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Abstract: For the multi-label classification task of remote sensing images (RSIs), it is difficult to
accurately extract feature information from complex land covers, and it is easy to generate redundant
features by ordinary convolution extraction features. This paper proposes a multi-label classification
model for multi-source RSIs that combines dense convolution and an attention mechanism. This
method adds fusion channel attention and a spatial attention mechanism to each dense block module
of the DenseNet, and the sigmoid activation function replaces the softmax activation function in
multi-label classification. The improved model retains the main features of RSIs to the greatest
extent and enhances the feature extraction of the images. The model can integrate local features,
capture global dependencies, and aggregate contextual information to improve the multi-label land
cover classification accuracy of RSIs. We conducted comparative experiments on the SEN12-MS and
UC-Merced land cover dataset and analyzed the evaluation indicators. The experimental results
show that this method effectively improves the multi-label classification accuracy of RSIs.

Keywords: multi-label; attention; remote sensing; land cover

1. Introduction

Remote sensing image (RSI) archives have significantly increased as a result of im-
provements in Earth observation satellite missions. One of the most crucial tasks in remote
sensing applications is the development of RSI classification systems, which aim to au-
tomatically assign class labels to each RSI. The task’s objective is to analyze the texture,
space, spectrum, and other features and judge the semantic label of the target images [1].
With the deepening of research and clearer RSIs, they show more rich semantic informa-
tion. Researchers are no longer satisfied with the classification of RSIs with only one label.
They gradually focus on RSIs with multiple labels and apply them to image search, image
auto-annotation, and scene recognition.

Monitoring and managing human-made activities requires the classification of land
cover using remotely sensed terrestrial imagery collected by satellites. It is impossible to
process large amounts of satellite imagery using manual methods. In recent years, computer
vision multi-label classification has attracted attention. Compared with single-label images
classification, multi-label images classification can better help people understand the
semantic information contained in images. Multi-label learning aims to develop a function
that can predict the right label set for unknown images. Each instance in this classification
task has a set of class labels associated with it, and each class label is represented by a
sparse binary vector. Compared with the two tasks of semantic segmentation and target
detection, the advantage of multi-label image classification is that the dataset are easier
to obtain. The former often requires task-heavy pixel-level labeling and bounding-box
labeling, while the latter requires only image-level labeling.
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Although RSI land cover classification is significant, it is often difficult to obtain
satisfactory results with traditional visual classification algorithms. Because they all rely
on human-designed feature extraction methods, it is more difficult to obtain high-level
semantic information that is useful for image recognition. The early multi-label RSI classi-
fication methods are still implemented in multiple traditional single-label ways. It maps
multi-label image classification to multiple binary single-label image classifications and
obtains the final classification result by determining whether each label appears or not.
Scholars proposed a series of models to predict multiple labels simultaneously, including
the Conditional Random Fields (CRF) [2], the Stacked Auto Encoder (SAE) [3], and the
Support Vector Machine (SVM) [4].

In recent years, as computer speeds have improved and image data have become more
widely available, deep learning has advanced significantly and is now frequently utilized
for a variety of visual identification tasks. Deep learning has powerful autonomous learning
abilities and can learn to extract semantic information from images by repeating training
on the training set. Therefore, deep learning models are increasingly being applied to multi-
label RSI land cover classification tasks. Aiming at the problems of the large differences
between classes and the high inter-class similarity of RSI, deep learning methods are not
accurate enough to extract the key information of RSI and cannot significantly distinguish
multiple targets. In this paper, a multi-label classification method DenseNet121-CBAM
for RSIs based on dense convolution and an attention mechanism is proposed. It extracts
RSI features by fusing channel attention and spatial attention, and enhances the feature
extraction ability of the image. The improved network model can integrate local features,
capture global dependencies, and aggregate contextual information to improve the multi-
label classification accuracy of RSIs. A high-level overview of our RSI multi-label land
cover classification task is depicted in Figure 1.

Figure 1. Illustration of the multi-label classification with multi-source remote sensing data.

2. Related Work

Compared with optical images, multi-label classification in multi-source RSI is still a
relatively new field with a large development space and potential. The early methods were
mainly based on traditional features.

Multi-label classification techniques for RSIs based on deep features have steadily
drawn researchers’ attention as deep learning technology has advanced. Zeggada et al. [5]
applied deep learning algorithms to multi-labeled UAV images classification. They used a
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standard GoogLeNet as the backbone network of the classifier and replaced the softmax
with a sigmoid function to perform multi-label classification. Koda et al. [4] and Zeggada [6]
have successively used a standard neural network with an SVM or a CRF combination for
multi-label classification. Khan et al. [7] proposed an optical RSI multi-label classification
based on image segmentation and GCN. The algorithm uses an unsupervised image
segmentation algorithm to segment the RSI into several regions and extract shape, color,
texture, and SIFT features for each sub-region. A Graph structure is used to re-characterize
the image, whose nodes represent the features of the region and whose edges represent
the neighborhood relationships between the regions. Shendryk et al. [8] developed a CNN
model that can efficiently and accurately classify the land cover advantage categories in
PlantScope images. Karalas et al. [9] introduced multi-label classification applications in
RSI land cover classification and produced the multi-label prediction results of the image
by integrating remote sensing data with different spatial resolutions.

Attention mechanisms will help the neural network learn more effective information
from an RSI. Wang et al. [10] proposed a non-local block that can be placed into neural net-
works, using a self-attention mechanism to model remote dependencies and incorporating
global information, but the computational overhead of the network is high. The squeeze-
and-excitation network (SENet) suggested by Hu et al. [11] is a model that counts the global
information of an image by modeling the correlation between channels. However, SENet
adjusts channel attention by weight re-tagging and does not fully utilize global contextual
information. In order to give more fine-grained information and enhance the model’s ca-
pacity for learning, Woo et al. [12] created a network using the spatial and channel attention
modules consecutively. The network is composed of a convolution block mechanism. In
summary, a well-performing multi-label classification system requires a strong ability to
learn the overall feature representation and to exploit hidden inter-class dependencies.

Many people have used deep learning networks for RSI classification research and
have achieved improved results. In order to fully utilize the information included in each
layer of the features and produce more specialized RSI features, Zhao et al. [13] combined
dense residual blocks with multi-layer convolution features. Gao et al. [14] proposed a
dual-attention perception network for remote sensing scene classification, which uses two
attention modules to explore context dependence from the channel and spatial dimensions,
respectively. Tong et al. [15] designed a DenseNet (CAD) CNN based on channel attention,
which introduces a channel attention mechanism in the channel domain to adaptively
enhance the weights of important feature channels and suppress minor feature channels.
Although more deep learning methods are being used in RSI classification tasks and
achieve more satisfactory results, the above methods are not accurate enough to extract key
information from RSI.

3. Methodology

We present a deep learning model applicable to multi-spectral images and pol-SAR
images for multi-label classification. The model is based on a densely connected CNN
and incorporates a CBAM attention mechanism. Compared with ResNet, DenseNet has
a smaller number of parameters, reduces vanishing-gradient, transfers features, reuses
features, and reduces the number of parameters to a certain extent. Compared with the
general CNN which directly depends on the high complexity features of the last layer
of the model, DenseNet can comprehensively utilize the low complexity features of the
shallow layers and has good anti-overfitting. Compared with SENet, CBAM improves
the channel attention module and increases the spatial attention module. The model can
focus on important image regions and ignore unimportant regions. Average pooling and
maximum pooling are used to obtain the global statistical information of each channel,
respectively, while SENet only uses average pooling. Compared with BAM [16], CBAM
is not only used in bottleneck, but can be used in any intermediate convolution layer,
which is a plug-and-play attention module. Therefore, we introduce the CBAM attention
module in DenseNet. We believe that this model can effectively utilize more important
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features for the multi-label classification of RSIs. The model framework contains three
parts: an image feature extraction module, an attention mechanism module, and a classifier
module. We studied the performance of different deep learning networks in multi-label
RSI classification through experiments. On the SEN12-MS and UC-Merced dataset, we
ran tests and evaluations. Results showed that the classification performance measures
outperformed other models.

3.1. Model Structure

Given an RSI, the multi-label image classification task requires the output of multiple
land-cover labels embedded in the image. The multi-label classification problem of an RSI
can be defined as follows: Suppose X = {x1, x2, · · · xM} is the set of images containing
M samples, L = {l1, l2, · · · ln} is the set of labels containing N labels, and the label of xi is
a binary vector yi ∈ Y = {0, 1}N . The n-th element in yi shows the presence or absence
of the label ln ∈ L. The goal of multi-label classification is to learn a mapping function F,
given any image x∗, and output the classification label y∗, where y∗ = F(x∗).

Our proposed model consists of three components: DenseNet-121, which is a model
based on Dense Convolution Networks (121 represents the depth of the network), an
attention module, and a classifier. Figure 2 illustrates the framework of the model.

Figure 2. Our model framework.

3.2. Feature Extraction

The features are extracted from pol-SAR and multi-spectral RSI using DenseNet-
121 [17]. DenseNet proposes a more radical form of dense connectivity: all layers are
interconnected, and every layer takes information from all earlier layers. In the channel
dimension, every layer will be concatenated with every one that came before it. For each
layer, the size of the feature map is the same, and it serves as the following layer’s input.
For an L-layer network, Dense-Net contains L(L + 1)/2 connections.

xl = Hl([x0, x1, · · · xl−1]) (1)

xl is the output of the layer, where [x0, x1, · · · , xl−1] refers to the concatenation of
the feature maps produced in layers 0, · · · , l − 1. We combine Hl(·)’s several inputs from
Equation (1) into a single tensor. We define Hl(·) as a composite function of three operations:
a rectified linear unit (ReLU) [18], batch normalization (BN) [19], and 3× 3 conv. A dense
block structure with dense connections is shown in Figure 3.

BN(Bin) = γ
Bin − µB√

σ2
B + ε

+ β (2)

µB and σB are the mean and standard deviation of mini batch B, respectively; γ and β
are trainable transformation parameters (scale and shift).



Remote Sens. 2023, 15, 4979 5 of 19

Figure 3. Dense Block schematic diagram.

Transition layers are inserted between the dense blocks in the DenseNet network
model, whose main role is to decrease the feature vector dimension extracted from the
dense blocks in both the channel dimension and the spatial dimension. Its implementation
structure is shown in Figure 4. Each transition layer consists of batch normalization, ReLU
activation, convolution, and pooling layers. The pooling layer’s job is to lower the feature
vectors in each channel in the spatial dimension.

Figure 4. Transition layer schematic diagram.

In this paper, the backbone network is DenseNet-121. Convolution layers, dense
blocks, transition layers, and an output layer make up our model structure. Each dense
block has a set output feature number and is made up of an 1× 1 conv and a 3× 3 conv.
To shrink the size of the feature map, each transition layer comprises an 1× 1 conv and a
2× 2 average pooling layer. Global average pooling, a full connected layer, and a sigmoid
classifier are carried out at the end of the final dense block.

3.3. Attention

The concept behind computer vision’s attention mechanism is that the network can
reject information from numerous features that are unimportant to the task at hand while
paying attention to key feature information. It helps the neural network suppress less
significant pixels or channels. DenseNet achieves dense connections between features. This
method can reuse features, strengthen the transmission of features, and use features in the
network more sufficiently. Moreover, this network structure can also reduce the gradient
disappearance phenomenon in the process of BP to some degree. However, there are still
some problems with DenseNet. Some of these features are more useful for classification,
while others are not. If all these features are passed backward continuously without any
difference, they cannot effectively suppress invalid information on channels and spaces.
This will lead to bias in the training learning of the network, which will affect the accuracy
of the multi-label RSI classification. To address this issue, we suggested an attention-
CBAM technique for DenseNet.It is a simple and effective attention module for forward
convolution neural networks. Given an intermediate feature map, the CBAM module will
calculate the attention feature maps along two independent dimensions in turn, and then
multiply the attention map with the input feature map for adaptive feature optimization.
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3.3.1. CBAM Structure

The attention module of the channel dimension (CAM) and the attention module of
the spatial dimension (SAM) constitute the CBAM. The overall structure of CBAM [12] is
shown in Figure 5. CBAM successively infers a one-dimensional channel attention map
Mc ∈ RC×1×1 and a two-dimensional spatial attention map Ms ∈ R1×H×W from an input
feature map F ∈ RC×H×W . Equation (3) could be used to encapsulate the attention process:

Figure 5. The illustration of CBAM module.

F′ = Mc(F)
⊗

F

F′′ = Ms(F′)
⊗

F′ (3)

where
⊗

stands for element-by-element multiplication. The channel attention values are
disseminated along the spatial dimension during multiplication, and the final refined
output F′′ is the result. The two attention modules’ specifics are detailed in the follow-
ing paragraphs.

3.3.2. Channel Attention Dimension Module (CAM)

To create a channel attention map, we use the correlations between characteristics
across channels. The focus of channel attention is on “what” for an input image. Figure 6
depicts the computation process of the channel dimensional attention.

Figure 6. Diagram of the CAM attention module.

The feature map is compressed in the spatial dimension by CAM to produce a 1D
vector, which is then used to compute the channel dimensional attention effectively. To
acquire the spatial data for the feature mapping and compress the spatial dimensions, max-
pooling and average-pooling are utilized. Their outputs are then forwarded to a shared
MLP with one hidden layer to produce our channel attention feature map Mc ∈ RC×1×1.
Equation (4) is used to compute the channel dimensional attention:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (4)

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))))

W0 ∈ RC/r×C and W1 ∈ RC×C/r are the MLP weights.

3.3.3. Spatial Attention Dimension Module (SAM)

To create a spatial attention map, we use the spatial relationships between feature
sets. The channel attention feature map output by CAM is used as the input for the spatial
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attention module. Similarly, the spatial attention module compresses the channel. In
the channel dimension, it does average pooling and maximum pooling procedures. To
create an effective feature descriptor, average-pooling and max-pooling procedures are
applied along the channels and combined. It has been demonstrated that applying pooling
techniques along the channels effectively highlights informative regions [20]. The channels
are then combined into one channel after a convolution procedure. The sigmoid generates
the spatial attention trait. The module’s input features and spatial features are finally
multiplied to produce the final features. We describe the spatial attention module’s detailed
operation below. The spatial attention module structure is shown in Figure 7.

Figure 7. Diagram of the SAM attention module.

The function of the spatial attention modules is to find the information of the target
position. The spatial attention is computed as follows (5):

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (5)

= σ( f 7×7([(F′)s
avg; (F′)s

max]))

f 7×7 means a convolution operation with a 7× 7 filter size, and σ denotes the sig-
moid function.

3.4. Classifier

The multi-label classifier receives the beginning and final hidden states from our
model. A sigmoid activation function is used to construct a fully linked output layer with
10 probabilities. During training, binary-cross-entropy loss function iterations are used to
compare the 10 probabilities in the 0–1 range to the ground-truth labels. It can solve the
update delay of MSE loss function weight.In the binary classification problem, the model
finally needs to predict only two cases zero or one. We predict the probability p and 1− p
for each class.

Loss =
1
N

N

∑
i=1
−[(yi log(pi) + (1− yi) log(1− pi))] (6)

yi stands for the label of sample i. Positive classes are 1, and negative classes are 0. pi
stands for the probability that sample i is predicted to be a positive class.

4. Experiment
4.1. Dataset
4.1.1. SEN12MS

One of the largest RSI dataset currently accessible is SEN12MS [21], which includes
Sentinel-1 dual-polarized SAR images, Sentinel-2 multi-spectral images, and MODIS-
derived land cover scheme maps. A total of 180,662 patch triplets are contained in the
dataset. These patches were collected all over the world throughout the year. A single
“patch” corresponds to a real-world 2.56 km × 2.56 km area of land. Each patch in the
dataset is an image of 256 × 256 pixels by a resolution of 10 by 10 m, meaning that each
pixel represents a 10 by 10 m plot of land. As shown in Figure 8, every patch is offered as a
set of 16-bit Geo-Tiff files with the following details:
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Figure 8. Three example patches in SEN12MS dataset. From top to bottom: Sentinel-1 SAR (gray-
scale), Sentinel-2 RGB, and IGBP Simple Land Cover. A label legend is included.

Sentinel-1 SAR: C-band imaging is a feature of the Sentinel-1 mission that operates in
four distinct imaging modes with varying resolutions (down to 5 m) and coverage (up to
400 km). It offers quick product delivery, dual polarization capability, and six-day return
intervals at the equator. Two channels represent the dB values for sigma-no-backscatter
for VV (co-polarization) and VH (cross-polarization) polarizations. The pre-processing of
Sentinel-1 data includes the use of orbital files to update orbital metadata, the removal of
thermal and GRD boundary noise, radiation calibration, and correction for terrain.

Sentinel-2 Multi-Spectral: Thirteen channels correspond to the 13 spectral bands: Three
bands with a resolution of 60 m are associated with the atmosphere: Bands 1, 9, and 10.
Bands 2, 3, 4, and 8 at a resolution of 10 m are related to the surface. The resolution of
Bands 5–7, 8A, 11, and 12 is 20 m.

MODIS Land Cover: Using a supervised decision-tree classification algorithm, the
MODIS Terra and Aqua Combined Land Cover product combines five different land cover
classification schemes [22]. The principal land cover scheme identifies 17 IGBP classes,
which are divided into 11 classes of naturally occurring vegetation, 3 classes of vegetation
that has undergone human influence, and 3 classes of uninhabited land. We selected four
land cover schemes as dataset labels, and the four channels of the label images correspond
to IGBP, Land Cover Classification System (LCCS) land cover, LCCS land use, and LCCS
surface water layer individually. The data was generated from 2016 data and re-sampled to
a pixel resolution of 10 m.

There are four distinct MODIS land cover labeling systems in the SEN12MS dataset.
The IGBP scheme was chosen as the classification standard for conversion to multi-label
classification dataset among these schemes. This is because the IGBP scheme comprises
common categories with a medium level of semantic granularity, including natural and
urban habitats. Other LCCS cover classification techniques, in comparison, are uncommon
and put an excessive amount of emphasis on unrelated subjects of interest such as land
use or surface hydrology. In order to provide comparability with other land cover schemes
and partially alleviate the classification balance of SEN12MS, the initial 17 classes of IGBP
proposed by Yokoya [23] were reduced to 10 simplified IGBP schemes. Our experiment
used the simple 10 IGBP classes as classification training and testing classes.

Probability vectors are used to depict land cover scene classifications based on the
entire IGBP in the dataset. The probability vector displays the patch’s overall coverage for
each class. In our experiment, we read the probability labels in the original IGBP scheme
and converted them into a multi-label, simplified IGBP land cover scheme.
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4.1.2. UC-Merced

The UC-Merced Dataset [24,25] is a ground truth RSI that has been hand-labeled.
Each image was downloaded from the National Map of the U.S.G.S. in the R.G.B. color
space. The UC-Merced multi-label database is the first database applied to the multi-label
classification of RSIs published in 2018. The database contains a total of 2100 256× 256 RSIs
from the UC-Merced single-label scene database with a resolution of 0.3 m. Each of these
images is given a category label for the different objects contained in it. There are 17 label
categories in the dataset: airplane, bare-soil, car, chaparral, pavement, court, building, tree,
dock, mobile-home, sand, ship, storage tank, water, grass, sea, and field. As shown in
Figure 9.

Figure 9. Example of multi-label in UC-Merced land use images.

4.2. Training Details

The experiment runs on the linux operating system. The deep learning framework is
Pytorch 1.9.0 and Python 3.7. The CPU is an Intel (R) Xeon (R) Sliver 4208 with 8 cores and
2.1 GHz. The GPU is an NVIDIA Tesla V100 and CUDA version 12.0. The Python library
files need rasterio, scikit-learn, tensorboardX, tqdm, etc. According to the mathematical
properties of the ADAM [26] optimizer, if the learning rate is too large, the loss function
will fluctuate such that it is difficult to converge to the optimal value; on the contrary, if
the learning rate is too small, the optimization rate will be low and cannot converge for a
long time. Therefore, we set the learning rate of ADAM to be 0.001, the decay rate to be
10−6, and the batch size to be 64. We use Sentinel-1 dual-pol SAR data with two channels
and Sentinel-2 multi-Spectral with 10 channels as input. The mean and standard deviation
of Sentinel-1 SAR and Sentinel-2 multi-spectral images were calculated for normalization.
Our model training process is shown in Algorithm 1.
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Algorithm 1: The training process of the proposed model.

Input: Training set {xn}N
n=1, learning rate ρ, epochs

Output: Model parameters θ
1 Initialization of model parameters θ, set i = 0, small constant c
2 while i < epochs do
3 Sample a minibatch of m examples {xi, ......, xm} with corresponding targets

{yi, ......, ym} from training set.
4 Initialize gradient accumulation variable r = 0.
5 Get the examples {xi, ......, xm} into the model, perform feedforward

calculation, and obtain pseudo labels {ŷi, ......, ŷm}.
6 Compute gradient: g← 1

m∇θ L(ŷi, yi).
7 Accumulate squared gradient: r ← r + g

⊙
g.

8 Compute update: ∆θ ← − ρ

c+
√

r
⊙

g.

9 Apply update: θ ← θ + ∆θ.
10 if Loss decreased on the validation set then
11 Save model parameters θ.
12 end
13 end

The class distribution in the SEN12MS dataset is shown in Figure 10. The UC-Merced
total images number and test images number is shown in Figure 11. It is important to note
that although the number of barren samples is lower in comparison to the other classes.

Figure 10. Class distribution in the SEN12MS dataset.

Figure 11. UC-Merced total images number and test images number.

Generally, 0.5 is used as the classification threshold, but 0.5 is not suitable for all land
cover. A threshold value is used to convert IGBP probability labels to multi-hot labels.
The mean/std for normalization will not be accurate if the threshold is larger than 0.22.
Therefore, the threshold parameter is set to 0.1.The training-set images are pre-processed to
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a resolution of 256× 256 and require 2k initial convolution layers of 7× 7 with a step size
of 2 and a 3× 3 maximum pooling layer with a step size of 2 before entering the first dense
block. A 1× 1 convolution layer is added after each 3× 3 convolution layer to increase
computational efficiency and reduce the amount of input feature maps. In order to preserve
the size of the feature maps, the 3× 3 convolution kernel of the convolution layer uses zero
padding in the dense blocks. A fully connected layer and an 8× 8 global average pooling
layer constitute the last classification layer. A sigmoid activation function is lastly used to
complete the multi-label classification task for RSIs. It is required that the target be in the
form of a one-hot label. The detailed configuration of the parameters and output of our
model is shown in Table 1. We chose summer scenes including 45,753 patch triples as the
training set for our model.

Table 1. Our model structure parameters.

Layers Output Size DenseNet-121-CBAM

Convolution 128× 128 7× 7 conv, Sride 2
Pooling 64× 64 3× 3 Max pool, Stride 2

Dense Block 1 64× 64
[

1× 1 conv
3× 3 conv

]
× 6

CBAM Layer 1 64× 64 scale ×1
64× 64 1× 1 conv

Transition Layer 1 32× 32 2× 2 Average Pool, Stride 2
Dense Block 2 32× 32

[
1× 1 conv
3× 3 conv

]
× 12

CBAM Layer 2 32× 32 scale ×1
32× 32 1× 1 conv

Transition Layer 2 16× 16 2× 2 Average Pool, Stride 2
Dense Block 3 16× 16

[
1× 1 conv
3× 3 conv

]
× 24

CBAM Layer 3 16× 16 scale ×1
16× 16 1× 1 conv

Transition Layer 3 16× 16 2× 2 Average Pool, Stride 2
Dense Block 4 8× 8

[
1× 1 conv
3× 3 conv

]
× 16

Classification Layer 1× 1 8× 8 Glogal Average Pool
Fully-connected, sigmoid

We trained the model on the UC-Merced dataset by an Adam optimizer with a weight
decay of 1× 10−4 over 30 epochs, a learning rate of 1× 10−4 that is reduced after 8 epochs,
and a batch size of 32. We used the ReduceLROnPlateau function to optimally reduce the
learning rate during the training process. We made a number of adjustments to broaden
the variety of photos used for data augmentation in order to increase adaptability and
avoid overfitting Unlike natural images in ImageNet, RSIs can retain semantic features
after flipping and rotating, so we applied both horizontal flipping and vertical flipping.
Each image was rotated randomly by no more than 45 degrees. The width shift-range and
height shift-range equal 0.2. The model obtains loss results on the validation set at the end
of each epoch, and training stops if the loss is found to rise on the validation set. The model
takes the weights after stopping as the final parameters.

4.3. Evaluation

The performance evaluation of multi-label classification models requires an analysis of
multiple indicators, not just the number of correctly predicted labels, so a more complicated
analysis process is needed compared with the single-label case.

Each sample can be associated with many labels simultaneously since the performance
evaluation of multi-label classification is significantly more complicated than that of con-
ventional single-label classification. There have been many evaluation indicators suggested
for multi-label learning. These indicators can be broadly categorized as example-based
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metrics and label-based metrics. The method’s main idea is to split the multi-label learning
classification problem into q distinct binary classification problems, each of which resolves
to a class label. The indicators for evaluating performance classification can be calculated
based on the following methods: The importance of each sample in the test set is made
equal (sample average), each class’s importance is made equal (macro average), and the
entire test set is compared to the ground reference, regardless of the relative value of each
sample or class (micro-average method).

In this paper, the macro scores and micro scores are used to evaluate the experimental
results, using the following equations [27]:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Subset− accuracy(h) =
1
p

p

∑
i=1

[h(xi = Yi)] (10)

hloss(h) =
1
p

p

∑
i=1
|h(xi)∆Yi| (11)

F1 =
2Precision · Recall
Precision + Recall

(12)

These involve True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) test samples. ∆ stands for the symmetric difference between two sets.
According to the above definitions, TPj + FPj + TNj + FNj = p naturally holds for the j-th
class. The misclassification of samples on a single label is investigated using Hamming
Loss [28]. The percentage of relevant labels that do not appear in the anticipated label set
and irrelevant labels is calculated. For Hamming Loss, a smaller value indicates a superior
classification result from the model.

The majority of binary classification metrics can be calculated based on the values
provided above. Let B ∈ {Accuracy, Precision, Recall, F1} represent some specific binary
classification metrics. The following formulas (Equations (13) and (14)) contain metrics for
label-based classification. Conceptually, labels and instances are given “equal weights” in
macro- and micro-averaging, respectively. The higher values obtained indicates improved
model classification performance.

Macro-averaging

Bmacro(h)
1
q

q

∑
j=1

B(TPj, FPj, TNj, FNj) (13)

Micro-averaging

Bmicro(h) = B(
q

∑
j=1

TPj,
q

∑
j=1

FPj,
q

∑
j=1

TNj,
q

∑
j=1

FNj) (14)

To understand how the system performs generally across the dataset, we can utilize
the macro-average metrics for analysis. Because all classifications are equally important,
the overall results are greatly affected by small categories. The highest scores were obtained
from our model and are listed in Table 2. This average should not be used to make any
specific decisions. On the other hand, when the categories in a dataset are uneven, the
micro average can be a useful statistic. Table 3 lists micro-averaging scores for the different
CNN models in the SEN12-MS dataset.



Remote Sens. 2023, 15, 4979 13 of 19

Table 2. Macro-averaging scores for the different models in the SEN12-MS dataset.

Model Macro-Precision Macro-Recall Macro F1 Hamming-Loss Subset-Accuracy

VGG19 0.5511 0.5625 0.5106 0.0745 0.4769
Resnet50 0.5526 0.4663 0.4779 0.0773 0.5391

Desnet121 0.5614 0.6059 0.5713 0.0610 0.5716
Our-model 0.5764 0.5837 0.5754 0.0589 0.5832

Table 3. Micro-averaging scores for the different models in the SEN12-MS dataset.

Model Micro-Precision Micro-Recall Micro F1 Micro-Accuracy

VGG19 0.7167 0.7351 0.7258 0.9254
Resnet50 0.7327 0.6668 0.6981 0.9226

Desnet121 0.7667 0.7842 0.7753 0.9389
Our-model 0.7818 0.8955 0.8348 0.9410

In the experiment, we evaluated the suggested model against the following models:
(1) deep convolution networks (VGG19 [29]), (2) Deep Residual Nets (ResNet50) [30], and
(3) Densely Connected Convolution Networks (DenseNet-121). The experimental findings
demonstrate that the classification effect improves as learning model depth increases. The
classification scores improve when model depth is increased, demonstrating that multi-
label classification benefits from model depth. By using CBAM attention and the Dense
Connect Network as the feature extractor, our model outperformed the other models, as
shown by the indicators in Table 2 and 3.

Since we transform IGBP probability vector dense labels into simple scene labels, the
number of barren labels is insufficient. In the multi-label test dataset, only eight patches
support barren labels. This makes the test results for the barren class inaccurate. The
shrub-land, savanna, and water areas obtained higher F1 scores, indicating that the model
was highly significant in predicting dense label classes. Figure 12 shows the F1 score
distribution for each label, which is similar to the label frequency distribution displayed
in Figure 10. This is appropriate given that the model can learn more category features
and produce better classification outcomes with more data. Visually confused labels such
as barren, forest, and grassland are present in different samples, so their F1 scores are
significantly lower due to a severe lack of fitting.

Figure 12. F1 scores for the different models classes in the test set. The Forest support number is 162.
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Figure 13 shows the loss curve graph of models during 30 training epochs and the
hamming loss curves in the validation set during the validation epochs. As the training
epoch increases, the loss value decreases, and the F1 score, precision, and recall gradually
increase during the validation period, indicating that our model has not suffered from over-
fitting. The validation set index process with the Tensorboard tool is shown in Figure 14.

Figure 13. Left: Training loss curves of the different models; Right: hamming loss curves of the
validation set.

In the experiment on the UC-Merced dataset, we selected three deep learning CNNs
(VGG16, InceptionV3 [31], and Resnet50) for pre-training on the ImageNet dataset and
applied the training parameters to the multi-label UC-Merced dataset for fine-tuning. The
experiment micro-averaging results on UC-Merced are shown in Table 4.

We trained the above models based on the UC-Merced multi-label dataset for iterations
and recorded the subset-accuracy values and loss values of the models for each epoch.
The training set is used for cross validation, parameter tuning, and feature selection, and
the testing set is usedfor measuring the accuracy of model. Experimentally, each model
reached the state of convergence after 30 epochs of training. Figure 15 (left) shows the
training result curves of each model on the UC-Merced multi-label dataset. In the training
process, the early stopping [32] mechanism was used to avoid overfitting. Inception V3
ended training early at the 20th epoch. With regard to convergence stability and speed, our
model outperformed the other three models in both loss values and F1 values. Our model
provides a good training starting point for weight initialization.

Figure 14. Precision, recall, and F1-score on the validation set.
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Table 4. Micro-averaging scores for the different models in the UC-Merced dataset.

Model Micro-Precision Micro-Recall Micro F1 Hamming-Loss Accuracy

VGG16 0.91 0.93 0.86 0.031 0.885
InceptionV3 0.92 0.91 0.91 0.034 0.876

Resnet50 0.90 0.92 0.91 0.035 0.874
Our-model 0.90 0.94 0.92 0.033 0.881

Figure 15. Left: Training loss curves of the different models; Right: Subset accuracy curve comparison
between the training set and the validation set.

With the increase in training epochs in SEN12-MS, the curves of the other three CNN
models fluctuate greatly, indicating that the fitting of these models is not inferior to ours.
However, the CBAM-DenseNet model we proposed has no obvious fluctuation. In addition,
in the 25th training iteration of UC-Merced, the DenseNet-CBAM model has the lowest
loss value and is more stable than other CNN models. From the overall results of the two
dataset, it can be found that the proposed model is superior to the other four CNN models
in macro-average and micro-average indicators. Although the macro-Recall indicator is
slightly lower than that of DenseNet121, the comprehensive performance can still show the
effectiveness of the proposed method. This shows that the generalization performance of
the model is high.

The experimental results compared with other CNN models on the UC-Merced dataset
are shown in Table 4. The micro-F1 and micro-Recall of our model are higher than those
of the other three methods, but the micro-precision value is lower than that of the VGG16
and InceptionV3 models. Compared with micro-precision, micro-F1 can better reflect the
comprehensive performance of the models. In general, on the UC-Merced dataset, our
model’s classification performance measures outperform those of the other three models.

The training process and test results of the two datasets show that the deeper the
network is, the better the results are on the large-scale dataset of SEN12-MS. However, on
the smaller UC-Merced dataset, the deepening of the network layer has no significant effect
on the final result. It is proven that the current data-driven method represented by deep
neural networks requires ultra-large-scale labeled data to meet the needs of deep network
model training. However, UC-Merced dataset do not exceed 3000 annotated images. When
training a deep network with tens of millions of model parameters, even if training samples
are expanded by data augmentation during the training period, the overfitting of model
parameters still easily occurs, such that a deep network model with high performance
cannot be effectively trained.

4.4. Discussion

We carried out two qualitative studies of the proposed model, including a case study
and a label-specific feature visualization, in order to better illuminate its efficacy [33]. The
case study shows the prediction results of some images of the proposed model on the
SEN12-MS and UC-Merced datasets, as shown in Table 5. Furthermore, the feature heat
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map visualization of a specific label reveals a specific image region corresponding to the
label, as shown in Figure 16.

To further verify the real performance of our model, three representative image exam-
ples were selected from the SEN12-MS and UC-Merced datasets to show their classification
results. According to the different densities of the labels, the images with dense labels and
sparse labels were selected, respectively. For example, the grassland label was not predicted
in image (a), because most of the grassland has become bare-soil in the multi-spectral visual
image, resulting in reduced grassland features, so the label was not recognized. There
are savanna and forest labels in image (c), but our model could correctly identify the
urban/built-up area in the image. The content of image (e) is complex, with up to six
ground object labels: cars, buildings, court, pavement, grass, and trees. Our model cor-
rectly identifies all the above labels in the multi-label image classification results. Image (f)
contains seven different labels: cars, bare-soil, buildings, grass, trees, court, and pavement.
Only grass is not accurately predicted by the model. With regard to RSIs with few labels,
the model can also classify correctly.

In order to further investigate the efficacy of the proposed model for multi-label
interpretation of RSIs, label-specific feature heat maps of some image examples in the
UC-Merced dataset were visualized by the Grad-cam [34] tool. Figure 16 displays the
outcomes of qualitative studies that demonstrate the visual interpretation process of the
model for RSIs. It lists the regional activation of the heat maps of the three images under
different labels. Among them, the red part indicates that the region has a high degree of
correspondence with the label, and is activated strongly. The blue part indicates that the
region is less associated with the label and is activated weakly. The results show that the
image region with the most semantic information associated with the labels is focused
and highlighted in the heat map. At the same time, image regions with less semantic
information associated with labels are less activated or focused.

Although our proposed method has made progress in multi-label RSI classification,
there are still problems. The potential links between labels are completely ignored by binary
correlations. Label correlation is the co-occurrence dependence of different labels in the
same RSI. Moreover, each class label’s binary classifier may experience category imbalance.
This will mean that a small amount of data cannot be well trained. In our upcoming work,
we’ll strive to use label correlation to boost the multi-label RSI’s classification performance.
In addition, a overly high number of parameters in a deep learning model is still the main
problem that limits the interpretation ability of deep learning models. Therefore, we will
try to improve the model structure to solve the feature unknowns of deep learning.

Figure 16. Grad-CAM heart-maps on the UC-Merced dataset.
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Table 5. Case study.

Dataset Test Images Ground Labels Predictions

(a)

savanna savanna
grassland water
wetland wetland
cropland cropland

water Urban/built-up
urban/built-up

(b)

savanna savanna
urban/built-up Urban/built-up

cropland cropland

(c)

savannas savannas
forest forest

urban/built-up

(d)

buildings buildings
cars cars

grass grass
pavement pavement

trees trees

(e)

buildings buildings
cars cars

court court
grass grass
trees trees

pavement pavement

(f)

bare-soil bare-soil
buildings buildings

cars cars
court court
grass pavement

pavement trees
trees

5. Conclusions

Due to the large difference in images in the same category, the high similarity of
images in different categories, and the complex background of remote sensing scene
images, the performance of a CNN for land cover classification is weakened. This study
proposes a model based on an improved dense connection network. Compared with
other CNNs, our proposed model can better notice target areas in different remote sensing
scenarios, so as to perform multi-label classification more accurately. The model introduces
the CBAM multi-dimensional attention module into DenseNet121 to reduce redundant
features, increase useful information, retain the main features of RSI, and improve feature
extraction. Experiment’s results indicate that the improved model performs well, and
subset accuracy on the SEN12-MS dataset is 1.2% higher than that on DenseNet121. The
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Micro-F1 on the UC Merced dataset is 0.92. Because there are many and small land cover
targets in high-resolution RSIs, the amount of calculation is inevitably increased when the
attention mechanism and multiple convolutions are introduced. Designing a model that
can be processed in real time and improving the overall running speed will be the focus of
future research. In the actual RSI classification tasks, the complex background information
of RSIs has a great influence on the effective extraction of image features. Therefore, further
research on effective feature learning based on noise data is another important component
of future research on multi-label RSI classification.
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