression can be expressed using Equation (5):

z =
1

H ×W

H

∑
i=1

W

∑
j=1

Xi,j,c (5)
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Here, H and W represent the height and width of the feature maps, respectively, and
Xi,j,c represents the value of the c-th channel at position (i, j) on the feature map. In the
excitation step, two fully connected layers are employed to learn the importance weights of
each channel. Let C denote the number of channels. The compressed value z is first passed
through two fully connected layers, each with a size of C/r, where r refers to the squeeze
factor—a hyperparameter. The output is then transformed using the rectified linear unit
activation function:

s = fReLU(W2 · fReLU(W1 · z)) (6)

Here, fReLU represents the rectified linear unit activation function, and W1 and W2 are
weight matrices. The feature maps are subsequently reweighted based on the importance
weights. This reweighting process emphasizes the important information of each channel
while suppressing the less important information. It can be expressed using Equation (7):

X̂i,j,c = sc · Xi,j,c (7)

Here, sc represents the importance weight of the c-th channel. Finally, the reweighted
feature maps X̂ are added to the original feature maps X to produce the final
feature representation:

Yi,j,c = Xi,j,c + X̂i,j,c (8)

To summarize, SENet dynamically learns the importance weights of each channel
through the squeeze and excitation steps, thereby enhancing the model’s representation
capability by reweighting the original feature maps.

2.3. Convolutional Neural Network

Convolutional neural network (CNN) is a method of feature extraction based on con-
volutional operation. It is a feed-forward neural network widely used in image recognition
and computer vision tasks. CNN was initially found to be very effective in processing
pixel data and has translation invariance. CNN consists of multiple convolutional layers
and pooling layers, each performing specific operations. The convolutional layer extracts
local features from the image by sliding a small window (convolutional kernel) onto the
input data. The pooling layer reduces the size of the data through downsampling while
preserving important feature information. By stacking multiple convolutional and pooling
layers, CNN gradually extracts high-level features from the data. These features are then
fed into a fully connected layer for classification or other tasks. During the training process,
CNN continuously adjusts network weights through the backpropagation algorithm to
minimize prediction errors. CNN effectively extracts local features from the input data
through convolution and pooling operations and gradually obtains higher-level features
through multiple network layers. CNN has been widely applied in fields such as image
recognition, object detection, and image generation, becoming one of the most important
tools in the field of computer vision.

2.4. Gated Recurrent Unit

The recurrent neural network (RNN) is a widely used neural network model designed
for processing sequential data. It has the ability to capture and leverage contextual in-
formation. However, when there is a significant time gap between consecutive sequence
data elements, challenges such as vanishing or exploding gradients and loss of long-term
memory can arise. To address these challenges, long short-term memory (LSTM) was
introduced. LSTM incorporates two mechanisms to mitigate these issues. Firstly, LSTM in-
troduces forget gates, input gates, and output gates to regulate the flow of information that
needs to be ignored, added, or output. This effectively addresses the challenge of vanishing
gradients during the training process. Secondly, LSTM utilizes cell states to store long-term
memory and employs gate mechanisms to control the flow of information, thereby enabling
better control over long-term memory. In contrast, GRU, which is a variation of LSTM,
drew inspiration from LSTM and offers simpler implementation and better computational
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efficiency. In certain cases, it can achieve comparable results. GRU combines the forget
and input gates of LSTM into a single “update gate”. This simplification compared to the
standard LSTM model reduces parameter calculation.

In addition to the update gate, the gated recurrent unit (GRU) is equipped with a reset
gate. The mechanism of these gates enhances its ability to capture long-term dependency
relationships. The structure of GRU is illustrated in Figure 1, and the corresponding
equations for each component are as follows—update gate:

zt = σ(Wz · [ht−1, xt]) (9)

Reset gate:
rt = σ(Wr · [ht−1, xt]) (10)

Candidate hidden state:

h̃t = tanh(W · [rt ⊗ ht−1, xt]) (11)

New hidden state:
ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t (12)

Here, ht represents the current hidden state, xt denotes the current input, Wz, Wr, W are
learnable weight parameters, σ denotes the sigmoid function, and ⊗ symbolizes element-
wise multiplication. The update gate zt regulates the degree to which the previous hidden
state ht−1 impacts the current time step, while the reset gate rt determines the extent to
which the past hidden state is disregarded. Ultimately, the new hidden state ht is computed
using the update gate, reset gate, and candidate hidden state. This gating mechanism
enhances GRU’s ability to handle long-term dependency relationships in sequential data.

+

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡

σσ
x

x𝑡𝑡𝑡−1

𝑡𝑡𝑡−1

𝑧𝑧𝑡𝑡𝑟𝑟𝑡𝑡 �𝑡𝑡𝑡

𝑥𝑥𝑡𝑡
Figure 1. Graphical representation of the GRU structure.

3. Data Set Preparation

To classify high-altitude flying objects, we employed a long-wave infrared camera to
obtain video images. The camera operates in the wavelength range of 8.2 µm to 10.5 µm,
with a pixel resolution of 640 × 512 and a sensor sampling rate of 100 Hz. The targets
captured fall into six categories, with civil aviation and special aircraft flying at altitudes
of 8000–10,000 m; birds, balloon, and small UAVs flying at altitudes of 100–1500 m; and
helicopters flying at altitudes of 500–2000 m. The recordings were made under all weather
conditions, mostly with clear or slightly cloudy skies. Each video sequence varied in length
from 1 min to half an hour. The camera is illustrated in Figure 2.
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Figure 2. Illustration of a long-wave infrared camera.

To classify a high-altitude flying object, we employed a long-wave infrared camera to
capture video images. The results are displayed in Figure 3 below, with a and d representing
civil aviation, b and e depicting birds, and c and f portraying helicopters. From the figure,
it is evident that, as the high-altitude flying object moves further away from the camera,
there is a drastic decrease in pixel count and a gradual blurring of their shapes, making
it challenging to discern their contours clearly. Particularly in the images of e and f, the
targets appear as bright spots. Therefore, the classification of a high-altitude flying object
based solely on visual information poses an extremely challenging task.

bird 
civil aviation 

civilaviation

helicopter 

helicopter bird 

(a) Civil Aviation (c)Helicopter(b)Bird

(d) Civil Aviation (e)Bird (f)Helicopter

Figure 3. Graphical representation of the infrared image of high-altitude flying objects.

We conducted measurements to investigate the infrared radiation characteristics of
high-altitude flying objects. Initially, we calibrated the infrared radiation in the laboratory,
considering the measurement of target radiation using an infrared measurement system
in the atmospheric environment, and the target radiation is attenuated by the atmosphere
during the transmission process to the detector of the infrared measurement system. At
the same time, atmospheric radiation superimposes with the target radiation and reaches
the detector together. To determine the atmospheric transmission factor, the atmospheric
properties are obtained using atmospheric measurement devices. Finally, we used an
infrared radiation inversion model to invert the high-altitude flying object, obtaining
temporal data of the radiance, radiation temperature, and radiation intensity. Figure 4
displays a set of inverted radiation data.
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Figure 4. Radiation feature data, with the horizontal axis representing the frame number of the video,
and the vertical axis representing the radiation intensity.

Adding noise to the radiation characteristic data source can expand the training dataset,
thereby achieving data enhancement. By adding noise, the overfitting of subsequent
models can be reduced, and the generalization ability of the models can be improved. The
introduction of noise forces the model to focus on the real radiation characteristics and
reduce errors on unseen data. Adding noise can also increase the diversity of the training
dataset. In actual radiation characteristic data, there may be various types of noise and
interference, such as sensor noise and signal loss. By introducing various types of noise
in the training data, it can help the model better adapt to these actual noise conditions,
improve the robustness and performance of the model [29,30], enable the algorithm to adapt
to different variations, effectively handle challenges in real-life scenarios, and enhance
the classification accuracy and generalization performance. Figure 5 illustrates the data
condition subsequent to the addition of noise.
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Figure 5. Radiation characteristic data with four types of noise added.

In order to more quickly and accurately distinguish the categories of high-altitude
flying objects, we prepared radiation characteristic datasets of different temporal lengths to
investigate the optimal recognition time for classifying high-altitude flying objects. Based
on the sampling rate of the infrared camera, the time interval between each frame is 10 ms.
Each frame of the image can be inverted into a set of radiation characteristic data, so the
corresponding time interval of the temporal data is also 10 ms. By classifying high-altitude
flying objects as quickly as possible, we can effectively respond to them and prepare for
their subsequent actions. In terms of the required classification time, we hope to minimize
it, but an excessively short time may affect the classification accuracy. We need to study
the appropriate classification time needed. For this purpose, we prepared the radiation
characteristic datasets of all the data obtained by the infrared camera with time intervals
of 0.5 s, 1 s, 2 s, 3 s, and 4 s. The data of the five datasets are the same, but the temporal
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lengths are different, corresponding to temporal lengths of 50, 100, 200, 300, and 400. The
total number of samples in the corresponding radiation characteristic datasets is 56,813,
28,406, 14,202, 9466, and 7099, respectively. For each radiation characteristic dataset, 80% is
used as the training set, and 20% is used as the test set. Each radiation datum has eight
dimensions, including slant distance, altitude, radiation intensity, radiation brightness, etc.

The dataset we constructed for collection only includes six categories of flying objects.
In the actual airspace, the types of flying objects are complex and diverse. After the
inversion of radiation characteristics, the corresponding complex and diverse temporal data
will also be obtained. Therefore, it is of a certain significance to verify the proposed model’s
generalization ability to temporal data in order to cope with the subsequent identification
of more flying objects. To achieve this, we added 17 datasets from the UEA repository to
verify the proposed model’s classification ability for temporal datasets. These datasets
cover multiple domains such as human activity recognition and motion recognition. The
time series lengths range from 8 to 17,984, and the average number of training samples per
category ranges from 4 to 2945.

4. ACGUR Model

This article presents the attention-CNN-GRU classification model (ACGRU), which
combines the benefits of CNN, attention, GRU, and Highway Network architectures. The
model utilizes infrared radiation characteristic data as input and flight object categories
as output. ACGRU is a parallel architecture network designed to extract both short-term
and long-term features from sequential data while also capturing the correlations between
different sequences. The model structure is depicted in Figure 6 and comprises three main
components: CNN-GRU, GRU-CNN, and the highway network.

Concatenate

Softm
ax

CN
N

Attention
GRU

GRU
CN

N
Attention

Skip-GRU
h

t2

Scoring 
Function

h
t1

Highw
ay 

N
etw
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CNN-GRU

GRU-CNN

Figure 6. Graphical representation of the ACGRU structure.

4.1. CNN-GRU Component

In the CNN-GRU component, the vectorized data are initially passed through the CNN
within the CNN-GRU component to extract local features and trends from various scales in
the time series. Subsequently, an attention mechanism is employed to dynamically adjust
the weights of each extracted feature, while a GRU is utilized to capture the long-term
dependencies among the data. Additionally, the Skip-GRU is utilized to further enhance
the model’s expressive capacity, facilitate effective information transmission within the
network, and enhance the overall efficiency and performance. Lastly, the computed results
of both the GRU and Skip-GRU are merged linearly.
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The CNN layer is equipped with convolution and activation functions. Assuming that
the input data of the model are denoted by X, where the sequence length is represented by
t and the dimension by d, the convolutional layer is composed of k filters with a width of
d and a height of n. Hence, the following relationship can be obtained:

H = ReLU(w ∗ X + b) (13)

The output matrix from the convolutional neural network (CNN) layer is represented
by H, which has a size of k× t× 1. The symbol ∗ denotes the convolution operation, where
w represents the weight matrix and b represents the bias vector. After the output matrix,
H is processed by the Senet operation, and the resulting matrix is denoted by Hs.

Hs = Senet(H) (14)

Consider matrix Hs as sequential data with a time length of t and a dimension of k.
After passing through Gru, the first resulting component Ht1g is obtained.

Ht1g = Gru(Hs) (15)

The gated recurrent unit (GRU) captures relatively long-term dependencies in data by
memorizing historical information. However, the problem of vanishing gradients often causes
GRU to fail in capturing very long-term correlations. In the context of radiative characteristic
data, which includes disturbances like clouds and noise, we employ Skip-GRU to integrate
data at proportional intervals. This extends the time span of the data and helps alleviate these
issues. More specifically, we sample the data at regular intervals.

H′s = Hs1 + Hs2 + . . . + Hsk (16)

In Equation (16), Hs1 represents the first sample obtained by consistently sampling Hs
at a fixed time interval from its initial position. Similarly, Hs2, Hs3, and subsequent samples
are consecutively taken from the subsequent positions after the initial position of Hs. The
sampling position of Hsk is determined by adding the fixed time interval to the initial data
position of Hs. These samples are then merged to form a new matrix vector, H′s, which
captures the cross-temporal information. Subsequently, the Skip-GRU algorithm calculates
the result Ht1s. Finally, in order to integrate Hs1 and Ht1g, we concatenate Hs1 and Ht1g,
and then use a linear layer to transform the dimension of the concatenated output to the
dimension of the original data X, which is d, as shown in Equation (18).

Ht1s = Skip-GRU(Hs) (17)

Ht1 = Linear(Concatenate(Ht1s, Ht1g)) (18)

Table 1 provides a comprehensive overview of the specific details of the CNN-GRU
component. Assuming that the length of the input sequential data is 200 with a dimension
of 8, the input shape is defined as (None, 1, 200, 8), where None represents the batch_size.

Table 1. CNN-GRU component and its related parameters.

Layer Output Matrix Output Shape Attribute

Conv1 H (None, 100, 200, 1) Conv2d(1, 100, kernel_size = (3, 8), stride = (1, 1), padding = (1, 0))
Senet Hs (None, 100, 200, 1)

Squeeze (None, 100, 200)
Permute (200, None, 100)

GRU Ht1g (None, 100) GRU(input_size = 100, hidden_size = 100)
Skip-GRU Ht1s (None, 100) GRU(input_size = 100, hidden_size = 100)

Concatenate (None, 200)
Linear Ht1 (None, 8) Linear(in_ f eatures = 200, out_ f eatures = 8, bias = True)
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4.2. GRU-CNN Component

Retaining historical information in sequential data becomes challenging for the GRU
model since it can only focus on a limited number of time steps. To mitigate this issue,
Skip-GRU introduces interval sampling, but the selection of skip intervals can impact the
long-term correlation in time series. To address this problem, we are adding the GRU-CNN
component, which extracts global temporal correlations as a compensation. Initially, we
utilize GRU to process the vectorized raw data X. The sequence length is denoted by t with
a dimension of d and a GRU hidden state dimension of s. Subsequently, we record each
hidden state, denoting the last hidden state by Ht2.

Ht2 = GRU(Ht2−1, Xt) (19)

The hidden state at the previous time step is denoted by Ht2−1, with a size of 1 × s.
We record all hidden states as a feature matrix Ht×s, where t represents the number of
hidden states and s represents the dimension of the hidden state. To capture the global
relevant information of the sequential data, we utilize a CNN to obtain a matrix Hk×t×1
that encapsulates global information relevance. Furthermore, the channel weights of each
extracted feature are adjusted using Senet. The CNN convolutional layer is composed of
k filters with a width of s and a height of n. The specific calculation in Equation (20):

Hk×t×1 = Senet(Relu(Wn×s ∗ Ht×s + bt×1)) (20)

The symbol ∗ denotes the convolution operation, where Wn×s refers to the weight
matrix, and bt×1 represents the bias vector.

We compress the Hk×t×1 dimension to obtain Hk×t. Each column of the Hk×t matrix
contains information about the global time, representing the global relevance. We fuse
the extraction result Ht1 from CNN-GRU with the last hidden state Ht2 from GRU-CNN.
The size of Ht1 is K × d, and the size of Ht2 is 1 × s. We transform Ht1 into a matrix
of size 1xs through a linear layer, and then combine it with Ht2 for fusion. This fusion
process calculates the attention weights f (Hk×t, Ht1, Ht2)t×1 for the global relevance matrix,
assigning weights to each column to determine their contributions. The global relevance
matrix is adjusted by applying the attention weights to Hk×t accordingly. The global
information in each row is accumulated to obtain the score matrix, Score1×k, which has
a size of 1 × k. The transpose is performed for convenience in the calculation. In the
equation, the subscript in the lower right corner of each symbol represents its matrix size.
For example, Equation (21) can be seen as the multiplication of three matrices: a t× k matrix
multiplied by a k× s matrix, and then multiplied by an s× 1 matrix. After applying the
sigmoid function, we obtain the attention weight matrix f (Hk×t, Ht1, Ht2)t×1 of size t× 1:

f (Hk×t, Ht1, Ht2)t×1 = sigmoid(Hᵀ
k×tWk×s(Linear(Ht1) + Ht2)

ᵀ) (21)

Score1×k =
t

∑
i=0

f (Hk×t, Ht1, Ht2)t×1Hᵀ
k×t (22)

Append the score matrix Score to the output result Ht2 of GRU, according to Equa-
tion (23), to complete the feature extraction of sequential data across multiple time steps
and obtain the final output result Hts of the GRU-CNN component, with a size of d× 1.
Compress the dimension to make its size d. In the formula, wd×s, ws×s, and ws×k are all
weight matrices.

Hts = wd×s

(
ws×s × HT

t2 + ws×k × ScoreT
1×k

)
(23)

All weight matrices in the GRU-CNN component are initialized using the Xavier
initialization method [31]. Table 2 provides a comprehensive overview of the specific
details of the CNN-GRU component. Assuming that the length of the input sequential
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data is 200 with a dimension of 8, the input shape is defined as (200, None, 8), where None
represents the batch_size.

Table 2. GRU-CNN component and its related parameters.

Layer Output Matrix Output Shape Attribute

GRU Ht2 (1, None, 12) GRU(input_size = 8, hidden_size = 12, num_layers = 3)
GRU Ht×s (200, None, 12) GRU(input_size = 8, hidden_size = 12, num_layers = 3)

Permute Ht2 (None, 1, 12)
Permute Ht×s (None, 200, 12)

Unsqueeze Ht×s (None, 1, 200, 12)
Conv1 (None, 100, 200, 1) Conv2d(1, 100, kernel_size = (3, 12), stride = (1, 1), padding = (1, 0))
Senet Hk×t×1 (None, 100, 200, 1)

Squeeze Hk×t (None, 100, 200)
Scoring function hts (None, 8, 1)

Squeeze Hts (None, 8)

4.3. Highway Network

In order to enhance the learning ability of the ACGRU algorithm and further alleviate
the problem of gradient vanishing in deep networks, prevent excessive abstraction of data
and add a third path, Highway Network, to the GRU-CNN and CNN-GRU dual paths, to
enhance the network’s ability to learn long-term dependencies and improve the algorithm’s
flexibility and expressive power [32]. This allows information to be transmitted more easily
between network layers, selectively transmitting and combining information from different
layers to better model complex data patterns, thereby improving the model’s training and
performance. The equation for Highway Network is as follows:

DP(X) = Linear(Concatenate(Ht1, Hts)) (24)

H(X) = DP(X) · T(X) + X · (1− T(X)) (25)

In Equation (24), DP(X) represents the input after the dual-path nonlinear transforma-
tion through the GRU-CNN and CNN-GRU components. The sizes of Ht1 and Hts are both
d. After concatenation, DP(X) is obtained by computing through a linear layer, also with a
size of d. X represents the original input, with a sequence length of t and a dimension of
d. The original data are reshaped into a one-dimensional vector with a size of t× d, and
through linear activation, it is transformed into a one-dimensional vector with a size of d,
consistent with the size of the DP(X) vector, while T(X) symbolizes the gating mechanism
within the Highway Network. The value of T(X) varies between 0 and 1, influencing the
extent of blending between the original and transformed inputs. As T(X) approaches 1, an
increased amount of information from the original input is conveyed, whereas when T(X)
approaches 0, more information from the transformed input is transmitted. This is shown
in Table 3.

The raw temporal data undergo processing via three paths and generate three com-
puted results: Ht1, Hts, and H(X). These computed results are concatenated. Finally, the
concatenated results are classified using SoftMax to achieve the desired classification.

Table 3. Highway Network component and its related parameters.

Layer Output Matrix Output Shape Attribute

Data processing DP(X) (None, 8) Linear(in_ f eatures = 16, out_ f eatures = 8, bias = True)
Reshape X (None, 1600)
Linear X (None, 8) Linear(in_ f eatures = 1600, out_ f eatures = 8, bias = True)

Highway network H(X) (None, 8)
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5. Experiment and Evaluation
5.1. Experimental Setup

The model utilizes the PyTorch framework version 2.0.0 and operates on the Windows
10 operating system. The operating system’s CPU is an Intel Core i7-11700k, and the
GPU is a GeForce RTX 4090. When conducting experiments on the radiative characteristic
dataset, the model employs a learning rate of 0.001. It is trained using the cross-entropy
loss function. Within the CNN-GRU architecture, the Skip-GRU sampling interval is set
to 12. The weight parameters are randomly initialized and iteratively updated during
backpropagation in the training process. We used the accuracy, recall, and F1 score to
evaluate the classification performance of the model. The formulas are as follows:

Acc =
1
M

M

∑
i=1
‖( f (x)i == yi) (26)

M is the total number of samples in the dataset,‖() is the indicator function, f (x)i

represents the predicted class for the i-th data, and yi denotes the true class of the data.

F1 = 2 · precision · recall
precision + recall

(27)

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

F1 is the harmonic mean of precision and recall. The true positive (TP) represents the
number of samples that are detected as positive samples and are correctly classified. FP
(false positive) represents the number of samples that are detected as positive samples but
are incorrectly classified. The FN false negative (FN) represents the number of samples
that are detected as negative samples but are incorrectly classified, indicating that these
samples are actually positive samples. Therefore, precision represents the proportion of
positive samples detected by the classifier that are actually positive. Recall represents
the proportion of correctly predicted positive samples by the classifier out of all positive
samples. Compared to precision, we pay more attention to recall because we believe that
when the recall rate is too low, the system may miss some important flying targets, resulting
in the inability to detect potential threats in a timely manner.

In order to quickly and accurately distinguish high-altitude flying objects and explore
the optimal recognition time, we conducted experiments using ACGRU on self-built radi-
ation characteristic data with different time intervals. After analyzing the required time
for optimal recognition, we selected the most suitable dataset for the next experiment. To
verify the effectiveness of the network model, we conducted ablation experiments on the
ACGRU algorithm, classifying the radiation characteristic dataset. At the same time, we
selected four publicly available algorithms and compared them with the ACGRU algorithm
in our self-built infrared radiation characteristic dataset to validate the effectiveness of the
algorithm in completing the classification task of high-altitude flying objects.

In addition, in the subsequent research work, we will incorporate other flying objects.
With the increasing variety of high-altitude flying objects, the radiometric characteristics of
time-series data types obtained through inversion will become more complex. Therefore, it
is necessary to verify the classification ability of the proposed model for time-series data and
the generalization of the model. To this end, we conducted more comparative experiments,
selecting 17 publicly available datasets from UEA for verification and comparing them
with four other publicly available algorithms. The four algorithms are FCN, ResNet,
Inception-Time, and ConvTran.

FCN uses one-dimensional convolutional layers to extract local and global features,
preserving temporal information, and then transforms them into fixed-length representa-
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tions for classification using a classifier; ResNet achieves deeper temporal classification
networks through residual learning and skip connections to solve the problems of gradient
vanishing and network degradation, while directly passing and accumulating input and
output. Both of these algorithms are reported as among the best algorithms in the field of
multidimensional time series data classification in the literature [33]; Inception-Time im-
proves the performance and generalization ability of temporal data classification by fusing
multi-scale convolutions and temporal convolutions to extract features from temporal data.
It is also one of the best models for multi-dimensional temporal data classification reported
in [34]; ConvTran improves the encoding part of Transformer to enhance the position and
data embedding of the time series data, improving its performance and demonstrating
remarkable results in [35].

Among these four algorithms, FCN and ResNet are considered classic algorithms.
Inception-Time mainly utilizes convolutional techniques. The essence of the ConvTran
algorithm lies in its use of Transformer technology, which enables parallel computing
and efficient training. It can handle long-term dependencies and has flexible modeling
capabilities to adapt to different tasks and data requirements. It is not constrained by
sequence length and has the advantage of efficient inference speed. We compared these four
classes of algorithms, which perform well on the time series datasets, with the algorithm
proposed by us through comparative experiments. The comparative experiments were
conducted in the same experimental environment, with each model being tested three
times on each dataset. The experimental results with the median performance were taken
as the experimental results for that model on that dataset. Subsequently, the experimental
results were analyzed.

5.2. Experiment on Classification of High-Altitude Flying Objects

The rapid and accurate categorization of high-altitude flying objects can provide
important value for subsequent air space early warning and response plans. In our image
acquisition of high-altitude flying objects using infrared cameras, the time required to
obtain images for the inversion of radiation characteristics and subsequent categorization is
a question we need to consider. To address this, we prepared 5 self-built infrared radiation
characteristic datasets with different time intervals during the dataset preparation phase.
Table 4 shows the quantities of different types of targets in the datasets with varying
temporal lengths. We trained the ACGRU algorithm on the training set and tested it on the
testing set.

Table 4. The quantities of different types of targets IN training and test sets in the 5 radiation
characteristic datasets.

Radiation
Characteristic
Data

Training
Set of

Length
50

Test Set
of

Length
50

Training
Set of

Length
100

Test Set
of

Length
100

Training
Set of

Length
200

Test Set
of

Length
200

Training
Set of

Length
300

Test Set
of

Length
300

Training
Set of

Length
400

Test Set
of

Length
400

Bird 14,323 3583 7161 1792 3580 896 2386 598 1789 448
Balloon 14,303 3575 7151 1788 3575 894 2383 596 1787 447
Civil aviation 1712 428 856 214 428 107 285 71 214 54
Helicopter 2485 623 1242 312 621 156 414 104 310 78
Special aircraft 8530 2131 4265 1065 2132 533 1421 356 1065 267
Small UAVs 4096 1024 2048 512 1024 256 682 170 512 128

All 45,449 11,364 22,723 5683 11,360 2842 7571 1895 5677 1422

Table 5 shows the performance of our proposed model ACGUR on five self-built
infrared radiation characteristic datasets. For all classes in the datasets, the classification
accuracy of the model increases with the increase in the time series length. The best
accuracy of 94.9% is achieved on the dataset with a time series length of 300. However,
upon careful observation of the experimental results, when the time series length of the
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dataset exceeds 200, the classification accuracy for flying objects remains relatively stable. It
reached 94.8% at a time series length of 200, which is only 0.1% lower than the best accuracy.
As the time series length increases, the recall for samples with sufficient data, such as birds,
balloons, and special aircraft, also increases. However, the recall for samples with relatively
fewer data, such as civil aviation and helicopters, decreases. We believe that, as the time
series length increases, the corresponding increase in target information content allows
the model to quickly learn more information about the targets in the sequence, such as
when the sequence length is between 50 and 200. However, when the length continues
to increase, the model’s understanding of target information gradually reaches its peak,
making it difficult to further improve. Regarding the decrease in recall for civil aviation and
helicopters, we believe that, as the time series length increases, the already small sample
size classes become even smaller, resulting in a decrease in the training samples. This makes
it difficult for the model to learn comprehensively about these classes, resulting in a poorer
performance on the test set. This is a problem of insufficient training samples and does not
mean that the classification performance of flying objects decreases with the increase in
sequence length. The infrared camera imaging times corresponding to different time series
lengths, such as 50–400, are 0.5, 1, 2, 3, and 4 s, respectively. We believe that the effect of
performing radiation inversion and classification on the infrared radiation characteristic
dataset is not significantly enhanced when the infrared camera imaging time exceeds 2 s
(corresponding to a time series length of 200). Considering the need for rapid classification,
we consider 2 s as the optimal imaging time for classification. Next, we will use the infrared
radiation characteristic dataset with a time series length of 200 (corresponding to a 2 s
imaging time) for further research.

Table 5. The classification results of the ACGRU algorithm for 5 radiation characteristic datasets.

Radiation Characteristic Data Test Set of
Length 50

Test Set of
Length 100

Test Set of
Length 200

Test Set of
Length 300

Test Set of
Length 400

Rec of bird 0.946 0.960 0.964 0.958 0.960
Rec of balloon 0.931 0.939 0.942 0.953 0.946
Rec of civil aviation 0.946 0.949 0.944 0.944 0.926
Rec of helicopter 0.897 0.901 0.904 0.904 0.897
Rec of special aircraft 0.927 0.943 0.959 0.952 0.963
Rec of UAVs 0.911 0.918 0.922 0.924 0.914

Acc of all 0.932 0.943 0.948 0.949 0.947

Table 6 presents the experimental results of the ACGRU algorithm on the classifica-
tion of high-altitude flying objects with a time series length of 200 for infrared radiation
characteristics. Our overall F1 score for the classification of high-altitude flying objects
reached 93.9%. Among them, birds had the highest F1 score, reaching 96.2%, while civil
aviation had the lowest F1 score, reaching 91.8%. When observing the data volume of each
category of flying objects, it can be seen that categories with larger data volume showed
good performance after training, such as birds, balloons, and special aircraft. Categories
with a smaller data volume showed a subpar training performance. However, we also
found that, although the data volume of balloons is more than three times that of UAVs,
the F1 score of balloons is only 0.4% higher than that of UAVs. This is because, during
high-altitude flights, the radiation intensity of balloons is low, making them easily confused
with birds and UAVs. Meanwhile, despite having a smaller data volume than birds and
balloons, special aircraft achieved an F1 score of 96.1% due to their large size and strong
radiation characteristics. Finally, in the classification experiment of high-altitude flying
objects, our accuracy reached 94.8%. Based on these experimental results, our method has
certain value for practical applications such as air defense.
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Table 6. The classification results of the ACGRU algorithm for high-altitude flying objects.

Radiation
Characteristic
Data

Train
Set

Test
Set Length Correct Precision Recall F1

Score Acc

Bird 3580 896 200 864 0.961 0.964 0.962 -
balloon 3575 894 200 842 0.936 0.942 0.939 -
Civil aviation 428 107 200 101 0.894 0.944 0.918 -
Helicopter 621 156 200 141 0.934 0.904 0.919 -
Special aircraft 2132 533 200 511 0.964 0.959 0.961 -
UAVs 1024 256 200 236 0.948 0.922 0.935 -

All 11360 2842 200 2695 0.940 0.939 0.939 0.948

We invert the infrared images with a time length of 2 s into radiation characteristic
samples with a sequential length of 200 using the infrared radiation measurement technique.
We classify them using the ACGRU algorithm. Meanwhile, based on the classification
results, we find a frame of the infrared image corresponding to the classification result,
as shown in Figure 7. These images are infrared images before inversion at a specific
moment in the time series samples correctly classified by the algorithm. From the images,
it can be observed that our algorithm accurately classifies targets such as birds, balloons,
and helicopters with insufficient morphological information. Our method provides a
new approach for high-altitude object identification. The F1 score on the entire dataset
reaches 93.9%, and the accuracy reaches 94.8%, further demonstrating the effectiveness of
our method.

(a)Bird (b) Balloon (c) Civil Aviation 

(d) Helicopter (e) Special aircraft (f) UAV 

bird 

bird 

balloon 

balloon 

uav

uav

special aircraft 

special aircraft 

helicopter 

helicopter 

civil aviation 

civil aviation 

Figure 7. The infrared image corresponding to a certain temporal sequence in the classification result.

5.3. Ablation Experiment

In order to study the reliability of the ACGRU algorithm and the role of each component
in the high-altitude flying object classification task, we conducted an ablation experiment.
We gradually reduced the components on the complete ACGRU algorithm to observe their
impact on performance, helping us understand the contributions of different components to
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the overall model performance, as well as their roles and necessity, and determine whether
there are redundant parts. The experimental results are shown in Table 7, with a temporal
length of 200 for the dataset. From the table, it can be seen that, after removing the Highway
Network in the ACGRU algorithm, the accuracy decreased by 0.7% and the F1 score
decreased by 1.1%. From the results, the inclusion of the Highway Network can increase
the model’s attention to the original data, prevent the excessive abstraction of the data,
and positively contribute to the model’s performance. Furthermore, when we removed
the GRU-CNN component, the accuracy decreased by 3.4% and the F1 score decreased
by 3.2%. This indicates that, for the ACGRU algorithm, both pathways are essential, and
the GRU-CNN component is critically important to the algorithm’s performance. The
F1 score of UAVs decreased the most severely after removing the components, reaching
6.4%. At the same time, the F1 scores of other classes generally decreased by around
3%. The F1 score only increases for helicopters, but the increase is not significant, and
the amount of helicopter data are also relatively small. Therefore, we believe that the
GRU-CNN component can compensate for the lack of long-term temporal correlation focus
in the CNN-GRU component by extracting global temporal correlations. Finally, when
we removed the attention module Senet, the accuracy decreased by 0.7% and the F1 score
decreased by 1.2%. From the results, it can be seen that channel attention also has a positive
effect on the model’s performance improvement. The reduction in each component led to
a decline in algorithm performance, so we believe that each component of our algorithm
plays a certain role, and the ACGRU algorithm we proposed is reliable and effective.

Table 7. Results of ablation experiment.

Radiation Characteristic Data CNN-GRU CNN-GRU +
Senet

CNN-GRU +
GRU-CNN +

Senet
ACGUR

F1 of bird 0.915 0.924 0.952 0.962
F1 of balloon 0.911 0.913 0.94 0.939
F1 of civil aviation 0.873 0.87 0.908 0.918
F1 of helicopter 0.855 0.894 0.882 0.919
F1 of special aircraft 0.900 0.894 0.946 0.961
F1 of UAVs 0.852 0.878 0.942 0.935

F1 of all 0.884 0.896 0.928 0.939
Acc of all 0.900 0.907 0.941 0.948

5.4. Experiments of ACGRU with Other Algorithms on Different Datasets

As we continue to incorporate more flying objects in our research, the overall radiation
characteristic dataset will undergo changes, including the inclusion of a greater variety
of datasets that differ from the six flying object datasets covered in this study. Therefore,
we believe it is necessary to validate the proposed model’s ability to classify time-series
data and its generalization in order to provide a reference for future research on classifying
more high-altitude flying objects. Table 8 displays the accuracy performance of five models
on a self-constructed infrared radiation characteristic dataset with a time series length of
200 and 17 datasets from UEA. Inception-Time is represented as IT. From the table, it can
be seen that, among the five algorithms, ACGRU performs the best in our self-constructed
dataset based on infrared radiation characteristics, with a 5.6% higher accuracy than FCN
and a 3.3% higher accuracy than ConvTran. For the high-altitude flying object classification
task, ACGRU is the most suitable algorithm among the five algorithms. At the same time,
the ACGRU algorithm ranks first in the other 13 datasets, especially in cases where each
category has a higher average training sample quantity. Except for the performance on the
heartbeat dataset, which is not as good as ConvTran, ACGRU’s performance is better than
the other models as the training volume increases. Furthermore, in the EigenWorms and
EthanolConcentration datasets, when the time lengths are 17,984 and 1751, respectively,
which is significantly higher than other datasets, ACGRU’s accuracy is noticeably higher
than those of the other four algorithms. This indirectly validates ACGRU’s ability to focus
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on the long-term correlation information of time series data with longer time intervals.
However, when the sample size is insufficient, ACGRU’s performance is not as good as
the Transformer-based ConvTran algorithm. For example, in Cricket, despite the long time
series length, the number of training samples is too small. Similarly, when both the number
of training samples and time series length are insufficient, ACGRU’s performance is poor,
as seen in the Libras dataset. Therefore, when performing different tasks, it is advisable to
choose the appropriate algorithm based on the dataset conditions. In terms of high-altitude
flying object classification tasks, ACGRU has the best performance, surpassing FCN by
5.6% and ConvTran by 3.3%.

Table 8. The accuracy and average ranking of the five models on 18 multivariate time series datasets.

Dataset Avg
Train Length ACGRU ConvTran IT FCN ResNet

FaceDetection 2945 62 0.678 0.672 0.632 0.66 0.595
PenDigits 750 8 0.989 0.987 0.98 0.938 0.977
LSST 176 36 0.637 0.616 0.556 0.562 0.573
FingerMovement 158 50 0.56 0.56 0.56 0.54 0.54
Heartbeat 102 405 0.727 0.785 0.625 0.678 0.727
EthanolConcentration 66 1751 0.384 0.361 0.349 0.323 0.316
HandMovement 40 400 0.46 0.405 0.338 0.284 0.338
PEMS-SF 39 144 0.919 0.828 0.89 0.832 0.74
RacketSports 38 30 0.921 0.862 0.835 0.842 0.835
Epilepsy 35 207 0.978 0.978 0.986 0.971 0.978
NATOPS 30 51 0.967 0.944 0.917 0.917 0.88
EigenWorms 26 17984 0.657 0.593 0.527 0.527 0.527
Libras 12 45 0.872 0.906 0.872 0.861 0.906
BasicMotions 10 100 1 1 1 1 1
Cricket 9 1197 0.986 1 0.972 0.943 0.934
AtrialFibrillation 5 640 0.4 0.4 0.267 0.267 0.2
StandWalkJump 4 2500 0.4 0.333 0.4 0.33 0.33
MyData 1895 200 0.948 0.915 0.907 0.892 0.903

Win 14 6 4 1 2
Average rank 1.61 2.17 3.19 4.06 3.97

In order to further analyze the performance of the ACGRU algorithm compared to
the other four algorithms, we conducted significance tests. The Friedman test was used
to determine whether the performance of the five algorithms was the same. A post hoc
test, the Nemenyi test, was used to determine whether there were significant differences
between the different algorithms [36]. The formula for conducting the Friedman test is
described as follows:

χ2
F =

12N
K(K + 1)

[
K

∑
i=1

R2
i −

K(K + 1)2

4

]
(30)

FF =
(N − 1) · χ2

F
N · (k− 1)− χ2

F
(31)

In this equation, χ2
F represents the statistical value of the Friedman test that follows

a χ2 distribution, N represents the total number of data sets, K represents the number of
algorithms, and R2

i represents the average ranking value of the i-th algorithm. FF represents
the statistical value of the Friedman test that follows an F-distribution. The Friedman test
in Equation (30) is overly conservative, so we usually use the Friedman test that follows an
F-distribution [36]. FF has k− 1 and (k− 1)(N − 1) degrees of freedom. The critical values
table can be found in any statistical textbook.

The formula describing the Nemenyi test is shown as Equation (32):

CD = qα1 ·
√

K(K + 1)
6N

(32)
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Among them, CD is the critical domain for the average rank difference of the algorithm.
The value of qα1 is shown in Table 9. α1 represents the significance level, which indicates the
probability of rejecting the null hypothesis. In this case, we set it to 0.05. When conducting
the Nemenyi test, if the difference between the average values of the algorithms is greater
than CD, we can conclude that there is a significant difference between these algorithms.

Table 9. Critical values for the two-tailed Nemenyi test [36].

Classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

In Friedman’s test, the null hypothesis states that the performance of all algorithms is
the same. According to Equations (30) and (31):

χ2
F =

12 · 18
5(5 + 1)

[
(1.612 + 2.172 + 3.192 + 4.062 + 3.972)− 5(5 + 1)2

4

]
= 33.99

FF =
(18− 1) · 33.99

18 · (5− 1)− 33.99
= 15.20

Using 5 algorithms and 18 datasets, FF is distributed according to the F distribution
with (5 − 1) = 4 and (5 − 1) × (18 − 1) = 68 degrees of freedom. For α1 = 0.05, the
critical value of F(4, 68) is 2.51. Since 15.20 > 2.51, we reject the null hypothesis. There are
differences among the 5 algorithms.

To further explore the differences between specific algorithms, we conducted the
Nemenyi post hoc test. Based on Table 9, the value of qα1 is 2.728, which means that CD is

equal to 2.728 ·
√

5(5+1)
6·18 , with a value of 1.44. Therefore, ACGRU performs significantly

better than Inception-Time (3.19 − 1.61 = 1.58 > 1.44), FCN (4.06 − 1.61 = 2.45 > 1.44), and
ResNet (3.97 − 1.61 = 2.36 > 1.44). There is no significant difference between ACGRU and
ConvTran (2.17 − 1.61 = 0.56 < 1.44). The significance differences between each classifier
are shown in Figure 8, with the average rankings of each algorithm across all datasets
plotted on the x axis.

012345

ACGRU
ConvTran

FCN
ResNet

Inception-Time

1.61
2.17

4.06
3.97
3.19

CD

Figure 8. Comparison of all classifiers against each other with the Nemenyi test. Groups of classifiers
that are not significantly different are connected.

Based on the results of the significance analysis, we plotted the ACGRU algorithm
separately with four other algorithms to further analyze the differences between ACGRU
and these algorithms. The scatter plot shown in Figure 9 represents the accuracy of each
classifier on the shared dataset, with each data point representing the accuracy difference
between two classifiers. The larger the distance from the diagonal line, the greater the
difference in accuracy between the two classifiers. Data points above the diagonal line
indicate that the ACGRU algorithm outperforms the other models in terms of accuracy,
while data points below the diagonal line indicate that the ACGRU algorithm is not as
accurate as the other models. Although there is no significant difference between ACGRU
and ConvTran, since ConvTran adopts Transformer technology that is fundamentally
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different from CNN and RNN, and Transformer is considered an advanced algorithm for
processing sequential data, we consider the significant detection results between ACGRU
and ConvTran to be acceptable. By observing Figure 8, we found that, for certain specific
tasks, the accuracy of ACGRU is higher than that of ConvTran, especially for our high-
altitude flying object classification task, where the accuracy of ACGRU is 3.3% higher than
that of ConvTran. Thus, for the field of spatial governance, the ACGRU algorithm seems to
be the more reasonable choice. On the other hand, ConvTran performs better than ACGRU
in tasks with a smaller sample size and a longer-term dependency. From Figure 9, we can
see that, for the majority of the datasets, ACGRU outperforms Inception-Time, FCN, and
ResNet algorithms, indicating that ACGRU has a clear advantage over them.
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Figure 9. Scatter plots of pairwise comparison of all models against ACGRU.

The ACGRU algorithm combines the attention mechanism and constructs three path-
ways: CNN-GRU, GRU-CNN, and Highway Network, fully leveraging the advantages of
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). CNN is
capable of extracting local and global temporal features, while RNN captures the temporal
relationships of time series. The synergistic effect of the CNN-GRU and GRU-CNN compo-
nents further enhances the information extraction capacity of the original data, while the
Highway Network alleviates the gradient vanishing problem and prevents the excessive ab-
straction of data. Compared to the FCN and ResNet algorithms, ACGRU can preserve more
temporal information because GRU can process and memorize features at each time step.
The ACGRU model reorganizes the temporal data, draws inspiration from the temporal
data convolution idea of Inception-Time, but incorporates the exchange and combination
of GRU and the attention mechanism to more effectively extract temporal information.
Through significance analysis, the ACGRU algorithm significantly outperforms Inception-
Time, FCN, and ResNet. Although there is no significant difference compared to ConvTran,
both algorithms have their own advantages. ConvTran performs better in handling small
sample datasets, while ACGRU excels in handling our self-made high-altitude flying ob-
ject classification dataset. Therefore, we believe that ACGRU is suitable for high-altitude
flying object classification tasks, as it can effectively model the long-term dependencies
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and local features in time series data, improve the modeling ability of time series data, and
demonstrate a certain level of generalization. This will help in the subsequent addition of
more high-altitude flying objects and the construction of more complex infrared radiation
datasets to achieve accurate classification.

6. Conclusions

In the study of the classification of high-altitude flying objects, it is difficult to classify
them based solely on the shape and contour of the flying objects due to altitude issues. In
this study, high-altitude flying objects were captured using a long-wave infrared camera,
and the radiation characteristics were measured to calculate the inverted radiation char-
acteristic data, obtaining multidimensional sequential data. To expand the dataset, data
noise simulation was performed. To investigate the optimal time required for classification,
five datasets with different time sequence lengths were prepared. Subsequently, an attention-
based convolutional neural network (CNN) and gated recurrent unit (GRU) algorithm, named
ACGRU, was proposed for the classification of high-altitude flying objects. The ACGRU
algorithm computes the radiation dataset through three paths: CNN-GRU, GRU-CNN,
and the Highway Network. The computed results are then fused for the classification
experiment. To verify the effects of the three paths on classification results, an ablation
experiment was conducted to further validate the effectiveness of ACGRU. Finally, consid-
ering that the addition of more flying objects will result in changes in the dataset variance,
a model generalization study was carried out. Comparative experiments and significance
analysis were conducted on our self-built dataset and 17 publicly available datasets from
UEA, compared with our four other algorithms. The experimental results indicate that,
considering both speed and accuracy, the radiation characteristic dataset with a time se-
quence length of 200 is most suitable for flying object classification. The corresponding
imaging time of the long-wave infrared camera is 2 s. The ACGRU algorithm achieves
an accuracy of 94.8% and an F1 score of 93.9% in the classification of high-altitude flying
objects. The ablation experiment results show that the classification accuracy of the complete
ACGRU algorithm is improved by 4.8% compared to the single-path CNN-GRU. Among the
17 publicly available datasets, our algorithm significantly outperforms Inception-Time, FCN,
and ResNet, but shows no significant difference from ConvTran. Compared to ConvTran,
when facing an insufficient data volume and insufficient time sequence lengths for multidi-
mensional time series data, ACGRU performs weaker: when facing sufficient data volume
and sufficient time sequence lengths, ACGRU performs better. The classification accuracy
of ACGRU in the radiation characteristic dataset is 3.3% higher than that of ConvTran. For
our high-altitude flying object classification task, the ACGRU algorithm is the most suitable
algorithm, which has certain practical value in applications such as air defense. However,
our method still has some limitations. The current approach cannot manage multiple flying
objects simultaneously. In addition, the infrared feature inversion system and the target
classification algorithm system are operated independently. Therefore, in the future, we
will improve the algorithm by incorporating target tracking and multi-object recognition
techniques. We will integrate image acquisition inversion with radiometric classification to
achieve an end-to-end process of image acquisition and classification. This will enable the
system to handle multiple flying objects at high altitudes and enhance its comprehensive
target classification capability. At the same time, we will expand the types of radiometric
datasets and strengthen the model’s ability to classify more high-altitude flying objects.
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