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Abstract: Landslide displacement prediction has garnered significant recognition as a pivotal compo-
nent in realizing successful early warnings and implementing effective control measures. This task
remains challenging as landslide deformation involves not only temporal dependency within time
series data but also spatial dependence across various regions within landslides. The present study
proposes a landslide spatiotemporal displacement forecasting model by introducing attention-based
deep learning algorithms based on spatiotemporal analysis. The Maximal Information Coefficient
(MIC) approach is employed to quantify the spatial and temporal correlations within the daily data
of Global Navigation Satellite System (GNSS) observations. Based on the quantitative spatiotempo-
ral analysis, the proposed prediction model combines a convolutional neural network (CNN) and
long short-term memory (LSTM) network to capture spatial and temporal dependencies individu-
ally. Spatial–temporal attention mechanisms are implemented to optimize the model. Additionally,
we develop a single-point prediction model using LSTM and a multiple-point prediction model
using the CNN-LSTM without an attention mechanism to compare the forecasting capabilities of
the attention-based CNN-LSTM model. The Outang landslide in the Three Gorges Reservoir Area
(TGRA), characterized by a large and active landslide equipped with an advanced monitoring system,
is taken as a studied case. The temporal MIC results shed light on the response times of monitored
daily displacement to external factors, showing a lagging duration of between 10 and 50 days. The
spatial MIC results indicate mutual influence among different locations within the landslide, particu-
larly in the case of nearby sites experiencing significant deformation. The attention-based CNN-LSTM
model demonstrates an impressive predictive performance across six monitoring stations within the
Outang landslide area. Notably, it achieves a remarkable maximum coefficient of determination (R2)
value of 0.9989, accompanied by minimum values for root mean squared error (RMSE), absolute
mean error (MAE), and mean absolute percentage error (MAPE), specifically, 1.18 mm, 0.99 mm,
and 0.33%, respectively. The proposed model excels in predicting displacements at all six monitor-
ing points, whereas other models demonstrate strong performance at specific individual stations
but lack consistent performance across all stations. This study, involving quantitative deformation
characteristics analysis and spatiotemporal displacement prediction, holds promising potential for
a more profound understanding of landslide evolution and a significant contribution to reducing
landslide risk.

Keywords: deformation characteristics; spatiotemporal correlation; displacement prediction; deep
learning; GNSS observations
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1. Introduction

Landslides represent a catastrophic hazard, exhibiting widespread occurrence, sud-
denness, and significant potential risks to human life and property [1–3]. A notable
landslide-prone region in China is the Three Gorges Reservoir Area (TGRA) [4]. Extensive
surveys have identified more than 5000 landslides within the TGRA in the aftermath of the
dam impoundment in 2003 [5]. Hence, it is of paramount importance to enhance the efforts
for landslide prevention and controls, while monitoring systems are crucial in providing
evidence-based information for these [6,7].

Monitoring systems have been established across many landslides in the TGRA,
encompassing the surface displacement, deep displacement, groundwater level, and other
parameters [8]. Previous research has consistently underscored surface displacement as
one of the paramount alert parameters employed in landslide early warning systems
(LEWSs), encompassing the movement rate, velocity, and acceleration [9]. This preference
is rooted in the capacity of surface displacement to directly reflect the landslide’s activity
status [10]. While high-precision monitoring data can be effective in capturing the complex
deformation behavior and instability patterns of landslides, the frequency of gathering
displacement data from monitoring systems of landslides in the TGRA typically ranges
from monthly to quarterly [11]. Real-time monitoring systems have been implemented
on a select few landslides, including the Outang landslide, to acquire daily records. This
provision of daily data offers valuable and fresh insights for early warning-related tasks in
landslides [12].

The accurate prediction of displacement provides insight into future landslide move-
ments. Specifically, it serves the purpose of establishing warning thresholds and identifying
instances of sudden acceleration within landslides, which has the potential to trigger fail-
ure [13]. Predictive models of landslide displacement with a reliable performance have
gradually evolved as an integral component during the implementation of LEWSs to
mitigate landslide risk [14]. Machine learning (ML) algorithms have gained prominence
as the predominant approach for addressing this challenging task. This is primarily at-
tributed to the remarkable capability of ML methods to effectively model and handle the
intricate and nonlinear processes associated with landslide dynamics [15]. Deep learning
(DL) techniques, a subset of machine learning (ML), employ intricate architectures com-
prising diverse layers and nonlinear transformations to model intricate data abstractions.
These techniques have penetrated the field of landslides, where they offer a plethora of
applications, such as landslide detection [16], susceptibility mapping [17,18], displacement
prediction [19], and other landslide-related studies.

Several representative DL methods have garnered significant attention among re-
searchers focusing on landslides. Notably, these include convolutional neural network
(CNN) and recurrent neural network (RNN), as well as two variants of the RNN, namely,
long short-term memory (LSTM) network and gated recurrent Unit (GRU). These DL
methods have demonstrated satisfactory prediction results in the context of landslide dis-
placement [20–23]. A case in point is demonstrated by Nava et al. [24], who conducted a
comprehensive evaluation, comparison, and description of seven DL methods to forecast
landslide displacement in regions spanning Italy and China. Nevertheless, a notable con-
straint within most existing DL models for landslide deformation prediction is that they rely
on the displacement time series of a single monitored station. Such approaches overlook
the spatial correlation among the various stations across monitoring systems, posing a
challenge in capturing landslides’ overall behavior [25,26]. Compared with single-point
prediction based solely on time series, spatiotemporal prediction for landslide displace-
ment, which considers the combined spatial and temporal aspects, is not only necessary but
also highly beneficial for a more comprehensive understanding of the dynamic behavior of
landslides. Some spatiotemporal displacement prediction approaches have been previously
introduced. For instance, Khalili et al. [27] introduced an adapted graph convolutional
network (GCN), which integrated LSTM architecture. This hybrid approach was deployed
in the context of forecasting the cumulative deformation for landslides in Italy.
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Gaining insight into the mechanism behind landslide deformation constitutes a crucial
stride toward formulating a precise model for landslide displacement prediction. Extensive
research has consistently validated the significant influence of rainfall and changes in
water levels within reservoirs as predominant factors that trigger landslides [28–32]. It
is essential to explicitly identify the response of landslide movement to primary triggers,
which benefits landslide risk control. However, this kind of response relationship may vary
across various spatial locations within a reservoir landslide [33]. Additionally, deformation
between different parts of landslides can affect each other, making it necessary to analyze
the spatial interrelationship across multiple regions of landslides. Neighborhood rough
set theory [34], Grey relation analysis [35], the Pearson correlation coefficient [36,37], and
the Maximal Information Coefficient (MIC) [38] have been employed to investigate the
relationships between external triggers and monitored displacement, without considering
the spatial dependence.

The primary objective of this study is twofold. Firstly, it aims to develop a quantitative
comprehension of the spatiotemporal behavior of landslide deformation, encompassing the
hysteresis between triggering factors and landslide displacement, alongside the correlation
between displacements observed across locations within the landslide region. Secondly,
it endeavors to introduce a spatiotemporal prediction model for landslide displacement,
which is designed to effectively capture both spatial correlations and temporal dependen-
cies, thereby obtaining a satisfactory prediction accuracy. Furthermore, this study employs
daily displacement data, constituting a dataset of more than 1800 records. On the one hand,
the utilization of daily data for landslide deformation offers a finer temporal resolution,
enabling a more detailed understanding of landslide characteristics. On the other hand, the
abundance of extensive monitoring data facilitates the comprehensive training of DL algo-
rithms. Through these objectives, this study can contribute to enhancing our understanding
of the deformation mechanism of riverbank landslides and provide valuable insights into
mitigating landslide risk.

The Outang landslide in the TGRA has been chosen for study because of its persistent
and significant deformation, as well as the availability of updated daily monitoring data.
We first investigated the spatial and temporal deformation characteristics of the Outang
landslide through analysis of the daily displacement data. The MIC method was utilized
to quantitively examine the spatial correlation among various locations of the landslide,
as well as the temporal relationship between external triggers and daily displacements.
Moreover, an attention-based CNN-LSTM model was proposed to forecast landslide spa-
tiotemporal displacements. This model integrates a CNN for spatial correlation, LSTM
for capturing temporal dependencies, and a spatial–temporal attention mechanism to
enhance optimization.

2. Study Area and Database
2.1. Geological Setting

The Outang landslide occurred in Fengjie County, Chongqing, China, which is situated
on the south bank of the Yangtze River (Figure 1a). The landslide region experiences a
subtropical monsoon climate. The annual precipitation in the landslide area averages
1147.9 mm, with the majority (around 70%) falling between May and September.

The landslide spans from 90 to 705 m, meaning that a portion of its toe is immersed in
the reservoir water. The left boundary is defined by a ridge, while the right boundary is
delineated by a gully. The slope varies from 5◦ to 50◦, characterized by a steep upper section
and a gentle lower section. The dimensions of the landslide range from 1640 to 2230 m in
length and from 550 to 1300 m in width. The landslide exhibits an average thickness of
50.8 m, encompasses an area of 1.78 × 106 m2, and possesses a volume of 9 × 107 m3. The
landslide predominantly moves in the direction of 345◦. Its sliding mass primarily consists
of clayey soil, rock blocks, and fractured sandstone, with fractured sandstone being the
predominant component. The bedrock comprises sandstone oriented at 335–350◦/18–24◦.
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Figure 1. (a) Location of the Outang landslide; (b) arrangement of GNSS monitoring stations.

The landslide has been observed to experience three subunits of sliding. The first
subunit extends from 90 to 370 m in elevation, with an area of 9.2 × 105 m2 and a volume of
6.48 × 107 m3. Moving to the middle of the landslide, the second subunit encompasses an
elevation range of 250 to 530 m, with an area of 3.2× 105 m2 and a volume of 1.02 × 107 m2.
The third subunit is at the top of the landslide, extending from 400 to 705 m, covering an
area of 5.43 × 104 m3 and having a volume of 1.45 × 107 m3 [39].

2.2. Monitoring Scheme

Deformation of the Outang landslide has been observed since the Three Gorges Dam
was impounded in 2003. To track the landslide’s movements, a monitoring system was
implemented in 2006 and displacement monitoring data have been collected on a monthly
basis since then. Following the update, twelve Global Navigation Satellite System (GNSS)
monitoring points were installed on the Outang landslide in 2013 and provided three to six
batches of displacement data every month. Since 6 August 2016, these monitoring points
have been equipped with the capability to provide daily data, significantly enhancing the
precision and frequency of measurements for monitoring the spatiotemporal movements of
the Outang landslide. The automatic continuous GNSS monitoring stations exhibit precise
measurements for surface displacement, with planimetry accuracy at 3 mm + 1 ppm and
altimetry accuracy at 5 mm + 1 ppm. Utilizing a collection of single-frequency stations, the
GNSS network transmits unprocessed data to the GNSS receiver at 20-second intervals.
Subsequently, these raw data sets, which contain the relative positions of all measurement
stations concerning datum stations, are collectively subjected to processing.
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Furthermore, the twelve GNSS monitoring points, labeled as GPS01 to GPS 12, are
strategically positioned within three distinct subunits. Monitoring stations GPS01 to GPS06
are situated in the first subunit, GPS07 to GPS09 are located in the second subunit, and
GPS10 to GPS12 are positioned in the third subunit. Among these monitoring points,
continuous displacement data are not available for GPS01 and GPS09. Four monitoring
points, specifically labeled D01, D02, D03, and D04 have been installed outside the landslide
area to serve as the datum stations (Figure 1b).

Real-time rainfall data from a weather station installed in Anping town, situated 3 km
away from the Outang landslide, were adopted in this case. The daily reservoir water level
data are accessible through a website (http://www.cjsyw.com, access on 1 September 2022)
that is maintained by the Hydrology Bureau of Changjiang Water Resources Commission.

2.3. Monitoring Data

GNSS stations deliver monitored displacements across the slope. As of 31 July 2021,
the cumulative displacements at the 10 monitoring stations decreased as follows (Figure 2):
GPS10 > GPS11 > GPS12 > GPS08 > GPS07 > GPS06 > GPS05 > GPS02 > GPS04 > GPS03,
indicating that the third subunit (GPS10 to GPS12) was the most active one in the three sub-
units with the second subunit being next (GPS07 and GPS08), and the first subunit suffered
the smallest displacements (GPS03 to GPS06). Spatially, the displacement observations
suggested that the deformation not only differs among the three subunits but also within
the same subunit. Taking the third subunit as an example, the cumulative displacements of
GPS10, GPS11, and GPS12 were 1393 mm, 1092, and 760 mm, respectively, displaying a
decrease from the west to the east of the third subunit.
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Figure 2. Cumulative displacements of GNSS monitoring stations on Outang landslide between
1 July 2013 and 31 July 2021.

Six monitoring stations have been selected for further analysis, wherein GPS04 and
GPS06 have been chosen as representative stations for the deformation of the first subunit.
Similarly, GPS07 and GPS08 have been selected to represent the deformation of the second
subunit, while GPS10 and GPS12 are designated as representative stations for the deforma-
tion of the third subunit (Figure 3). The six monitoring points were strategically selected
to cover the three subunits of the landslide. Moreover, these monitoring stations provide
extensive and complementary data for monitoring purposes. This configuration allows for
a comprehensive assessment of the landslide behavior.

http://www.cjsyw.com
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Figure 3. Daily displacements of GPS monitoring stations on Outang landslide between 6 August
2016 and 31 July 2021.

Annual displacement and cumulative displacement for the six GNSS stations are
displayed in Figure 4. It should be noted that the displacement depicted in Figure 4 for 2021
only encompasses data up until July 31st, rather than the entire year. Over the course of the
eight-year monitoring period, GPS10 registered the highest cumulative displacement, with
an accumulation of 1.4 m. Additionally, it recorded an annual displacement of 425 mm in
2017 and a daily displacement of 17 mm on 6 October 2017.

Specifically, the annual displacement of GPS10 increased from 2013 and reached a
peak in 2017 (425 mm). Subsequently, the annual displacements in 2018 and 2019 were
significantly lower at 66 mm and 33 mm, respectively, representing only 15.5% and 7.8% of
the displacement observed in 2017. In 2019, the landslide exhibited a significant resurgence
in deformation, with a displacement measuring 116 mm. During the first seven months of
2021, the displacement reached 215 mm. The displacement observed at the remaining five
monitoring stations (GPS04, GPS06, GPS07, GPS08, and GPS12) exhibited a similar trend to
that of GPS10, characterized by a prominent deformation peak in 2017. Temporally, the
deformation peak manifests periodically, with intervals of a few years, and consistently
affects different parts of the landslide simultaneously.
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3. Methodology

This study aims to propose a DL model for predicting landslide spatiotemporal
displacement, employing techniques including the MIC, a CNN, LSTM, and an attention
mechanism. The capacity of the MIC to capture both linear and nonlinear correlations
between variables leads to quantitative evaluations of temporal hysteresis and spatial
correlation. The CNN captures spatial correlation in landslide deformations, while LSTM
excels in time series prediction. The integrated attention mechanism optimizes DL models.
The rationale behind proposing an attention-based CNN-LSTM model for predicting
landslide spatiotemporal displacement remains well founded. Additional details regarding
the adopted techniques are elaborated upon in the Sections 3.1 and 3.2. The procedure of
the attention-based CNN-LSTM model is outlined in the Section 3.3. Accuracy indicators
are displayed in Section 3.4.

3.1. Maximal Information Coefficient (MIC)

The Maximal Information Coefficient (MIC) is characterized by its generality and
equitability, enabling it to capture both linear and nonlinear correlations between variable
pairs [40]. Given n-pairs observations D = (P1, P2), where P1 = {p1(i)} and P2 = {p2(i)}
with i = 1, 2, · · · , n, the MIC between P1 and P2 can be defined as follows:
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(1) P1 and P2 are partitioned into x rows or y columns by a division of x-by-y grids signed
as G.

(2) D|G is calculated, which is the probability distribution of D on G. The maximum mu-
tual information max I(D|G) is achieved and then used to calculate the corresponding
feature matrix M(D)x,y as follows.

M(D)x,y =
maxI(D| G)
ln min(x,y)

=
max

(
∑x

i=1 ∑
y
i=1

nij
N ln

nij
N −∑x

i=1

∑
y
j=1 nij

N ln
∑

y
j=1 nij

N −∑
y
i=1

∑x
j=1 nij

N ln
∑x

j=1 nij
N

)
ln min(x,y)

(1)

where nij is the number of samples in the cell of jth row and ith column and N is the amount
of all samples.

(3) A different G can lead to a different D|G, and thus the globe optimal G0 can be
obtained by exhaustively searching the M(D)x,y. The MIC between P1 and P2 is
as follows.

MIC(D) = max
xy<B(N)

{
M(D)x,y = max

maxI(D|G)
ln min(x, y)

= M(D)x0,y0
(2)

where B(N) is a function of the sample size and is commonly defined as N0.6.
It has been proven that the MIC extends between 0 and 1, and the larger value donates

the stronger correlation.

3.2. Deep Learning Approaches
3.2.1. Convolutional Neural Network (CNN)

The convolutional neural network (CNN) represents a prominent deep learning frame-
work, drawing inspiration from the innate visual perception mechanism found in living
organisms [41]. Great state-of-the-art results on multiple domains have been achieved
using CNN [42], including extracting the spatial structure relationship of multidimensional
time series data [20]. Alongside the input and output layers, the CNN incorporates three
additional types of layers, specifically the convolutional layers, pooling layers, and fully
connected layers (Figure 5).
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Figure 5. Convolutional neural network (CNN) architecture.

Convolutional layers utilize kernels as filters to generate feature maps by sliding across
the given input date. This operation extracts spatial hierarchies of patterns and learns local
feature representations, capturing important information. The resulting nonlinear outputs
from the convolutional process are then passed through an activation function to adjust or
truncate the generated output. The rectified linear unit (ReLU) presented as Equation (3),
one of the most widely used nonlinearities in various fields, is employed in this study. The
convolution operation is shown in Equation (4).

ReLU =

{
0, i f x < 0,
x, i f ≥ 0.

(3)

Mi = f
(
∑ Mi−1

⊗
W

i
+ bi

)
(4)
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where Mi is the input characteristic quantity of layer i; f (x) is the activation function;
⊗

is
the convolution operation; and Wi and bi are the weights and bias of kernel in layer i.

Pooling layers have a significant impact on reducing the spatial dimensions of the
feature maps derived from convolutional layers. This process enhances the network’s ability
to handle spatial variations and capture invariant features. Popular pooling operations
include max pooling and average pooling. Among them, max pooling has demonstrated
its effectiveness in numerous studies and is utilized in this study.

The fully connected layers connect all neurons obtained from the pooling process to
every single neuron of the current layer, ultimately generating the final output. This config-
uration allows for comprehensive information integration and higher-level feature learning.

The initial values of some hyperparameters, such as the total number of features and
size of features in the convolution process; the window size and window stride in the
pooling process; and the number of neurons in a fully connected process, need to be set
before training the model.

3.2.2. Long Short-Term Memory (LSTM) Neural Network

The long short-term memory (LSTM) neural network is an enhanced variant of the
RNN, which overcomes issues like gradient explosion and vanishing gradients by in-
corporating “gates” into its architecture [43]. The fundamental component of the LSTM
architecture is the memory block, which consists of an “input gate”, “forget gate”, “output
gate”, and memory cell (Figure 6). These elements collectively facilitate valuable informa-
tion while discarding irrelevant or redundant information over a long time series [44].
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The principal algorithmic structure of LSTM is depicted by Equations (5)–(10). The
input gate incorporates the input data into the memory cell by employing Equation (5). The
forget gate, governed by Equation (6), controls the retention or dismissal of knowledge from
the preceding time step. The output gate utilizes Equation (7) to regulate the transmission
of output activations to other blocks.

it = σ(wxixt + whiht−1 + bi) (5)

ft = σ
(

wx f xt + wh f ht−1 + b f

)
(6)

ot = σ(wxoxt + whoht−1 + b0) (7)
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gt = σtanh(wxcxt + whcht−1 + bc) (8)

ct = ftct−1 + it·gt (9)

ht = ottanh(ct) (10)

where it, ft, ot, and ct are the values of the input gate, forget gate, output gate, and mem-
ory cell in the memory block; bi, bf, bo, and bc are their corresponding bias values; σ is
the sigmoid function; and wx and wh are the input weights and hidden weights for the
three gates.

3.2.3. Attention Mechanism

The attention mechanism draws inspiration from the remarkable information process-
ing abilities of humans, who possess the innate ability to selectively focus on distinctive
elements within a sea of information [46,47]. In the realm of machine learning, attention
manifests as a crucial component within models that autonomously learn and determine
the significance of various parts of input data. Through adaptive weight adjustments that
enhance significant information and suppress less relevant information, this mechanism
facilitates model recalibration. Accordingly, the attention mechanism significantly enhances
the optimization of conventional models [25,48].

Attention mechanisms mainly include channel attention, spatial attention, temporal
attention, and branch attention [49]. Channel attention determines what elements to focus
on, spatial attention determines where to allocate attention, temporal attention determines
when to prioritize attention, and branch attention determines which elements to prioritize
attention on (Figure 7).
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In the context of spatiotemporal deformation prediction of landslides, the integration
of spatial and temporal attention becomes crucial. Spatial and temporal attention jointly
leverage the strengths of both types of attention, enabling the adaptive selection of signif-
icant regions and keyframes. Previous studies [50] have separately computed temporal
and spatial attention, whereas some studies [51] have generated integrated spatiotemporal
attention maps.
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(1) Spatial attention mechanism

Sequentially combining channel attention and spatial attention, the Convolutional
Block Attention Module (CBAM) effectively utilizes both the spatial and cross-channel
correlations of features to guide the network on what and where to emphasize [52]. The
CBAM mechanism excels in highlighting pertinent channels and augmenting informative
local regions. The lightweight architecture is particularly advantageous, as it seamlessly
integrates into various CNN architectures with minimal additional computational over-
head. This characteristic makes the CBAM an attractive choice for incorporating attention
mechanisms into CNN models.

When provided with an input feature map X ∈ RC×H×W , it performs a sequential
calculation to compute a one-dimensional channel attention vector sc ∈ RC and a two-
dimensional spatial attention map ss ∈ RH×W . To accomplish this, the CBAM employs two
parallel branches that utilize max pooling and average pooling operations.

Fc
avg = As(X) (11)

Fc
max = Bs(X) (12)

sc = σ
(

W2δ
(

W1Fc
avg

)
+ W2δ(W1Fc

max)
)

(13)

MC(X) = scX (14)

where As and Bs denote global average pooling and global max pooling operations in the
spatial domain, respectively. δ is ReLU activation. σ is sigmoid activation. X is the input
feature map.

The spatial attention employs a convolution layer with a large kernel to create the
attention map:

Fs
avg = Ac(X) (15)

Fs
max = Bc(X) (16)

ss = σConv
[

Fs
avg; Fs

max

]
(17)

Ms(X) = ssX (18)

where Conv(·) represents a convolution operation, while Ac and Bc are global pooling
operations in the channel domain. The entire attention procedure is described as follows:

X′ = MC(X) (19)

Y = MS
(
X′
)

(20)

(2) Temporal attention mechanism

The inclusion of a temporal attention mechanism improves the adaptive acquisition
of latent temporal dependency features within time series [53]. In the context of landslide
displacement prediction, we utilize two separate LSTM networks. Initially, an attention
mechanism is incorporated into one LSTM network to determine the weights of influencing
factors at each time step. Subsequently, these weights are applied to the hidden state of
each time step through the introduction of another temporal attention mechanism in the
second LSTM network. This attention-based model effectively selects significant inputs
based on their attention weights, capturing long-term temporal dependencies within time
series. This enhancement greatly improves the prediction and generalization capabilities of
LSTM networks.
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3.3. Workflow of Spatiotemporal Displacement Prediction

The spatiotemporal displacement prediction model comprises three components:
data collection, data preprocessing, and data modeling. More specifically, the predictive
modeling process is elaborated below, as shown in Figure 8.
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(1) Date collection

Multiple types of data have been meticulously collected from landslide monitoring
systems, encompassing the reservoir water level, daily rainfall, and cumulative displace-
ments. The comprehensive collection of these diverse data types forms the foundation for
accurate and reliable predictions in the spatiotemporal displacement prediction model.

(2) Data preprocessing

The MIC contributes to two key evaluations: (1) Quantifying the hysteresis between
triggering factors and landslide displacement, thereby facilitating the selection of input
data related to deformation-influencing factors for the forecasting model. (2) Assessing the
correlation among displacements observed across various locations within the landslide
region, thus substantiating the existence of spatial correlation. Furthermore, the spatial
deformation data portray the deformation state of landslides, and consequently, it is also
employed as a part of the input database for the proposed model.

(3) Data modeling

The deformation forecasting model incorporates the CNN to extract spatial defor-
mation correlations, and a spatial attention mechanism is implemented to optimize its
performance. Simultaneously, the LSTM component captures the displacement time se-
ries. Temporal attention is integrated into the LSTM networks to further enhance their
optimization. The combination of spatial correlation extraction through the CNN and time
series analysis facilitated by LSTM enables the model to forecast landslide spatiotemporal
displacement. This is accomplished by passing the fused information through a fully
connected layer.
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3.4. Evaluation of Model Accuracy

Four common measures, the root mean square error (RMSE), mean absolute percentage
error (MAPE), absolute mean error (MAE), and coefficient of determination (R2), have been
introduced for assessing the forecast accuracy of the proposed approach. Specifically, the
RMSE is a measure that depends on the scale of the data. While the RMSE is valuable
for the comparison among various approaches that apply to the same dataset, it is not
suitable for comparing a single approach across datasets with varying scales. The MAPE is
advantageous as it is independent of scale. Therefore, it is commonly employed to assess
forecast performance across diverse datasets. Nevertheless, a drawback of the MAPE is
that it becomes infinite or undefined when the observation is zero [22]. The MAE assesses
the mean of the overall prediction error and its changes exhibit linearity, thereby making it
intuitively comprehensible. The R2 quantifies the model’s degree of fit, providing a measure
of the alignment between the predicted and observed data [54]. Lower RMSE, MAPE, and
MAE values, along with a higher R2, indicate a superior prediction performance. The
detailed mathematical expressions are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (21)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (22)

R2 = 1− ∑N
i=1(xi − x̂i)

2

∑N
i=1(xi − x)2 (23)

MAE =
1
N

N

∑
i=1

(x̂i − xi) (24)

where xi represents the observation; x̂i represents the prediction; x represents the average
value of the observations; and N represents the number of measurements.

The nonparametric Friedman test is employed to identify significant differences among
multiple forecasting models from four performance measures (RMSE, MAPE, MAE, and
R2) [55,56]. This test proceeds as outlined below:

(1) Execute forecasting models to predict the displacements of landslides and gather the
values of performance measures as datasets. In this study, the predicted outcomes
from each chosen monitoring station serve as individual datasets.

(2) The m, n, and k denote the number of forecasting models, datasets, and performance
measures, respectively. For the ith indicator, the forecasting models are ranked from 1
to m, represented as rj

i .
(3) For the jth forecasting model, the average rank can be determined.

Rj =
1
n

j

∑
i

rj
i (25)

(4) The Friedman statistic, denoted as Ff, can be calculated.

Ff =
12n

m(m + 1)

(
∑ R2

j −
m(m + 1)2

4

)
(26)

A p-value is used to determine the probability of rejecting the null hypothesis. If a
p-value is less than 0.05, the null hypothesis should be dismissed, highlighting a statistically
significant variation among the forecasting models [57].
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4. Result
4.1. Spatiotemporal Correlation of Landslide Displacement
4.1.1. Temporal Correlation between Landslide Displacement and External Factors

Reservoir water level changes and rainfall usually cannot induce landslide deforma-
tion immediately. Their hysteresis effect on landslide deformation has been considered
by Yang et al. [33]. In addition, as analyzed in Section 2.3, the deformation characteristics
of the landslide vary spatially. We selected six monitoring points (GPS04, GPS06, GPS07,
GPS08, GPS10, and GPS12) that span across the entirety of the landslide area. Through the
utilization of the MIC method, we conducted a quantitative analysis to examine the correla-
tion and hysteresis effects of rainfall and reservoir level changes on daily displacements.
The program for the MIC was implemented using Python 3.6 within the Anaconda 3 en-
vironment. Figure 9 provides a comprehensive summary of the MIC values, which were
obtained by evaluating the correlation between the daily displacement rate and cumulative
rainfall as well as the changes in reservoir water level over a time range of 1 to 70 days.
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According to Figure 9, it was evident that the MIC values between daily displacement
and either the daily rainfall or daily reservoir level change were notably lower. This
observation suggested the existence of a hysteresis effect caused by these two triggering
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factors on landslide deformation. The MIC values obtained from the six GNSS stations
exhibited a discernible pattern of initially increasing and then reaching a stable state as
the cumulative rainfall from previous days increased. We designated the point at which
this trend shifted as the turning point, representing the lag time between the effect of
rainfall and the subsequent landslide deformation. This turning point was highlighted
by black ellipses in Figure 9. From the perspective of the response time to rainfall, GPS08
was the most sensitive location, and the response time was 10 days. Conversely, GPS04
needed 50 days of cumulative rainfall to trigger locational deformation. For the other four
monitoring points, GPS06, GPS07, GPS10, and GPS12, the response time was 25 to 30 days.

The MIC values of the reservoir water level change were found to be lower compared
to those for rainfall. This observation can be attributed to the fact that the six monitoring
points were not situated in close proximity to the reservoir water. The response time to the
reservoir water level change for GPS06 and GPS10 was 30 days. Nevertheless, as shown in
the MIC curves of the reservoir water level change for GPS04, GPS07, GPS08, and GPS12,
no peak points were observed, which indicated that the lag time for the two locations was
not identified.

4.1.2. Spatial Correlation between Various Locations of the Outang Landslide

The MIC was also utilized to assess the correlation of deformation between different
spatial parts of the landslide by analyzing the displacements of GPS04, GPS06, GPS07,
GPS08, GPS10, and GPS12. Notably, daily displacements before August 6th, 2016, were
not available, and the data between 7 August 2016 and 31 July 2021 were adopted in the
analysis of spatial correlation. The results of the MIC are shown in Figure 10.
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Significant correlations were identified between the movement of GPS08 and monitor-
ing points in the first subunit (GPS04 and GPS06), as well as GPS07 in the second subunit.
In terms of the correlation analysis, GPS08 and GPS12, positioned within the second and
third subunits, respectively, exhibited the highest MIC values with the displacement of
GPS10. It was worth noting that the displacement of GPS10 stood out as the largest among
all the monitored points. In brief, the local movement can be most influenced by the defor-
mation occurring in nearby locations with the largest displacement. However, it is crucial
to acknowledge that this influence is confined within a specific scope of the landslide.
According to the MIC results among the six stations, it is noteworthy that the highest MIC
values for GPS04, GPS06, and GPS07 are associated with GPS08 rather than GPS10, despite
GPS10 experiencing the most significant deformation.
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4.2. Spatiotemporal Displacement Prediction of the Outang Landslide Using Attention-Based
CNN-LSTM

Displacement prediction is a crucial and ongoing topic in the field of landslide studies.
It enables us to gain insights into how landslides respond to various influencing factors
and provides valuable information about future stability. According to analysis of temporal
hysteresis and spatial correlation for GNSS displacement, it can be inferred that displace-
ment prediction involves not only the displacement time series but also the spatial impact
from other stations. The spatiotemporal prediction of landslide displacement is undertaken
using the attention-based CNN-LSTM model.

4.2.1. Procedure of Attention-Based CNN-LSTM Model

A feature matrix, denoted as Xs, is created based on the deformation data collected
from monitoring points covering the landslide. Each element in Xs represents a deformation
station within the monitoring system. For the Outang landslide, a total of six monitoring
points (GPS04, GPS06, GPS07, GPS08, GPS10, and GPS12) are selected, which are distributed
across two longitudinal profiles and three subunits of the landslide. Consequently, a
feature matrix with dimensions of two rows and three columns is employed to store the
deformation information spanning the landslide. This matrix is considered to capture the
spatial deformation features of the landslide. In each element of the feature matrix Xs,
three indicators are recorded and considered as the input data of the CNN: the cumulative
displacement, displacement rate, and acceleration.

Moreover, in the context of utilizing the LSTM model for time series forecasting, the
input data consists of the reservoir water level and the 30-day change in the reservoir water
level, as well as the cumulative rainfall over the preceding 30 days. These specific features
are incorporated into the model based on their relevance and significance (Section 4.1), and
their selection aligns with the existing literature [22,58,59].

Daily monitoring data spanning from 6 August 2016 to 30 June 2021 are selected as the
training dataset. Subsequently, the period from 1 July 2021, to 31 July 2021, is designated as
the prediction sample to evaluate the performance of the model. All the data, including the
displacement of each monitoring point and external triggers, are normalized to [−1, 1].

The proposed model is implemented using Python 3.6 within the Anaconda 3 envi-
ronment, leveraging PyTorch 1.9.0 as the backend [60]. The Adaptive Moment Estimation
Optimizer (Adam), an optimization algorithm in PyTorch, is used for updating model
parameters during neural network training [61]. The specifications pertinent to the work-
station utilized for the experimental procedures are delineated in Table 1. The CNN
algorithm comprises one convolutional layer with a kernel size of (4, 4). The LSTM algo-
rithm adopts a single LSTM layer with a hidden size of 64. The training process involves
100 iterations to optimize the performance and convergence.

Table 1. Specifications of the workstation.

Specifications Details

CPU Intel i7-1165G7
Operating System Windows10

GPU Memory 16 GB
GPU MX350

Development Language Python 3.6
Development Environment Anaconda 3

Machine Learning Framework PyTorch 1.9.0

4.2.2. Prediction Results of Attention-Based CNN-LSTM Model

The predicted displacement results of the six monitoring stations are presented in
Table 2 and Figure 11. It appears that the predicted displacement aligns closely with the
monitored values, indicating a good fit. The RMSE values exhibited a range spanning
from 1.18 to 16.21 mm, with the MAE values ranging from 0.99 to 10.95 mm. Notably, the
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minimum and maximum values for these two evaluation indices were observed in the
cases of GPS04 and GPS10, respectively. The MAPE values ranged from 0.33% (GPS06)
to 1.18% (GPS12) across the six monitoring stations. The R2 values for all the six stations
exceeded 0.94, and the GPS08 station was particularly noteworthy with a value of 0.9989.

Table 2. Displacement prediction accuracy of GPS04, GPS06, GPS07, GPS08, GPS10, and GPS12 using
attention-based CNN-LSTM model.

Accuracy GPS04 GPS06 GPS07 GPS08 GPS10 GPS12

RMSE (mm) 1.18 1.80 2.84 9.64 16.21 11.91
MAE (mm) 0.99 1.51 2.47 6.29 10.95 8.58
MAPE (%) 0.34 0.33 0.52 1.07 0.82 1.18

R2 0.9752 0.9555 0.9444 0.9989 0.9654 0.9580
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Figure 11. Comparison of predicted and measured displacement at monitoring locations of GPS04,
GPS06, GPS07, GPS08, GPS10, and GPS12.

The cumulative displacements of GPS04, GPS06, and GPS07 were found to be smaller
compared to GPS08, GPS10, and GPS12. The maximum absolute errors recorded for GPS04,
GPS06, and GPS07 were 2.94 mm, 3.39 mm, and 5.27 mm, respectively, while GPS08, GPS10,
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and GPS12 exhibited values of 36.78 mm, 44.98 mm, and 33.78 mm, respectively (Figure 11).
Further analysis was conducted on the forecasting accuracy of the attention-based CNN-
LSTM model for monitoring stations GPS08, GPS10, and GPS12.

As depicted in Figure 11, from 1 July 2021 to 7 July 2023, the cumulative displacements
of these three stations remained nearly constant, with the displacement rates being 0.
The forecasting model demonstrated a satisfactory performance, with absolute errors
consistently below 10 mm. During the period from 8 July 2021 to 12 July 2023, the landslide
experienced severe deformation. The average displacement rates recorded for GPS08,
GPS10, and GPS12 were 21.35 mm, 29.41 mm, and 22.24 mm, respectively. Significant errors
were observed during this period, with the largest absolute error in daily displacement
prediction for the three stations being approximately 30 mm. From 13 July 2023 to 31 July
2023, the landslide once again stabilized, with average displacement rates below 5 mm
for the three monitoring stations. Moreover, there was a gradual decrease in absolute
error. It was evident that the attention-based CNN-LSTM model effectively captured the
deformation trend and demonstrated a satisfactory prediction performance during this
period of steady deformation.

4.2.3. Accuracy Comparison of the LSTM Model, CNN-LSTM Model, and Attention-Based
CNN-LSTM Model

To facilitate a more comprehensive comparison of the spatiotemporal prediction model
with an attention mechanism, namely the attention-based CNN-LSTM, we established two
additional models: a single monitoring point LSTM model and a spatiotemporal prediction
CNN-LSTM model without an attention mechanism. The comparison of predicted and
measured values from these three models (LSTM model, CNN-LSTM model, and attention-
based CNN-LSTM model) on six monitoring stations (GPS04, GPS06, GPS07, GPS08, GPS10,
and GPS12) is illustrated in Figure 12. Throughout the timeframe spanning from 1 July 2021
to 31 July 2021, the models demonstrated higher prediction accuracy during the steady
deformation phase within the landslide. However, their prediction performance decreased
relatively during periods of significant displacement increase.

The RMSE, MAE, MAPE, and R2 from the three forecasting models on the six monitor-
ing stations are displayed in Figure 13:

(1) According to Figure 13a,b, the attention-based CNN-LSTM model exhibited a smaller
RMSE and MAE than both the LSTM model and CNN-LSTM model, indicating a
superior prediction performance, particularly for GPS08 and GPS10. However, it was
important to note that the attention-based CNN-LSTM model did not consistently
outperform the other models on GPS04, GPS06, GPS07, and GPS12. The forecast-
ing accuracy of the proposed model was even worse than the CNN-LSTM model
for GPS12.

(2) Derived from Figure 13c, the attention-based CNN-LSTM model exhibited varying
prediction performances across the six GPS monitoring stations. Notably, for GPS04,
which had a relatively smaller displacement rate, the forecasting model demonstrated
a better prediction performance compared to stations with larger displacement rates,
such as GPS08, GPS10, and GPS12. This pattern was also observed in the LSTM model
and CNN-LSTM model.

(3) The R2 values of the attention-based CNN-LSTM model consistently surpassed those
of the other two models across all six monitoring points, signifying an enhanced capa-
bility in predicting the observed behavior (Figure 13d). Within the attention-based
CNN-LSTM model, R2 values for these stations ranged from 0.9444 (GPS07) to 0.9989
(GPS08). In comparison, the R2 ranges were wider for the CNN-LSTM model (0.8715
for GPS07 to 0.9982 for GPS01) and the LSTM model (0.8573 for GPS07 to 0.9973 for
GPS08). This suggested that the LSTM model can achieve a commendable prediction
performance for specific individual points, yet it lacked consistency across all moni-
toring points within the landslide due to its inability to account for spatial correlation.
While both models take spatial correlation into consideration, the attention-based
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CNN-LSTM model exhibited a superior prediction performance compared to the
CNN-LSTM model. This enhancement can be attributed to the incorporation of
a spatial–temporal attention mechanism, which optimizes the performance of the
DL model.

(4) The nonparametric Friedman test was employed to discern significant differences
among the models used. In this research, we worked with three forecasting models
(m), evaluated them across four performance measures (n), and used six distinct
datasets (k). The procedure was executed using the SPSS software (IBM SPSS Statistics
27.0.1, Chicago, IL, USA). The p-values of the RMSE, MAPE, MAE, and R2 were
all less than 0.05, suggesting a statistically significant variation among the LSTM,
CNN-LSTM, and attention-based CNN-LSTM models.
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Figure 13. Quantitative evaluation visualization results for different forecasting models: (a) RMSE;
(b) MAE; (c) MAPE; and (d) R2.

5. Discussion
5.1. Spatiotemporal Deformation Analysis of the Outang Landslide

The Outang landslide exhibited both temporal and spatial variations in deformation
behavior. Over the course of the eight-year monitoring period from 2016 to 2021, significant
deformation was observed in 2017, whereas the landslide remained relatively stable in
the other years. Additionally, the reservoir water level experienced periodic fluctuations
ranging from 145 to 175 m. In 2017, the annual rainfall reached a substantial amount of
1636 mm, greatly exceeding the multiyear average rainfall of 1147.9 mm. It can be inferred
that the strong deformation can be induced by abundant rainfall.

However, it should be noted that heavy rainfall does not necessarily guarantee the
occurrence of severe deformation in different parts of the landslide. This phenomenon is
clearly observed in the case of monitoring stations GPS04 and GPS06, belonging to the first
subunit. These stations recorded a maximum daily displacement of approximately 5 mm.
In contrast, the second subunit, represented by GPS07 and GPS8, exhibited a maximum
daily displacement of 15 mm, while the third subunit, represented by GPS10 and GPS12,
displayed a significantly higher maximum value of 30 mm (Figure 3).

These variations in displacement highlight the complex nature of the landslide re-
sponse to rainfall and suggest that other factors may also be at play in determining the
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extent of deformation. Besides the difference in local inherent conditions across various
sections of the landslide and the interaction of deformation between the subunits, another
factor that can contribute to the deformation variability is the response of each subunit to
external factors. The quantitative analysis conducted in Section 4.1 to examine the tem-
poral correlation between landslide displacement and external factors serves as potential
evidence. The findings from this analysis provide potential evidence that both rainfall and
reservoir activities have a hysteresis effect on landslide deformation. Moreover, it was ob-
served that the lag time between these external factors and the corresponding deformation
varied across different parts of the landslide.

Furthermore, we conducted a quantitative analysis to examine the spatial correlation
among the displacements of GNSS stations across the overall landslide area. Our analysis
revealed that the movement of one location within this landslide can be impacted by other
nearby areas, particularly those adjacent locations experiencing significant deformation.
This spatial interplay contributes to the complex deformation characteristics observed
within the landslide, adding an additional layer of intricacy to the overall behavior of the
landslide. Therefore, the incorporation of this spatial interplay is crucial when conducting
deformation analysis, predicting displacements, and performing other associated tasks
within landslide early warning systems [25].

5.2. Applications, Limitation, and Potential of the Attention-Based CNN-LSTM Model for
Spatiotemporal Displacement Prediction

The attention-based CNN-LSTM model employs a combination of a CNN to capture
the spatial correlation among deformation points and LSTM to catch the temporal depen-
dencies in the time series in the proposed forecasting model. Additionally, the attention
mechanism autonomously learns and determines the significance of various parts of in-
put data, which significantly enhances the optimization of the CNN-LSTM model. The
deformation of specific locations within the Outang landslide can be significantly influ-
enced by the nearby movement, a phenomenon that has been substantiated and elaborated
upon in “Section 4.1.2 Spatial correlation between various locations of the Outang Land-
slide”. Therefore, it is reasonable to incorporate spatial correlation into the spatiotemporal
displacement prediction.

One remarkable improvement offered by the attention-based CNN-LSTM model is its
capacity to simultaneously forecast multiple monitoring points. This enhanced capability
enables the model to manage multiple predictions more efficiently, aligning with findings
from previous studies. Consequently, the proposed model holds the potential to be applica-
ble to early warnings of landslide scenarios worldwide that share similar characteristics.
The proposed model exhibits remarkable prediction performance when applied to the six
monitoring stations of the Outang landslide. Conversely, certain spatiotemporal displace-
ment prediction models demonstrate inconsistent accuracy across different monitoring
points within a single landslide [25,26]. The Outang landslide boasts over 1800 data points,
whereas other cases in these studies typically contain 300 or fewer. Besides the inherent
differences in the models, the quantity and quality of the data from landslide cases could
be another contributing factor. Additionally, Xi et al. [25] observed that although the GCN-
LSTM and GCN-GRU models displayed similar prediction accuracies, the GCN-LSTM took
approximately 1.6 times longer than the GCN-GRU. One should, in the future, enhance the
running efficiency of models while ensuring the prediction accuracy will be improved in
the future.

Six monitoring stations were chosen for spatiotemporal displacement prediction in-
stead of utilizing all the GNSS stations. The absence of comprehensive monitoring data
in certain stations makes their inclusion impractical. Furthermore, the rationale behind
the station selection is closely tied to the specific data prerequisites of the CNN employed
within this framework. Specifically, the CNN is employed to extract the spatial correlation
of deformations, which requires the input data to possess strict Euclidean spatial character-
istics. This means the distances between data points can be measured using straight-line
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or Euclidean distance while maintaining the properties of Euclidean space. Satisfying this
requirement can be challenging as the placement of monitoring points is typically based on
the specific deformation locations of landslides.

6. Conclusions

The surficial movements of the Outang landslide have been extensively documented
over a span of eight years using GPS data, with nearly five years of daily data available. The
recent daily monitored data of landslide movement confirms the presence of both temporal
and spatial variations in deformation within the Outang landslide. A quantitative study
using the MIC was conducted to analyze the spatial correlation among different locations
of the Outang landslide and the temporal correlation between landslide displacement and
external triggers. Considering external influencing factors and spatial correlation within
the Outang landslide, an attention-based CNN-LSTM model is proposed to predict the
spatiotemporal displacement. The conclusions are as follows:

Monitoring points located at different locations exhibit varying response times to
external factors. GPS08 and GPS04 are the two monitoring stations that exhibit the highest
and lowest responsiveness, respectively, in terms of rainfall, with lagging time intervals
of 10 days and 50 days. The remaining four GNSS monitoring stations have lag times
ranging from 25 to 30 days. Additionally, the MIC results reveal that there is mutual
influence among different locations within the landslide, especially in the case of nearby
sites experiencing significant deformation. This influence has a more pronounced impact
on the surrounding areas. GPS10, in particular, serves as one such monitoring station for
the Outang landslide. The quantitative analysis conducted on the deformation triggers of
landslides and the spatial correlation, utilizing daily monitoring data and the MIC method,
provides valuable insights for predicting displacements and carrying out other associated
tasks within landslide early warning systems.

The attention-based CNN-LSTM model was utilized to forecast spatiotemporal dis-
placement on the Outang landslide. This model incorporates a CNN for spatial correlation,
LSTM for capturing temporal dependencies, and a spatial–temporal attention mechanism
to enhance optimization. In comparison to the LSTM model and CNN-LSTM model, the
attention-based CNN-LSTM model demonstrates a superior prediction performance, espe-
cially when applied to monitoring stations with larger displacement rates. By accurately
predicting the severe deformation of landslides, the attention-based CNN-LSTM model can
significantly enhance the efficacy of early warning systems, enabling timely interventions
to mitigate the risks associated with landslides.

It should be noted that the forecasting accuracy of the attention-based CNN-LSTM
model varies across multiple monitoring stations within a landslide, with better predictions
observed for locations experiencing steady deformation compared to those with severe
deformation. However, particular attention should be given to the prediction of severe
deformation parts, as accurate predictions in these areas are of the utmost importance.
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