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Abstract: Satellite-derived aerosol optical depth (AOD) has been extensively utilized for retrieving
ground-level PM2.5 distributions. However, the presence of non-random missing data gaps in AOD
poses a challenge to directly obtaining the gap-free AOD-derived PM2.5, thereby impeding accurate
exposure risk assessment. Here, this study presents a novel and flexible framework that couples
stacking and flexible spatiotemporal data fusion (FSDAF) approaches. By integrating multiple models
and data sources, this framework aims to generate hourly (24-h) gap-free PM2.5 estimates for the
Beijing–Tianjin–Hebei (BTH) region in 2018. This study effectively reconstructed data at least three
times more effectively than the original AOD-derived PM2.5, achieving the Pearson coefficient (r),
the coefficient determination (R2), root mean squared error (RMSE), and mean absolute error (MAE)
values of 0.91, 0.84, 19.38 µg/m3, and 12.17 µg/m3, respectively, based on entire samples. Such
strong predictive performance was also exhibited in spatial-based (r: 0.92–0.93, R2: 0.85–0.87, RMSE:
18.13 µg/m3–20.18 µg/m3, and MAE: 11.21 µg/m3–12.52 µg/m3) and temporal-based (r: 0.91–0.98,
R2: 0.82–0.96, RMSE: 3.8 µg/m3–21.89 µg/m3, and MAE: 2.71 µg/m3–14.00 µg/m3) validations,
indicating the robustness of this framework. Additionally, this framework enables the assessment
of annual and seasonal PM2.5 concentrations and distributions, revealing that higher levels are
experienced in the southern region, while lower levels prevail in the northern part. Winter exhibits
the most severe levels, followed by spring and autumn, with comparatively lower levels in summer.
Notably, the proposed framework effectively mitigates bias in calculating population-weighted
exposure risk by filling data gaps with calculated values of 51.04 µg/m3, 54.17 µg/m3, 56.24 µg/m3,
and 55.00 µg/m3 in Beijing, Tianjin, Hebei, and the BTH region, respectively.

Keywords: 24-h PM2.5 mapping; gap-free data; machine learning; spatiotemporal fusion

1. Introduction

Air pollution is one of the global challenges that poses a threat to human health, with
almost the entire world’s population (99%) breathing air that exceeds the air quality limits
set by the World Health Organization (WHO) [1]. Fine particulate matter with a diameter
of less than 2.5 µm (PM2.5) is one of the primary air pollutants that is of great concern
due to its adverse effects on human blood vessels, lungs, and the heart [2–4]. With the
well-being of individuals in mind, the Chinese government introduced ground stations in
January 2013 to monitor air pollution. Although ground sites can provide high-precision
measurements, the sparsity and unevenness of the sites limit spatiotemporal analysis at the
regional scale [5]. Meanwhile, satellite-derived aerosol optical depth (AOD), which has the
capability of wide-coverage imaging, has been widely used to retrieve PM2.5, especially in
monitoring severe air pollution events such as winter haze episodes [6].
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Satellite-derived AOD products have been utilized to map ground-level PM2.5 dis-
tributions at varying temporal resolutions (e.g., the annual, monthly, daily, and hourly
datasets). Previous studies have typically relied on moderate-resolution imaging spectrora-
diometer (MODIS) AOD data, including the MODIS Terra and Aqua Collection and the
MODIS multi-angle implementation of atmospheric correction (MAIAC) AOD, to gener-
ate daily PM2.5 distributions [7–10]. Furthermore, hourly concentrations of PM2.5 were
calculated using the hourly AOD products derived from various sources, such as the 8th
Himawari geostationary weather satellites (Himawari-8), the geostationary ocean color
imager (GOCI), and Fengyun (FY-4A) AOD data [11–13]. Although these studies have
significantly assisted in assessing PM2.5 exposure risk, some technical and data limitations
may have led to omitting data gaps in AOD data.

The mapping of full-coverage PM2.5 distributions is hindered by non-random missing
values, which are influenced by high surface reflectance areas such as snow cover and cloud
clover, presenting a significant challenge for a detailed assessment of air pollution exposure
risk [14,15]. Additionally, considering the more frequent imaging of hourly AOD, filling
data gaps in hourly PM2.5 concentrations requires more significant considerations than
daily products. For example, in the case of MODIS AOD, missing values occur only when
the Aqua (crossover at 10:30 a.m. local time) and Terra (crossover China at 1:30 p.m. local
time) satellites image over a specific region [16,17]. However, in the case of geostationary
satellites, it becomes imperative to account not only for data gaps in imaged AOD during
daylight hours but also for nighttime gaps arising from non-operational optical instruments
during the night [18,19]. Therefore, it is crucial to fill all these data gaps, especially for
hourly data, and to evaluate the differences in air pollution exposure risk based on the
filled and unfilled PM2.5 concentrations.

In order to address the issue of data gaps, researchers have employed various two-
stage models, wherein the data gaps in AOD are filled first, followed by the estimation
of PM2.5 concentrations using various inversion models. Approaches such as the fusion
of diverse AOD products, interpolation techniques, multiple imputation methods, and
machine-learning algorithms have been implemented to provide spatially full-coverage
AOD products [20–23] and have demonstrated robust performance. For instance, Ref. [16]
adopted the multiple imputation method to establish the relationship between AOD and
related factors in a five-day window. Ref. [24] employed the optimal interpolation method
to fuse multiple AOD products. However, limitations still exist for these studies; for in-
stance, the first two approaches are dependent on the quality and number of available AOD
samples, and they cannot obtain gap-free AOD due to the poor coverage of the precursor
AOD [9,19,25]. Moreover, these studies generated lower accuracy AOD with AERONET
ground-level measurements and introduced additional bias into PM2.5 retrieval [23,26,27].
Therefore, these limitations prompt the question of whether a suitable method exists to
reconstruct high-quality and full-coverage hourly PM2.5 distributions.

To effectively overcome the challenge of data gaps and generate gap-free PM2.5 data, as
well as to understand the differences in air pollution exposure risk between gap-filled and
unfilled data, this paper presents a flexible framework that utilizes multi-source datasets
to obtain 24-h PM2.5 distributions in the Beijing–Tianjin–Hebei (BTH) region during 2018.
Specifically, using a proposed machine-learning method, this study generated spatially
full-coverage PM2.5 concentrations (8:00 a.m.–6:00 p.m., local time). To fill the gaps during
the night (7:00 p.m.–7:00 a.m., local time), the flexible spatiotemporal data fusion (FSDAF)
method was introduced. The remainder of this paper is organized as follows. Section 2
introduces the study area and materials, and Section 3 details the proposed framework.
Section 4 shows the performance of the derived PM2.5 in the BTH region during 2018. The
paper concludes with a discussion of the results and conclusions.
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2. Study Region and Materials
2.1. Study Region

The BTH region in northern China serves as a prominent economic hub. However,
the presence of advanced industries and unfavorable environmental conditions, including
rising relative humidity, has resulted in consistently poor air quality, posing a severe threat
to public health, especially among the region’s 30 million elderly and young populations
(please refer to Table S1). Given its economic importance and the affluence of its inhabitants,
there is a pressing need to monitor hourly concentrations of PM2.5 in this region. The
location of the BTH region and the distributions of stations in the area are shown in
Figure 1.
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Figure 1. Location of the BTH region and distribution of the stations.

2.2. Materials

This study collected multi-source data containing meteorological conditions, emission
factors, satellite-retrieved products, and additional auxiliary data. To prepare the data for
analysis, all selected datasets were pre-processed by resampling (0.05◦ × 0.05◦), clipping,
and reprojection (WGS-84, EPSG: 4326). The present study also filtered out any observations
with NaN values resulting from a lack of measurements. Furthermore, we investigated the
spatiotemporal features of the data, such as latitude, longitude, day of the week, and day of
the year, to facilitate our study. Details of all the selected variables that PM2.5 is dependent
on are summarized in Table S2.

2.2.1. Ground-Level Observations

This study acquired hourly air quality data from the China National Environmental
Monitoring Center (CNEMC) (https://quotsoft.net/air/, accessed on 13 September 2023)
and performed data cleaning procedures, such as removing NaN and continuous repeated
values. For this study, we utilized data from 178 monitoring stations spanning a geographic
range from 35.0◦N to 43.0◦N and 112.0◦E to 120.0◦E, with 12 in Beijing, 9 in Tianjin, 51 in
Hebei, and 106 others.

https://quotsoft.net/air/
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2.2.2. Satellite-Derived PM2.5 Data

The China High Air Pollutant (CHAP) dataset is a publicly available dataset that
provides long-term time series data with high accuracy in China (https://weijing-rs.github.
io/product.html, accessed on 10 October 2023). This dataset comprises various contents
at daily and hourly levels, including PM1, PM2.5, PM10, O3, NO2, SO2, and CO. For this
study, we specifically selected Himawari-8-derived PM2.5 in the BTH region in 2018. Note
that these PM2.5 data still have gaps as no AOD gap-filling method is performed. The
hourly data was verified against in-situ observations from CNEMC in China, resulting in
a cross-validation coefficient of determination (CV-R2) of 0.85, with a root mean squared
error and mean absolute error of 13.62 and 8.49 µg/m3, respectively [28].

2.2.3. Auxiliary Factors

The European Center for Medium Weather Forecasting (ECMWF) Reanalysis v5
(ERA5) dataset is a global atmospheric reanalysis produced by ECMWF. This dataset
has been extensively verified in China and found to have the best performance in China
against other reanalysis datasets, including the second Modern-Era Retrospective analy-
sis for Research and Applications (MERRA-2), the Japanese 55-year Reanalysis (JRA55),
and the NCEP/DOE Reanalysis 2 (NCEP-2)) [29–32]. Meteorological conditions affect-
ing the accumulation and diffusion of PM2.5 were selected from the ERA5 dataset, such
as boundary-layer height (BLH), total precipitation (TP), and 10 m u/v-component of
wind. Details of the selected meteorological factors are provided in Table S2. Using the
bilinear interpolation method, the selected independent variables have been resampled to
0.05◦ × 0.05◦ (the CHAP’s spatial resolution).

As the manual source affecting air pollution, emissions are essential for PM2.5 retrieval.
In this study, we used the high-resolution air quality reanalysis dataset over China (ab-
breviated as CAQRA) dataset, which contains emissions data, such as SO2, NO2, and CO.
This dataset is produced by the chemical data assimilation system (ChemDAS) based on
the ensemble Kalman filter and the Nested Air Quality Prediction Modeling System [33].
Emission factors, such as CO and O3, were added according to the Spearman coefficient.

The chemical composition and other substances that make up PM2.5 are essential to
the atmospheric chemical reactions that can aggravate ambient air pollution [34,35]. For
this study, we selected the chemical compositions of the MERRA-2 dataset at the hourly
level. MERRA-2 is a comprehensive dataset that integrates multisource data, including
ground-based observations, model simulations, and satellite observations. The surface
black carbon (BC), organic carbon (OC), dust, sulfate (SO4), and sea salt (SS) concentrations
data were chosen. The PM2.5 concentrations of MERRA-2 in the BTH region are synthesized
by the formula below:

PM2.5 = DUST2.5 + SS2.5 + BC + 1.6×OC + 1.375× SO4 (1)

Arranged from left to right, the symbols in Equation (1) represent the PM2.5, dust, sea
salt, black carbon, organic carbon, and sulfate aerosols data of MERRA-2, all with diameters
less or equal to 2.5 µm. The coefficients 1.6 and 1.375 represent China’s representative
values, as determined by previous literature [36–39]. Notably, the nitrate particulate matter
predominantly emitted by anthropogenic activities, such as vehicle exhaust and industrial
production, is not included in Equation (1) or the MERRA-2 data. This exclusion may lead
to biases compared to ground-level observations [40,41].

The Shuttle Radar Topography Mission (SRTM) product is used in this section as
it can reflect the fluctuations of the surface. These data are resampled to 0.05◦ × 0.05◦,
employing the bilinear interpolation method. Additionally, the spatiotemporal information
of datasets (i.e., day of the year, day of the week, longitude, and latitude) is also included
as independent variables.

https://weijing-rs.github.io/product.html
https://weijing-rs.github.io/product.html
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3. Methodology

The main procedure of the proposed framework contains two parts, including a stage
called spatial reconstruction that generates spatially full-coverage PM2.5 during the day
based on machine-learning approaches and another stage called temporal reconstruction,
which utilizes the FSDAF method to obtain the PM2.5 distributions of the BTH region. It
should be noted that the first stage is replaceable with other machine-learning methods
or models to suit specific research needs (i.e., for more robust predictions). The details of
both parts are provided in the following sections and the Supplementary Material. The
schematic diagram of the proposed framework is illustrated in Figure 2.
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3.1. Spatial Reconstruction

For the first stage, the present study employs a previously proposed autogeoi-stacking
method [42] as it outperformed single tree-based models such as Random Forest, Gradient
Boosting Decision Tree (GBDT), and Extremely Randomized Tree. Due to the advantages of
sub-models comprised by the stacking method, model performances are significantly im-
proved. Additionally, the present study utilized an automated feature engineering method
that constructs meaningful non-linear features based on multiple mathematic operations,
such as logarithmic, sine, and multiplication. Using the autogeoi-stacking approach, the
gaps in the CHAP dataset are filled, and spatially seamless PM2.5 distributions of the
BTH region during the day are obtained. However, the proposed method’s complexity
may be a limitation for some researchers. In such cases, other robust machine-learning
models capable of generating spatially full-coverage PM2.5 distributions, such as the Light
Gradient Boosting Machine (LightGBM) and Extreme Gradient Boosting (Xgboost), may be
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more suitable. For more detailed descriptions, please refer to Section S1, Refs. [42,43]. The
structure of the autogeoi-stacking method can be represented by:

PM2.5 = f(fm1(BLH, TP . . . , OC, SO4, SS), fm2, . . . fm7) (2)

Equation (2) describes the autogeoi-stacking method, which synthesizes the final
estimations of the spatial reconstruction process via stacking through all the predictions of
the seven sub-models. The symbol fm1 represents the process of a well-trained machine-
learning method that integrates all the potential factors (e.g., BLH, organic carbon) and
estimates the PM2.5 concentration at each point.

3.2. Temporal Reconstruction

To address the absence of available AOD-derived PM2.5 products at night, this study
employed a robust and efficient data fusion method known as the FSDAF during the second
stage. This method, proposed by Ref. [44], has demonstrated its effectiveness in various
areas, including the fusion of multiple satellite images and the reconstruction of time series
for land surface temperature (LST) and normalized difference vegetation index (NDVI)
time series [45–47] and was therefore selected for filling the gaps in nighttime PM2.5 data.

To acquire PM2.5 distributions during nighttime, a pair of PM2.5 images (i.e., one
fine-resolution and coarse-resolution image) and another coarse-resolution image are
necessary. In this study, the coarse-resolution images were interpolated using inverse
distance weighted (IDW) interpolation based on ground-level observations during the
night (between 19:00 and 7:00, local time). Additionally, this study used images generated
in the first stage at 8:00 or 18:00 as the fine-resolution images. Based on the pair of images
at 18:00 or 8:00 (depending on the temporal adjacency of the nighttime), FSDAF estimated
PM2.5 distributions using the interpolated images at night. The primary process of temporal
reconstruction is illustrated in Figure 3. The main procedures of the FSDAF method are
described below: (1) classifying the fine-resolution image at t1 via the K-means method; for
a given parameter k, the pixels are divided into k classes; (2) the temporal changes for every
class are estimated for the coarse-resolution from t1 to t2; (3) predict the fine-resolution
image at t2 using the temporal change at class-level and calculate residuals at each coarse
pixels; (4) adopting Thin Plate Spline (TPS) interpolation to predict the fine-resolution
image from the coarse-resolution image at t2; (5) distributing the residuals based on TPS
prediction; (6) using the information in the neighborhood via the moving window method
to obtain the final prediction of the fine-resolution image. The FSDAF method used in the
present study can be formulated as:

PMt2

(
xij, yij

)
= PMt1

(
xij, yij

)
+

n

∑
k−1

Wk × ∆PM(xk, yk), (3)

∆PM
(

xij, yij

)
= Rhigh

(
xij, yij

)
+∆PM(c), (4)

where PMt2 and PMt1 represent the PM2.5 concentrations at t2 and t1 of one point (xij,yij)
with a high resolution, respectively. Wk indicates the calculated weight of points (kth
class). ∆PM is the calculated temporal change of points from t1 to t2 of the high-resolution
image. In Equation (4), Rhigh is the residual of points between the high-resolution and
coarse-resolution images. ∆PM(c) indicates the temporal changes of each classified class
via the K-means method.
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3.3. Validation

A dataset encompassing all available station data from the BTH region during 2018
was used to validate the proposed framework’s performance. The 10-fold cross-validation
method was employed using the sklearn library in Python [48]. Firstly, the dataset was
randomly and equally divided into ten chunks. Then, nine of these chunks were utilized to
train machine-learning models, while the remaining chunk was reserved for measuring
the accuracy and performance of the estimations. After ten repeated aforementioned
procedures, the results of three commonly employed evaluation indicators, namely the
coefficient of Pearson coefficient (r), determination (R2), root mean squared error (RMSE),
and mean absolute error (MAE), were obtained. The formulations for these three indicators
are as follows:

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
.R2= 1−∑i(Xi −Yi)

2

∑i
(
Xi − X

)2 , (5)

MAE =
1
m∑m

i=1|(Xi −Yi)| (6)

andRMSE =

√
1
m∑m

i=1(Xi −Yi)
2 (7)

where m is the total number of samples engaging the validation, and X and Y are the
mean values of observations and estimations of PM2.5 concentrations, respectively. Xi
and Yi represent the i-th value of ground-based PM2.5 observations and estimated PM2.5
concentrations, respectively.

4. Results
4.1. Model Performances

To validate the performance of the estimated PM2.5 concentrations, this study em-
ployed the 10-fold cross-validation method from the perspectives of all samples, spatial
and temporal. The results of all samples were analyzed, and Figure 4a presents a histogram
of the estimated and observed PM2.5, while Figure 4b displays a density scatterplot and
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performance metrics (r, R2, RMSE, and MAE). The estimated and observed PM2.5 values
in Figure 4a were mostly between 0 and 300 µg/m3, with a high density between 0 and
70 µg/m3, accounting for approximately 78.25% and 79.14% for estimated and measured
PM2.5, respectively. These results demonstrate a high level of consistency between the
estimations and observations. The robustness of the proposed framework is shown in
Figure 4b, with an r of 0.91, an R2 of 0.84, an RMSE of 19.38 µg/m3, an MAE of 12.17 µg/m3,
and a slope of 0.83.
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Figure 4. Histogram plot and density scatterplot of available estimations and in-situ observations
are illustrated in (a) and (b), respectively. The number of samples (N) and model performance (r,
R2, RMSE, and MAE) are also provided. The *** indicates that the trends are significant at the 99.9%
(p < 0.001) confidence level. The units of RMSE and MAE are µg/m3.

Spatial-based validation was performed across each sub-region of the BTH region, as
shown in Figure 5. The proposed framework demonstrated robust performance within the
BTH region, with an r of 0.92, an R2 value of 0.86, an RMSE value of 19.64 µg/m3, and an
MAE value of 12.21 µg/m3. Furthermore, the framework achieved high accuracy in Beijing
(R2 = 0.87), Tianjin (R2 = 0.85), and Hebei (R2 = 0.85). While there are more available samples
in Hebei compared to the other two regions, the proposed framework did not perform as
effectively in Hebei as it did in the other two areas. This phenomenon may be attributed
to the lack of representativeness in the samples, failing to capture the region’s intricate
geography characterized by more mountains and terrain fluctuations, along with its poorer
air quality. It should be noted that the proposed framework occasionally underestimated
high values (i.e., larger than 500 µg/m3), possibly due to a lack of representative data
from high-value areas. In such cases, over-sampling and under-sampling techniques
could be considered [14,49,50]. Overall, these findings demonstrate the robustness of the
proposed framework in the BTH region, with the potential for further improvements in
its performance.
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Through the seamless dataset in spatial and temporal dimensions, evaluation is made
every hour (please refer to Figure 6). The subgraphs have demonstrated the robustness of
the proposed framework, with r results consistently exceeding 0.90, R2 values consistently
surpassing 0.80, RMSE values consistently falling below 22.06 µg/m3, and MAE values
consistently remaining under 14.10 µg/m3. Additionally, the range of R2 results spans
from 0.82 to 0.88, with the highest R2 being 0.88 recorded at 3 p.m. (accompanied by
RMSE = 16.12 µg/m3 and MAE = 9.21 µg/m3), while the lowest R2, at 0.82, was observed
at 7 a.m. (associated with RMSE = 21.89 µg/m3 and MAE = 14.00 µg/m3). The range of R2

results during the daytime (8:00–18:00, local time) is between 0.82 and 0.88, and the values
during the night are between 0.82 and 0.87 (19:00–7:00) (R2 values of day and night are
0.83 and 0.82, as depicted in Figure S1). Finally, the results show that the seamless dataset
of PM2.5 documents the spatiotemporal variations well. The proposed framework works
robustly, whether during the daytime or the night.

The cross-validation performances of PM2.5 estimations at different temporal scales
are presented in Figure 7. At the daily level (Figure 7a), the proposed framework exhibits
robust performance in estimating PM2.5 concentrations in the BTH region during 2018. The
obtained r value of 0.96, R2 value of 0.92, and low RMSE and MAE values (12.24 µg/m3

and 8.14 µg/m3, respectively) demonstrate the ability of the framework to capture the
daily fluctuations of PM2.5 concentrations accurately. Notably, the daily synthetic PM2.5
data frequency is higher than that derived from ground-level observations. At the monthly
level (Figure 7b), the estimations of the proposed framework are well-matched with the
observed values, as indicated by a slope of 0.95. Overall, the results of the proposed
framework consistently demonstrate favorable performance across various temporal scales,
ranging from daily to yearly levels, with r values of 0.96–0.98, R2 values of 0.92–0.96, RMSE
values of 3.58–12.24 µg/m3, MAE values of 2.71–8.14 µg/m3, and slope values of 0.88–0.95,
indicating reliable and accurate results. These outcomes support an effective application of
the proposed framework in capturing the temporal variations of PM2.5 concentrations.
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confidence level.

4.2. Spatial Distributions

In this section, this study presents the spatial distributions of the generated data
from our study for both seasonal and annual levels, as depicted in Figures 8 and 9. This
study compared annual distributions of our data with the two included datasets in this
study (MERRA-2, CHAP) and another open gap-free dataset, namely the Long-term Gap-
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free High-resolution Air Pollutant dataset (LGHAP; details of this dataset are depicted in
Section S2) [28,51,52]. Firstly, in Figure 8, this study shows the mean PM2.5 values for each
season in the BTH region. Notably, there is a consistent pattern of higher PM2.5 levels in the
southern areas and lower levels in the northern areas across all seasons. In the spring season,
82.15% of the PM2.5 values are over 35 µg/m3, with a negligible 0.19% of areas classified as
slightly polluted and 17.66% of the region enjoying excellent air quality (as per the national
ambient air quality standard for annual PM2.5 concentration stated in GB 3095-2012; please
refer to Table S3). During summer, the mean PM2.5 values range from 17.57 µg/m3 to
45.02 µg/m3, indicating the lowest pollution level compared to the other seasons. In au-
tumn, the PM2.5 pollution is severe, ranging from 18.39 µg/m3 to 70.61 µg/m3, and it wors-
ens in winter, with over 26.37% of the southern areas exceeding the 75 µg/m3 threshold and
68.42% of the region’s mean PM2.5 values being over 35 µg/m3. The seasonal variations in
PM2.5 concentrations are influenced by several factors, including increased BLH and higher
water vapor content during the summer and straw-burning activities in autumn, as well
as the prevalence of coal heating, reduced airflow, and lower BLH in winter [53–55]. The
average PM2.5 concentrations for each season in the BTH region are 51.10 ± 12.34 µg/m3

(mean value ± standard deviation value), 32.36 ± 6.64 µg/m3, 42.32 ± 14.90 µg/m3, and
54.29 ± 25.62 µg/m3, respectively, which slightly differ from the seasonal mean values cor-
responding to the stations (62.45 ± 11.86 µg/m3, 38.88 ± 7.37 µg/m3, 54.28 ± 13.71 µg/m3,
and 68.63 ± 27.65 µg/m3, respectively). In summary, residents living in the southern areas
of the BTH region are exposed to higher PM2.5 levels than those residing in the north. While
the pollution is the most severe in winter, followed by spring and autumn, it is relatively
lower in summer.
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Figure 9. Annual mean values of stations in the BTH region; the subgraph is the distribution of
residual errors between the estimated values and observations at these stations.

As shown in Figure 9, this study investigated the annual PM2.5 distributions in both
stations and the study area, as well as the residual errors between the estimations and
observations. The annual mean concentrations of PM2.5 in the stations and the BTH region
were found to be 56.14 ± 13.18 µg/m3 and 44.97 ± 14.19 µg/m3, respectively, exhibiting a
consistent pattern in their distributions. The annual PM2.5 distributions in the BTH region
displayed a similar pattern, which is also apparent in Figure 8. Lower concentrations were
observed in the northern areas such as Zhangjiakou (28.91 ± 4.35 µg/m3) and Chengde
(28.72 ± 5.89 µg/m3), while higher concentrations were observed in the southern regions
such as Shijiazhuang (59.82 ± 5.57 µg/m3), Handan (64.60 ± 5.16 µg/m3), and Xingtai
(62.16 ± 3.63 µg/m3). These findings are consistent with previous studies [53,56]. Further-
more, the subgraph reveals that the residual errors are primarily concentrated in the range
of −10 µg/m3 to 4 µg/m3, with errors falling within the narrower range of −5 µg/m3

to 5 µg/m3, constituting 85.5% of the total. While the narrower range also demonstrates
the robustness of the proposed framework, the distributions of residual errors reveal the
underestimations, as indicated by the slope values lower than 1 in Figures 4, 5 and 7.

This study compared our seamless hourly dataset with MERRA-2, CHAP, and LGHAP.
Note that LGHAP is a daily and gap-filled dataset with a resolution of 1 km, whereas the
other three datasets are resampled to a resolution of 0.05◦ (comparisons of all datasets
are provided in Table S4). The consistency of PM2.5 distributions (see Figure S2) among
all datasets is observable, with a pattern of lower concentrations in the south and higher
concentrations in the north. The annual mean values of CHAP (43.91 ± 12.94 µg/m3) and
LGHAP (43.67 ± 16.59 µg/m3) and the estimated PM2.5 (44.97 ± 14.19 µg/m3) in this study
were similar. However, MERRA-2 significantly underestimated PM2.5 (33.19 ± 12.30 µg/m3)
due to the lack of nitrate particulate matter. It should be noted that the data presented
in Figures 9 and S2d may be over-smoothed, eliminating details in the northern regions,
which could be considered the main limitation of the proposed methodology. This could be
due to the fact that FSDAF needs to calculate weights based on neighborhood pixels [47,57],
or the coarse resolution data generated by IDW does not obtain abundant information of
details, which needs further experiments to determine specific reasons.

4.3. Particle Exposure Analysis

The adverse effects of PM2.5 on public health have gained increasing attention, leading
to a growing demand for long-term (annual mean) and short-term (24-h) exposure risk
assessment [1]. To address this, our study employed the seamless data generated and
Landscan as air pollution and demographic data to evaluate annual mean exposure risk
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using the commonly used population exposure (PWE) metric [58,59]. MERRA-2, CHAP,
and the generated data in this study have been resampled to the exact resolution (1 km) of
LGHAP and Landscan data. Additionally, we analyzed region exposure risk (RER) at a
daily (24-h) level [60]. Details of Landscan, PWE, and RER can be found in Sections S3–S5.

The results show that the PWE metric varied among cities (please refer to Table 1,
Figures 10 and S3–S7). However, there was high consistency in the distribution of PWE
across all datasets, except for MERRA-2, which still underestimated PWE due to the lack
of nitrate particulate matter. However, almost all subregions failed to comply with the
restriction (the annual values of each city can be seen in Table S5), except for Zhangjiakou
(the values of PWE and annual mean are 30.88 µg/m3 and 29.06 µg/m3) and Chengde
(31.74 µg/m3 and 29.06 µg/m3), which have excellent air quality attributed to their in-
dustrial structural differences led by tourism and more mountains and greenery [61,62].
The generated data were compared with CHAP and LGHAP, and a slight but noticeable
difference in PWE was observed, with gap-filled data being more relevant. For instance, the
generated data had a better correlation with LGHAP (r = 0.97, R2 = 0.91) than with CHAP
(r= 0.96, R2 = 0.7) (please refer to Figures S8 and S9), possibly due to the poor coverage
(32.62%; see Table S4) during the day caused by data gaps and the worsened air pollution
during the night than the day (mean values of the night and day are 55.51 µg/m3 and
32.62 µg/m3, respectively; see Figures S10 and S11), which CHAP ignored. These findings
suggest that the proposed framework effectively filled the data gaps of PM2.5, reducing the
bias of exposure risk caused by data gaps.

Table 1. PWE, population, and annual mean PM2.5 of subregions in the BTH region.

This Study CHAP LGHAP MERRA-2 Population PM2.5

Beijing 51.04 48.62 51.13 42.00 20,376,165 43.49
Tianjin 54.17 50.88 55.22 40.80 13,480,710 52.83
Hebei 56.24 53.08 57.64 41.78 74,207,325 44.64
BTH 55.00 51.96 56.11 41.69 108,064,754 45.00
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Figure 10. PWE of subregions at the city level of the BTH region. The dashed line denotes the
restriction of annual mean PM2.5 (35 µg/m3) according to GB3095-2012.

The ambient 24-h exposure risk was evaluated by assessing the RER of the BTH region
based on the 24-h restriction (75 µg/m3) of GB3095-2012 (refer to Table S3). As shown in
Figure 11, RER fluctuated regularly between 0 and 0.6, with a low frequency of severe RER
(i.e., larger than 0.6). During the day, RER constantly varied from 0 to 0.4, while worsening
at night, with values ranging from 0 to 0.8. These observations align with the patterns seen
in the 24-h distribution of estimated PM2.5, as illustrated in Figure S12. From midnight
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to 8 a.m., there was an accumulation of high concentrations (70 µg/m3–80 µg/m3) in the
southern area, attributed to the low activity of BLH and other adverse meteorological
factors. As the day progressed until noon, despite increased vehicle emissions, the rising
BLH led to a reduction in concentrations. Moreover, BLH activity continued to mitigate
the concentrations until 5 p.m. However, commencing with the evening peak at 6 p.m.
and the subsequent decrease in BLH, PM2.5 began to accumulate [55,63,64]. Moreover, the
occurrence of RER between 0.8 and 1.0 was rare in 2018, indicating that severe pollution
sweeping across the BTH region is infrequent. Seasonal variations in RER are observed in
Figure S13, with the worst situation occurring in winter, followed by autumn and spring,
and the mildest in summer. In summary, RER displays volatility at both hourly and
seasonal scales.
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5. Discussion
5.1. Overall Evaluation Results

The present study employed a flexible framework to address data gaps in PM2.5, incor-
porating the autogeoi-stacking and FSDAF methods. Based on this framework, we filled
data gaps in CHAP, which had poor coverage (32.96%) during the day, by reconstructing
data during the day and night, resulting in at least three times improved coverage. As
a result, this study obtained gap-free data at the hourly level (24-h) based on indepen-
dent variables. The PM2.5 estimations in this study were evaluated through sample-based
(Figure 4), spatial-based (Figure 5), and temporal-based (Figures 6, 7 and S1) validations.
According to the validation of all samples, Figure 4 illustrates a similar pattern in the
histogram distributions between the in-situ observations and estimations, demonstrating
robust performance with r (0.91), R2 (0.84), RMSE (19.38 µg/m3), and MAE (12.17 µg/m3).
Figure 5 also demonstrates the robustness of the proposed framework in the BTH region,
with r results ranging from 0.92 to 0.93, R2 values ranging from 0.85 to 0.87, RMSE values
ranging from 18.13 µg/m3 to 20.18 µg/m3, and MAE values ranging from 11.21 µg/m3

to 12.52 µg/m3. The results of temporal-based validation consistently perform well from
hourly to annual levels, with r values ranging from 0.91 to 0.98, R2 values ranging from
0.82 to 0.96, RMSE values ranging from 3.58 µg/m3 to 21.89 µg/m3, and MAE values
ranging from 2.71 µg/m3 to 14.00 µg/m3. However, the density scatterplots (Figures 4,
5, 7 and S1) and the range of slopes of the best-fit lines (0.83–0.94) indicate an increasing
underestimation of high-value areas. This underestimation can be attributed to the limited
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number of representative samples available in areas with values larger than 500 µg/m3,
resulting in insufficient information. Therefore, it is crucial to consider under-sampling and
over-sampling techniques that maintain a balance between majority (less than 500 µg/m3)
and minority (larger than 500 µg/m3) classes [14,49,50].

5.2. Comparison with Related Studies

An essential comparison with relevant studies that have attempted to address data gaps
using machine-learning algorithms and interpolation techniques has been conducted [14,24,52].
Firstly, two-stage models, where gap-free AOD is reconstructed and then inverse PM2.5 is
obtained, are compared. For instance, Ref. [16] utilized the multiple imputation method,
Ref. [65] employed the inversed variance weights technique, and Ref. [66] adopted the
ordinary least square approach. These studies achieved R2 values of 0.71 and 0.82 for 2013
and 2014, 0.63–0.86 for 2013–2016 and 0.92 for 2018, respectively. Other gap-filling methods
of PM2.5 are also compared. For example, Ref. [14] fitted the residuals between chemical
transport model simulations and ground-level observations and achieved R2 values of
0.80–0.88 from 2014 to 2021. Refs. [25,67] utilized multiple sub-models to reconstruct gap-
free PM2.5 with and without AOD, achieving R2 values ranging from 0.55 to 0.77 from daily
to annual levels and from 0.84 to 0.90 from hourly to daily levels. A summary of all these
comparisons is presented in Table S6.

In comparison to these studies, our study demonstrated robust performance, achieving
R2 values of 0.92, 0.96, and 0.93 at the daily, monthly, and annual levels, respectively
(r: 0.91–0.98, RMSE: 3.58 µg/m3–12.24 µg/m3, MAE: 2.71 µg/m3–8.14 µg/m3). Moreover,
this study obtained gap-free PM2.5, whereas some of the aforementioned studies may have
been limited by the quality and quantity of available AOD samples [19,23,68]. However,
these studies retained the interpretability of AOD and PM2.5 imputation, whereas our
study could not maintain the ability of PM2.5 imputation. Interpretability can assist other
researchers in better understanding black-box modeling and the relationships between
selected variables and targets (i.e., PM2.5 in this study). Therefore, the lack of interpretability
in the proposed framework represents a significant drawback. For future work, attention-
based, tree-based, and Bayesian-based approaches that can provide variable importance
should be taken into consideration [69–72].

5.3. Uncertainty of the Framework

Based on the analysis of model performance and the comparison with previous litera-
ture, the proposed framework exhibited robust performance and significantly reduced the
bias in estimated PM2.5. This could be attributed to several factors. Firstly, by reconstructing
24-h PM2.5 concentrations in the BTH region for 2018 and improving the coverage at least
three times, we mitigated the sampling bias resulting from data gaps to a certain extent.
This reduction in bias was achieved by addressing the incomplete data and enhancing
the representativeness of the dataset. Secondly, the stacking method employed in the first
sub-model of our framework played a crucial role in reducing the uncertainty associated
with PM2.5 estimation. By combining the estimated values from multiple sub-models, the
stacking method helped to enhance the accuracy and reliability of the PM2.5 estimates. This
approach has been supported by previous studies [7,69,73]. Further, our framework incor-
porated prior knowledge from in-situ observations to fill data gaps during the night, which
assisted in improving the completeness and accuracy of the PM2.5 estimates. Given the
significant reliance on in-situ observations, particularly at night, future research should take
into account the utilization of available coarse-resolution imagery, such as synthetic AOD
or PM2.5 using machine-learning techniques. However, it is also essential to note that due
to the low frequency of severe air pollution events in 2018 (as shown in Figure 11), sampling
bias emerged, resulting in fewer representative values of high-value areas. Consequently,
the proposed framework exhibited underestimation in these areas. This observation aligns
with findings from previous studies [24,53,54], highlighting the challenges associated with
accurately estimating high PM2.5 concentration with limited data on air pollution events.
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5.4. Differences in Filled and Unfilled Data

To understand the difference between filled and unfilled PM2.5 data, we conducted
a comparison between them, considering annual mean values, distributions, and RER.
Overall, consistency was observed among all datasets in terms of these measures. However,
the present study calculated PWE and obtained more accurate values than unfilled data
for the BTH region (55.00 µg/m3), Beijing (51.04 µg/m3), Tianjin (54.17 µg/m3), and
Hebei (56.24 µg/m3). It is worth noting that the calculated PWE in our study differed
from CHAP’s estimate, which exhibited a certain degree of underestimation compared to
the gap-free data. This underestimation can be attributed to omitting data gaps during
the day and night. Our findings regarding PWE suggest that data gaps not only affect
the accuracy and coverage of retrieved PM2.5 data but also introduce additional bias in
assessing exposure risk based on these data [14,52]. However, due to the differences in the
spatial resolution of LGHAP (1-km), CHAP (0.05◦), and this study (0.05◦), it is also essential
to consider the spatial-resolution-related bias of exposure risk [74,75]. For instance, Ref. [74]
investigated the difference between 100-km and 1-km data from 2010 to 2020. They found
a 7% underestimation of the long-trend of national PWE and a 1.75% underestimation of
the national attributable mortality trend.

Our comparison analysis revealed that filling data gaps in PM2.5 retrieval led to more
accurate PWE values than unfilled data. This underscores the importance of addressing
data gaps to improve the accuracy of exposure risk assessments. However, it is also crucial
to consider spatial-resolution-related bias when interpreting the results and assessing
long-term trends.

5.5. Limitations

Although the proposed framework demonstrated robust performance and effectively
highlighted the differences between gap-filled and non-gap-filled data, our study still has
several limitations. These limitations include the high dependency of in-situ observations,
the lack of interpretability in PM2.5 imputation, underestimation caused by sampling bias,
and spatial-resolution-related bias of exposure risk.

Given the substantial reliance on in-situ observations, at least two approaches should
be considered. First, it is imperative to assess the model’s performance when a portion of the
site data is intentionally omitted, employing repeated out-of-station verification to evaluate
the model’s generalization capabilities. Second, it is crucial to investigate alternative data
sources, such as synthetic AOD or PM2.5 generated through machine-learning techniques,
to complement available coarse-resolution imagery.

To address the second limitation, exploring alternative interpretability models such
as attention-based, tree-based, and Bayesian-based approaches is recommended. These
models can provide insights into the relationships between selected and target variables,
enhancing understanding of the underlying mechanisms and improving interpretability.

To mitigate the underestimation caused by sampling bias, future work should consider
the application of under-sampling and over-sampling techniques. Techniques such as
the Synthetic Minority Over-sampling Technique (SMOTE) can be utilized to balance the
representation of different classes and ensure more accurate estimations in high-value areas.
By addressing the imbalanced nature of the data, the bias in estimating extreme pollution
events can be reduced.

Regarding the spatial-resolution-related bias of exposure risk, incorporating high-
resolution data, such as MAIAC AOD, should be considered. Utilizing high-resolution
data can provide more detailed and precise information on the spatial distribution of PM2.5,
thereby reducing the bias associated with coarser spatial resolutions.

6. Conclusions

This study employed a flexible framework incorporating the autogeoi-stacking and
FSDAF methods to address data gaps in 24-h PM2.5 based on independent variables. The
performance of the proposed framework was robust across sample-based (R2: 0.84), spatial-
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based (R2: 0.85–0.87), and temporal-based (R2: 0.82–0.96) validations. Analysis of RER
and seasonal distributions revealed that estimated PM2.5 is the most severe in winter,
followed by spring and autumn, while it is relatively lower in summer. The same pattern
of distributions of PM2.5 concentrations showed higher levels in the south and lower levels
in the north. Furthermore, the comparison between unfilled and gap-free data in this
study demonstrated that gap-free data reduced the bias of PWE caused by data gaps and
acquired more accurate results (51.04 µg/m3) in the BTH region. Future studies should
explore alternative interpretability models, utilize sampling techniques to address bias,
and consider incorporating high-resolution data. These steps can improve the accuracy,
interpretability, and spatial resolution of PM2.5 estimation and enhance the assessment of
exposure risks.
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www.mdpi.com/article/10.3390/rs15204973/s1, Section S1: The autogeoi-stacking method;
Section S2: Long-term gap-free high-resolution air pollutant; Section S3: Landscan population;
Section S4: Population weighted exposure; Section S5: Regional exposure risk (RER); Table S1. Popu-
lations of each subregion of the BTH region (the unit of population is ten thousand people); Table S2:
Summary of datasets and sources used in this study; Table S3: National ambient air quality of annual
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the value with the best metric (R2 and RMSE); Figure S1: Density scatterplots of results of PM2.5
estimates (µg/m3) during the (a) day and (b) night. The dashed and solid lines denote 1:1 and best-fit
lines from linear regression, respectively; Figure S2: Annual PM2.5 distributions of MERRA-2, CHAP,
LGHAP, and this study; Figure S3: Distributions of calculated PWE using the generated PWE in this
study; Figure S4: Distributions of calculated PWE using the CHAP data; Figure S5: Distributions of
calculated PWE using the LGHAP data; Figure S6: Distributions of calculated PWE using the LGHAP
data; Figure S7: Distributions of calculated PWE of Beijing, Tianjin, and Shijiazhuang using generated
data in this study, CHAP, LGHAP, and MERRA-2; Figure S8: Heatmap of correlation coefficient (r) of
PWE among all datasets; Figure S9: Heatmap of coefficient determination (R2) of PWE among all
datasets; Figure S10: Boxplots of variations of estimated PM2.5 of the BTH region during each hour.
The blue solid line represents the mean value of each hour; Figure S11: Mean values of each subregion
of the BTH region for each hour; Figure S12: Distributions of estimated PM2.5 in the BTH region over
24 h; Figure S13: Distributions and bar plots of RER of each subregion in the BTH region: (a) Spring,
(b) Summer, (c) Autumn, (d) Winter, and (e) Annual. Refs. [14,16,25,42,52,58,59,65–67,76–80] are cited
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