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Abstract: Rapid impacts from both natural and anthropogenic sources on wetland ecosystems
underscore the need for updating wetland inventories. Extensive up-to-date field samples are
required for calibrating methods (e.g., machine learning) and validating results (e.g., maps). The
purpose of this study is to design a dataset generation approach that extracts training data from
already existing wetland maps in an unsupervised manner. The proposed method utilizes the
LandTrendr algorithm to identify areas least likely to have changed over a seven-year period from
2016 to 2022 in Minnesota, USA. Sentinel-2 and Sentinel-1 data were used through Google Earth
Engine (GEE), and sub-pixel water fraction (SWF) and normalized difference vegetation index (NDVI)
were considered as wetland indicators. A simple thresholding approach was applied to the magnitude
of change maps to identify pixels with the most negligible change. These samples were then employed
to train a random forest (RF) classifier in an object-based image analysis framework. The proposed
method achieved an overall accuracy of 89% with F1 scores of 91%, 81%, 88%, and 72% for water,
emergent, forested, and scrub-shrub wetland classes, respectively. The proposed method offers
an accurate and cost-efficient method for updating wetland inventories as well as studying areas
impacted by floods on state or even national scales. This will assist practitioners and stakeholders in
maintaining an updated wetland map with fewer requirements for extensive field campaigns.

Keywords: automated wetland mapping; landcover; Google Earth Engine; object-based image
analysis; LandTrendr

1. Introduction

Wetlands are ecosystems that are permanently or temporarily flooded or saturated
with water; they support vegetation communities, soil structures, and even wildlife species
that thrive in these conditions [1,2]. Wetlands offer numerous benefits to society [3,4].
These ecosystems provide a dwelling place for a variety of flora and fauna, as well as
agricultural produce. Additionally, they provide crucial functions such as the prevention of
flooding, safeguarding water quality, and managing wastewater disposal and treatment [3].
Therefore, the conservation and protection of wetlands are crucial for ensuring a sustainable
future for both humans and the environment, as they play a significant role in the global
climate cycle.

Wetlands in Minnesota, USA, have been significantly lost due to anthropogenic distur-
bances, such as over-exploitation of resources, draining for agriculture, urban development,
sedimentation, nutrient enrichment, peat harvesting, and hydrologic changes [3–6]. The
functions which wetlands provide, their significance in critical global cycles, and threats to
wetland ecosystems, make inventorying important to support management and sustainable
development planning decisions. We define wetland inventorying to mean the process
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of mapping wetland locations and extent. This is used interchangeably with wetland
classification and wetland mapping in this paper.

In Minnesota, updating the wetland inventory has been difficult due to a decrease in
funding [3]. The most recent update was completed in 2019 using imagery data acquired
between 2009 and 2014 [3]. The wetland inventory update was carried out using high-
resolution aerial imagery and a combination of photointerpretation and semi-automatic
classification methods [3]. Inventorying wetlands through traditional ground surveys and
photo-interpretation methods can be time-consuming and costly. Additionally, wetlands
are often inaccessible, which further complicates the process. To regularly update wetland
inventories, satellite remote sensing methods offer a more efficient alternative. With higher
temporal resolution and lower cost, satellite remote sensing enables us to update the maps
more frequently and keep them up to date.

Remote sensing provides multiple sources of data, each with its own advantages.
Optical remote sensing can be used to measure functional traits, such as leaf moisture
content and chlorophyll [7]. Synthetic aperture radar (SAR) data can be used to measure
geometric properties, roughness, moisture content, and biomass [8], especially over large
areas [9]. Digital elevation models (DEMs) play a crucial role in wetland classification
models by serving as significant inputs that enable the limitation of wetland occurrence
based on slope and other topographical characteristics [10]. Meteorological data sources
(e.g., precipitation data) could also improve accuracy as they could be used to model
temporal effects that contribute to wetness [11]. Multi-source remote sensing provides extra
information that is important to set constraints and improve the probability of wetland
classification [11].

The availability of open-access remote sensing data has increased significantly in
recent years [12,13]. However, the computational resources needed to process these large
amounts of data, especially for large-scale mapping, are limited. This has led to challenges
in large-scale inventory production, such as the need for local storage for handling data
covering large regions, and the lack of software for processing this amount of data [14].
Some of these limitations have been addressed by recent advances in cloud-computing,
parallel computing, and high-performance computing technologies [12–14]. Google Earth
Engine (GEE) [15] is a technological innovation that offers access to vast amounts of data,
computational capabilities, and processing functionalities. GEE can address problems
associated with large-scale map production [12–14] by providing functionality through
an application programming interface (API) in JavaScript and Python programming lan-
guages [13]. Since most of the data has been collected using remote sensing technology
and its derived products, GEE is increasingly being adopted for several earth observation
applications [11,14,16–18].

Although remote sensing methods have become the dominant techniques for updat-
ing inventories, they suffer from a lack of surplus training data [19]. Field data collection
methods are especially tedious in these ecosystems due to various factors such as inacces-
sibility and the nature of the regions, which do not support extensive ground collection
campaigns [20]. An alternative solution to this problem is using existing wetland maps
for the creation of updated inventories [21]. Previous studies have explored the use of
time series remote sensing data and existing thematic maps for land cover inventories
updating [19–25]. These studies have proposed methods for updating land cover maps
exploiting repeated satellite observations of the same area. Paris et al. (2019), proposed an
unsupervised learning approach for updating land-use and land cover maps [19]. They first
performed a consistency analysis with preprocessing which reduced differences between
the map layers and the images. This consistency analysis was needed due to errors inherent
in the reference layer due to changes in ground conditions, errors in the map production
and misclassification due to the minimum mapping unit of the product. A k-means cluster-
ing algorithm was used to identify the pseudo-training samples, then trained an ensemble
of support vector machines (SVM) classifiers to produce an updated map. Chen et al.
(2012) utilized a posterior probability space change detection method to update land cover
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maps [21]. Samples were extracted from the reference landcover product and used to train a
maximum likelihood classifier (MLC) to produce a landcover map for the target year. Then,
a comparison of the classification results of the satellite image in the reference and target
domains was used to identify change areas and update land cover using change vector
analysis in posterior probability space (CVAPS) and post classification comparison (PCC).
A Markov random fields (MRFs) model was applied to reduce the “salt and pepper” effect
caused by noise in the classification results. Finally, an iterated sample selection procedure
was used to extract new samples from unchanged areas to retrain the MLC. This process
was carried out iteratively until change and unchanged area comparison with results from
previous iterations had a consistency rate greater than 99%.

This study addresses the need for updating wetland inventories in the face of rapid
changes driven by natural and anthropogenic factors. Our primary objective is to design
an unsupervised dataset generation approach that harnesses existing wetland maps and
time-series data to facilitate the updating of wetland inventories. Specifically, we completed
the following:

(1) Extract training samples from an existing wetland map of Minnesota. This is achieved
by using LandTrendr to identify areas in the study area which are least likely to have
undergone significant changes over a time period which we refer to as “stable”. The
consistency of the identified areas is further improved by using clusters (objects) to
further filter out pixels in these stable areas. Finally, a database of training samples is
then extracted.

(2) Use the extracted training samples to classify wetlands in Minnesota, leveraging SAR,
multispectral and topographic data.

(3) Produce an updated fine-resolution statewide wetland inventory map.
(4) Secondarily, we assess the impact of increased water content on classification perfor-

mance.

The results of this study demonstrate the viability of our methodology for large-
scale wetland inventory updates, significantly reducing the need for costly field sampling
campaigns or labor-intensive photo-interpretation efforts.

2. Study Area

Minnesota, located in the upper Midwest region of the United States (USA), serves
as the study area for wetland mapping using remote sensing, as depicted in Figure 1.
Covering a total area of 225,000 km2, approximately 20% of Minnesota is comprised of
wetlands [3]. Nearly half of the state’s wetlands have been lost since the mid-19th century,
primarily due to human activities [3,6]. The majority of wetlands are concentrated in the
northeastern part of the state. Emergent, forested and scrub-shrub vegetation classes are
prevalent in Minnesota’s wetlands, particularly in the northern and central regions, as
shown in Figure 1.
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Figure 1. National Wetland inventory thematic map for Minnesota reclassified into the water, emer-
gent, forested, and scrub-shrub wetland classes (Minnesota Department of Natural Resources, 2019) 
[26]. 

Minnesota experiences an annual precipitation range of 508 to 965 mm, with the high-
est levels occurring in the southeastern region of the state [27]. The presence of snowmelt 
and increased precipitation in the spring and early summer leads to higher water content 
levels in wetland areas [28]. Conversely, during late summer and fall, these areas may 
experience drying out as water levels decrease. The fluctuation of wetland conditions 
throughout different seasons significantly impacts the state’s wetland dynamics, adding 
complexity to the process of wetland mapping, particularly when utilizing remotely 
sensed data. 

3. Data 
3.1. National Wetland Inventory Map 

The statewide National Wetland Inventory (NWI) map for Minnesota was obtained 
from the Minnesota Department of Natural Resources (MDNR) as a vector layer. This 
wetland map was produced using datasets acquired between 2009 and 2014. This product 
was used in this study as the map from which wetland class information is extracted. The 
class information is extracted after identifying stable areas, where no significant change is 
likely to have occurred as will be explained in the method section. 

The proposed approach in this study maps wetlands in Minnesota at the class level. 
In this study, the vector map was rasterized into an image with a 10 m resolution, con-
sistent with satellite imagery resolution, and classified into 4 wetland classes. The uncon-
solidated bottom, unconsolidated shore, aquatic bed, and streambed classes combined 
into a single water class due to spectral similarity. The other three classes included emer-
gent, forested, and scrub-shrub wetlands. 

Figure 1. National Wetland inventory thematic map for Minnesota reclassified into the water,
emergent, forested, and scrub-shrub wetland classes (Minnesota Department of Natural Resources,
2019) [26].

Minnesota experiences an annual precipitation range of 508 to 965 mm, with the
highest levels occurring in the southeastern region of the state [27]. The presence of
snowmelt and increased precipitation in the spring and early summer leads to higher
water content levels in wetland areas [28]. Conversely, during late summer and fall, these
areas may experience drying out as water levels decrease. The fluctuation of wetland
conditions throughout different seasons significantly impacts the state’s wetland dynamics,
adding complexity to the process of wetland mapping, particularly when utilizing remotely
sensed data.

3. Data
3.1. National Wetland Inventory Map

The statewide National Wetland Inventory (NWI) map for Minnesota was obtained
from the Minnesota Department of Natural Resources (MDNR) as a vector layer. This
wetland map was produced using datasets acquired between 2009 and 2014. This product
was used in this study as the map from which wetland class information is extracted. The
class information is extracted after identifying stable areas, where no significant change is
likely to have occurred as will be explained in the method section.
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The proposed approach in this study maps wetlands in Minnesota at the class level. In
this study, the vector map was rasterized into an image with a 10 m resolution, consistent
with satellite imagery resolution, and classified into 4 wetland classes. The unconsolidated
bottom, unconsolidated shore, aquatic bed, and streambed classes combined into a single
water class due to spectral similarity. The other three classes included emergent, forested,
and scrub-shrub wetlands.

3.2. Imagery Input

Level-1C orthorectified top-of-atmosphere reflectance products were acquired through
GEE. The imagery was atmospherically corrected in GEE using Sensor Invariant Atmo-
spheric Correction (SIAC) [29]. A median composite was generated for each year from
2016 to 2022, for images acquired between 1 May and 30 June [28]. This time period was
chosen as it sees high water content coupled with leaf-off conditions, which enhances the
detection of wetlands [28]. Additionally, to streamline the operational process, we focused
solely on an aggregate (median) of the data from this period, avoiding the individual
monthly information, which would be cumbersome, especially for large-scale mapping.
The image collection consisted of ten-meter resolution images of red, green, blue, and near-
infrared bands, as well as 20-m red edge 1, red edge 2, red edge 3, red edge 4, short-wave
infrared 1, and short-wave infrared 2 bands. To ensure the quality of the images used in
the analysis, a filter was applied to select those with a cloud cover of no more than 30%.
Subsequently, a cloud mask was employed to eliminate any remaining cloudy pixels from
the selected images.

The ability of SAR instruments to operate in any weather condition and around
the clock renders them valuable in methodologies in wetland classification, particularly
as supplementary sources of information that can be combined with optical data [23].
Although optical instruments capture information regarding the microscopic details of
objects, SAR can capture macroscopic details such as information related to geometry,
shape, surface roughness, and even moisture content of distributed objects. C-band SAR
data is particularly useful for classification of non-forested vegetation [30]. Sentinel-1 data
covering the state of Minnesota between 2016 and 2022 in interferometric wide mode and
in ascending orbit was accessed through the GEE. To create a composite, the median values
of vertical transmit/vertical receive (VV), and vertical transmit/horizontal receive (VH)
polarization time-series data were utilized. To further enhance the image quality, a 3 × 3
focal median filter was applied to the composite image to reduce speckle effects [31]. Span
and radar vegetation index [32] parameters were calculated from VV and VH data, and
used as feature inputs for wetland classification. DEM data and derived products are
important features for improving the ability of classifiers to identify and classify wetlands.
Elevation and slope calculated from the seamless 1/3 arc-second 3D elevation program
(3DEP) product were used as input variables to the model. Table 1 summarizes the imagery
datasets used for this study. Additional indices were computed from this imagery data and
are summarized in relevant sections.

Table 1. Summary of imagery data used in the study.

Features Source Resolution (m) Time Series Parameters

Multispectral Sentinel-2 (BOA) 10, 20 2016–2022

Blue, Green Red, Red Edge 1, Red Edge 2,
Red Edge 3, Near-infrared (NIR), Red
Edge 4, Short-wave infrared (SWIR 1,

SWIR 2)

SAR Sentinel-1 Backscatter 10 2016–2022

Vertical transmit/vertical receive (VV)
polarization backscatter coefficient,

vertical transmit/horizontal receive (VH)
polarization backscatter coefficient

Elevation USGS 3DEP 10 Elevation
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4. Method

The method used in this study can be described into three main categories. The first
category is stable pixels identification. We use stable pixels here to describe the pixels
which have not undergone change that would change their land cover class within the
2016–2022 period of interest. Time series remote sensing data is used for change detection,
the primary aim of which is to identify areas least likely to have undergone changes that
would result in a change in land cover class. The result is a binary mask. In the second
stage, the binary mask generated from the initial stage is sampled randomly in ecoregions,
and sampled locations intersecting wetland inventory reference dataset are used to extract
class labels. Sampling is stratified using ecoregions to ensure that representative samples
are acquired from all over the study area.

In the final stage, the sampled locations for which class labels have been extracted are
used to extract predictor values of the images corresponding to the year 2022 which is the
target year for the final classification map. This stage does not use time series information,
it uses only data on the target year of the classification. The predictor values and class
labels are used to train an RF classification algorithm in an object-based image analysis
workflow [11] to produce an updated wetland inventory map for the state of Minnesota for
the year 2022.

4.1. Stable Pixels Identification

One goal of this paper is to design a dataset generation method, using change de-
tection to identify pixels least likely to have undergone change within a defined period.
These “stable” pixels are sampled to generate a dataset for machine learning training.
LandTrendr is used as the change detection algorithm to characterize changes in the study
area. LandTrendr temporally segments pixel data points, and these segments can be ana-
lyzed to understand the changes that have occurred over a period. The change detection
algorithm operates on a set of images, one per temporal instant, where an image is rep-
resentative of the conditions for a temporal instant. Typically, composites are created
annually where each image composite represents the conditions of the year [28,33–35]. For
the purposes of this study, annual composites of the sub-pixel water fraction (SWF) and
the normalized difference vegetation index (NDVI) are created as indices characteristic of
wetland conditions [28,36]. Although we use change detection in our method to identify
stable areas in the study area, the aim of the study is not to show changes in each year in
the time series, rather it is to use the stable areas as a data source from which to extract
reliable training samples for the purpose of wetland classification. Figure 2 summarizes
the process flow and shows the output from this stage.

4.1.1. Sub-Pixel Water Fraction (SWF)

LandTrendr requires one image per temporal instant of a time series to perform
temporal segmentation. Depending on the application, different indices are used for
characterization in different applications, for instance normalized burn ratio (NBR) is
typically used for deforestation studies [33]. In this study, SWF is used as one of the
indicators for wetland ecosystems [28,36]. SWF defines the proportion of a pixel that is wet.
This ranges from 0 to 1 where 0 means that no fraction of the pixel is wet and 1 indicates
the pixel consists of only water. To create an SWF time series, a slightly modified approach
for mapping SWF adopted from DeVries et al. (2017) was used [36]. Figure 3 shows the
SWF creation process.
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First, dynamic surface water extent (DSWE) maps for each year in the time series
were generated using Sentinel-2 multispectral data in GEE [37–39]. DSWE maps utilize
a categorization system ranging from 0 to 4, where each number represents a different
classification for water presence. In this system, 0 indicates no water, 1 represents open
water with high confidence, 2 represents open water with moderate confidence, whereas 3
and 4 indicate partial surface water classes. Description of DSWE calculation is provided
in Appendix A. DSWE maps were then reclassified into a binary mask indicating water
or no-water pixels and aggregated to 100 m resolution by averaging their original 10 m
resolution data. The aggregates at 100 m are percentage values indicating the number of
water and non-water pixels. For example, an aggregate value of 60% indicates that 60 pixels
were water pixels and 40 were not water pixels. This aggregate at 100 m is SWF, i.e., the
aggregate value is an estimate of the proportion of the pixel that is wet.

Next, Sentinel-2 data, Sentinel-1 data, elevation data, and derived indices (Table 2
shows a summary of derived indices computed in addition to the input imagery), were
similarly resampled to 100 m resolution, and used as predictors for SWF. A random
forest (RF) regression model was then trained using the resampled predictors and SWF
(aggregated DSWE) both at 100 m. Training samples for fitting the RF model were generated
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by taking a stratified random sample of 1000 points for every 10% SWF category and for
each year in the 2016–2022 time series resulting in a sample of 70,000 points. An estimate
of SWF at 10 m is then generated by running inference on the original 10 m bands using
the trained model. The process is described as self-supervised because training samples
were not created as in supervised classification methodologies for the purpose of training
the model, rather an initial estimate of SWF, calculated by aggregating DSWE to a lower
resolution, was used as target variable.

It is important that we make a distinction between the RF model trained for the purpose
of estimating SWF here and the RF model that will be used for classifying wetlands. Also,
although time series image is used for the generation of SWF, only data for target year of
map updating was used in the classification process.

Table 2. Table showing indices computed in addition to input imagery datasets for the purpose of
SWF generation.

Features Source Resolution (m) Time Series Parameters

Spectral Indices Sentinel-2 (BOA) 10 2016–2022

Modified normalized difference water
index (MNDWI), normalized difference

vegetation index (NDVI), multi-band
spectral relationship visible (MNSRV),

multi-band spectral relationship
near-infrared (MBSRN), automated water

extent shadow (AWESH)

Radar Indices Sentinel-1
Backscatter 10 2016–2022 Ratio, span

Elevation USGS 3DEP 10-m 10 Slope

4.1.2. LandTrendr

LandTrendr is used to detect and analyze land cover change based on time series
remote sensing data [40]. The algorithm detects possible changes in the time series by fitting
line segments between pixel observations, representing the change in spectral signature
between these points. These segment fits reduce noise, and hence, model significant changes
to spectral trajectories. The algorithm works by first despiking spectral values along the
time-series. Then it identifies potential vertices. This is achieved using a regression-
based vertex identification method. The start and end years are used as initial vertices.
Then, least squares regression is calculated for all the points in the time series. The point
with the largest absolute deviation is chosen as the next vertex, which segments the data
temporally into two segments. The process is repeated for the segments created until the
number of segments specified through “max_segments” and “vertexcountovershoot” is
reached. Vertices are also removed using a culling curve approach where the vertex with the
shallowest angle is removed. This is repeated until segments reach the maximum segments
specified. A second set of fitting algorithms is used to identify values that would result in
the best continuous trajectory. The P-value for F-statistic estimates is calculated for models
fit across trajectories. This provides a basis for comparing segmentation models with
different numbers of segments to select the best model. From the breakpoint identification,
the slope, magnitude, and duration of each line segment can be calculated and used to
characterize the nature of changes that have occurred in a pixel’s spectral history [33].
Table 3 shows LandTrendr parameter values used during temporal fitting; all parameter
values used except “max segments” and “min observations needed” were adopted from
Lothspeich et al., 2022 [28], as the study area is the same. The maximum number of
segments allowed for the temporal fitting and minimum number of observations needed
for fitting in the time series used for the purpose of the study were 4 and 6, respectively,
considering the fact we have 7 temporal instants of interest.
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To quantify the magnitude of the changes that occurred in the study area we used, the
“getchangemap” function of LandTrendr to analyze the temporal fitting. The histograms in
Figure 4 show the magnitude of change in the study area scaled down by a factor of 108.
The range of magnitude of change was limited to a range of −1 to 1, where the negative
sign indicates loss and positive signifies gain. After producing the magnitude of change
images, we use a trial-and-error method to determine unchanged area cut-off threshold.
This was done by visually inspecting known wetlands and large bodies of water, and testing
0.01, 0.02, 0.05, and 0.1 as threshold for magnitude of change. We selected a threshold of
0.05 after this trial-and-error and visual inspection. This threshold is very conservative in
order not to choose unreliable samples, but it also contains enough stable areas for model
training sampling.

Table 3. Parameter settings for LandTrendr. Descriptions are adapted with permissionfrom Lothspe-
ich et al., 2022 [28].

Parameter Description Values

Max Segments The maximum number of segments allowed in the temporal fitting. 4

Spike Threshold Threshold for dampening spikes. 0.5

Vertex Count Overshoot The number of vertices by which the initial model can exceed the
maximum segments before pruning. 2

Prevent One Year Recovery Prevent segments that are a one-year recovery back to a previous level. FALSE

Recovery Threshold Segment slopes are limited to a rate of less than 1/Recovery Threshold. 0.25

p-value Threshold Maximum p-value of the best model. 0.1

Best Model Proportion Defines the best model as that with the most vertices with a p-value that
is at most this proportion away from the model with the lowest p-value. 1

Min Observations Needed Minimum number of observations in the time series for the model to fit. 6

4.2. Training Sample Selection

Figure 5 describes the process flow for the training sample selection stage. To further
boost the consistency of training sample selection, unchanged pixels which did not make
up more than 50% of object clusters were filtered out. Also, objects which had more than
50% of constituent pixels classified as unchanged were assumed to be unchanged. Objects
refer to coherent regions or clusters within an image that share similar spectral, texture,
shape, and spatial characteristics. Objects were created for the study area by applying a
simple non-iterative clustering (SNIC) [41] algorithm on GEE. The SNIC algorithm works
by non-iteratively updating cluster centroids [42]. The algorithm initializes superpixel
cluster centroids on a regular grid. A distance metric centroid using spatial and color
measures is used to measure the distances of pixels to the cluster centroid. The algorithm
uses a priority queue to choose pixels to add to a cluster. The priority queue comprises
candidate pixels that have 4 or 8 connectivity to a superpixel cluster. The pixels in the
queue with the shortest distance are chosen. This pixel is then used to update the centroid
value of the superpixel cluster. This process is repeated until the priority queue is empty,
and all pixels have been assigned to a cluster centroid.

After applying the object filtering step, we have a final binary mask indicating un-
changed areas. It is important to note here that objects were not generated for all images in
the time series, rather it was only generated for the year 2022 which is the year of interest
for wetland map update.
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To obtain training samples for our wetland classes of interest, the reference NWI
layer was sampled in ecoregion level III region, for pixels that intersect unchanged binary
mask. To prevent overestimation of wetland classes, upland samples were added using
the national landcover database product for 2019 [43]. Upland is used here to refer to
non-wetland classes. Samples were extracted for developed, forested upland (deciduous,
mixed, and evergreen forest, and scrub-shrub), and agriculture (herbaceous, pasture, and
cultivated crops) upland classes. A total of 50,000 samples per class were extracted in each
of the 7 ecoregions resulting in a database of approximately 350,000 samples per class.

4.3. Classification

In this step, as shown in Figure 6, we carry out classification of wetlands for the state
of Minnesota for the year 2022 using a median image composite of Sentinel-1, Sentinel-
2 data, and DEM data, and training samples generated in the previous step. Derived
indices from Sentinel-1, Sentinel-2, and DEM data for the purpose of classification are
summarized in Table 4. The classification step adopts an object-based image classification
methodology. Numerous studies have shown the benefits of applying OBIA for the wetland
mapping [11,44,45]. OBIA allows for the integration of multiple data sources, such as
spectral, spatial, and contextual information, to improve accuracy and reduce classification
errors. By grouping pixels into meaningful image objects, OBIA also reduces the effect of
spectral variability within an image, making it easier to distinguish different land cover or
wetland types [45]. In GEE, the SNIC algorithm is used to create objects as described in the
training sample selection section. Input images were transformed from pixel-level to object-
level by aggregating pixel values that fall within each object using an averaging operation.
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Predictor values for each of the training sample set were then extracted for training
a RF model for the purpose of classification. RF is an ensemble of weaker independent
decision trees [46]. Each tree is trained on a variation of the entire data, splitting data
points based on features that provide the most information gain. Data points are repeatedly
split until there is no information gained. Each tree develops a set of rules based on the
predictor variables and their predictions are combined using a bagging ensemble technique
to come up with final prediction classes. The RF classifier was preferred over conventional
classifiers due to its distinctive features, such as the absence of assumptions regarding the
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underlying data distribution, suitability for managing high-dimensional data, and ability
to model non-linearities in the data [7]. The RF classifier was initialized with 250 trees and
trained using samples extracted during the training sample selection stage. RF classifier
was then applied to input images, aggregated to object-level, to produce statewide wetland
map. The final map is of 10 m resolution.

Table 4. Table showing indices used in addition to imagery input for 2022 for classification step.

Features Source Resolution (m) Year Parameters

Spectral Indices Sentinel-2 (BOA) 10 2022

Modified normalized difference water index
(MNDWI), sub-pixel water fraction (SWF),

normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI),

modified built-up index (MBI)

Radar Indices Sentinel-1 Backscatter 10 2022 Span, radar vegetation index (RVI)

Elevation USGS 3DEP 10-m 10 Slope

Accuracy Assessment and Evaluation Metrics

To assess the performance of the model and compare it with a baseline, we created an
independent test set. The baseline follows the same steps as the proposed method, except
in this case we do not apply a sample filtering step. The test set comprises approximately
6300 samples, with an average of 900 samples per class. The samples were generated
randomly from each ecoregion, and visually interpreted using NWI map product and
remote sensing data. Also, for quantitative comparison of wetland predictions for the years
2021 and 2022, the database of pixels (~2 million data points) is divided in a 60:40% ratio,
where 40% of the data served as a validation set.

Overall accuracy, F1-score, user’s, and producer’s accuracy metrics were used to
evaluate the performance of the different models. Overall accuracy measures the total
number of correctly classified labels.

F1-score: It is the harmonic mean of producer and user accuracy, which considers
both false positives and false negatives. This makes the F1 score a useful metric when
dealing with imbalanced datasets where one class might be significantly more prevalent
than the other.

Producer’s Accuracy (PA): It measures the percentage of correctly classified instances
among all instances that were predicted to belong to a specific class.

User’s Accuracy (UA): It measures the percentage of correctly classified instances
among all instances that belong to a specific class.

The equations for the metrics are formulated as below:

F1-score = 2 ∗ UA ∗ PA
UA + PA

(1)

UA =
TP

TP + FP
(2)

PA =
TP

TP + FN
(3)

where TP is true positive, FP is false positive, FN is false negative, UA is the user’s accuracy,
and PA is the producer’s accuracy.

5. Results
5.1. Quantitative Assessment

Table 5 compares the confusion matrices for performance of baseline approach and
the proposed method. The proposed method is seen to perform better than the baseline
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method, especially for complex wetland classes. In both cases we see that scrub-shrub
class is the most difficult class to predict with true positive predictions at 49% and 68% for
baseline method and proposed method respectively. Table 6 further summarizes results
from Table 5 into producer’s and user’s accuracies, and F1 scores.

The overall classification accuracy of wetlands was determined by applying the model
to the test set and was found to be 89%. This indicates that the classification algorithm
performed well in accurately distinguishing between wetlands and uplands. We were able
to identify wetlands 84% of the time and uplands 94%, as reflected in wetland–upland
producer accuracies. To further evaluate the accuracy of wetland classification, overall
accuracies and class-based producer and user accuracies, as well as F1 scores for each sub-
class of wetlands were calculated. For the wetland classes, the water, emergent, forested,
and scrub-shrub classes had F1 scores of 91%, 81%, 88%, and 72%, respectively.

A similar methodology without the training sample selection process was carried out
to establish a baseline to compare the proposed method with. Quantitative assessment on
both methods is reported in terms of overall accuracies and class-based producer and user
accuracies, as well as F1 scores. Table 6 summarizes the results.

Table 5. Table showing confusing matrices for (a) baseline model prediction and (b) proposed method
predictions. Values on the diagonals indicate true positive prediction rates for each class.

Baseline Method

Predicted Labels

Wetland Upland

Water Emergent Forested Scrub-Shrub Urban Forested Agriculture

(a)

Reference
labels

Wetland

Water 0.93 0.06 0.01

Emergent 0.12 0.82 0.05

Forested 0.01 0.77 0.17 0.04

Scrub-shrub 0.01 0.34 0.16 0.49

Upland

Urban 1

Forested 0.02 0.11 0.02 0.82 0.02

Agriculture 0.06 0.01 0.01 0.03 0.88

(b)

Reference
labels

Wetland

Water 0.90 0.09 0.02

Emergent 0.06 0.88 0.06

Forested 0.01 0.89 0.07 0.02

Scrub-shrub 0.21 0.1 0.68

Upland

Urban 1

Forested 0.01 0.05 0.92 0.02

Agriculture 0.04 0.01 0.01 0.04 0.91

The proposed method performed better in terms of F1 scores, producers’, and users’
accuracies. We observed a 7% jump in overall accuracy when applying the proposed
method to discriminate classes. A clear difference is noticed when the wetland samples are
analyzed. The baseline method identified wetlands 75% of the time, and 69% if the wetland
classes are non-open water, compared to 84% wetland identification and 82% when non-
open water classes are considered for the proposed approach. An average improvement of
about 13% for non-water wetland classes and 2% for water class is observed. This is due to
the ability of the methods to capture short-term changes that have occurred in the area of
study. Figure 7 shows F1 score comparison for wetland class prediction between baseline
method and proposed method.
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Table 6. Table summarizing evaluation metrics for proposed method and comparison to baseline.
OA = overall accuracy, PA = producer’s accuracy, UA = user’s accuracy.

Type Classes
Baseline Method Proposed Method

PA (%) UA (%) F1 (%) PA (%) UA (%) F1 (%)

Wetland

Water 93 87 90 90 93 91

Emergent 82 69 75 88 76 81

Forested 77 77 77 89 87 88

Scrub Shrub 49 56 52 68 76 72

Upland

Urban 100 97 99 100 99 99

Forested 82 92 87 92 93 93

Agriculture 89 98 93 91 98 94

OA (%) 82 89
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Figure 8 provides a visual comparison of baseline and proposed method predictions.
The patch visualized was flooded in 2022 as seen in the Sentinel-2 image in Figure 8c. The
proposed approach performs better than the baseline method in classifying the wetland
features in this patch.

Across Minnesota, the results estimate that the state’s wetland (non-open water)
constitute about 21% of the state. Figures 9 and 10 summarize the distribution of wetlands
across the state for each class. Analyzing the distribution of wetlands across ecoregions,
Northern Minnesota stands out prominently in wetland coverage, with the “Northern
Lakes and Forests” and “Northern Minnesota Wetlands” ecoregions collectively accounting
for approximately 60% of the total wetland area. Specifically, the “Northern Minnesota
Wetlands” region is predominantly characterized by forested wetlands, constituting 33.32%
of its composition, whereas the “Northern Lakes and Forests” region presents a more
balanced distribution among wetland types. Conversely, regions such as the “Western Corn
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Belt Plains” and “Driftless Area” are dominated by upland classifications, representing
over 89% of their total wetland area.

In our wetland classification, the primary determinants were slope, B4, MNDWI, B5,
B12, SWF, VH and elevation. B3, RVI, NDVI, B11, VV, MBI, SPAN, and EVI also contributed
to the discrimination power of the model. The features B8A, B6 B7, B8 and B2 had relatively
low impacts on the model performance. We were particularly interested in seeing the
significance of the SWF index and how it is impacted by increased water content due to
events such as flooding. We analyze this index in the following section. We attempt to
isolate the impact considering two years, one with high water content due to flooding
events (2022) and the other with low water content due to drought (2021).

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 7. Figure comparing F1 scores of wetland classes in proposed method and baseline method. 

Figure 8 provides a visual comparison of baseline and proposed method predictions. 
The patch visualized was flooded in 2022 as seen in the Sentinel-2 image in Figure 8c. The 
proposed approach performs better than the baseline method in classifying the wetland 
features in this patch. 

 
Figure 8. (a) Baseline classification; (b) proposed method classification; (c) Sentinel-1 image (Coperni-
cus Sentinel data, 2022).

5.2. Effect of SWF Index

To assess the effects of SWF index in the classification process, we apply the proposed
method for the year 2021; using the same training samples (which has previously been
determined to be stable over the time series). This was done because there was a drought
in 2021 in Minnesota and flooding in 2022, hence, more pixels had higher SWF values in
2022 in comparison to 2021. Figure 11 summarizes a trend in precipitation and high SWF
values (we considered SWF > 0.5 to be high values [28]). Comparing performance on the
validation set, there is a 2% decrease in overall wetland classification accuracy when the
wetland inventory map is produced for 2021; performance was assessed on validation set.
Breaking down to class-based metrics, Figure 12 shows a bar chart comparing the wetland
classification F1 scores for 2021 and 2022. The model produced for 2022 performs better
across the wetland classes. The emergent class was impacted the most, with an F1 score
decrease of 4%. SWF also dropped a few places in the importance ranking of features used
by the RF classifier as shown in Figure 13. This may be due to the reduced water content
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in 2021 making the SWF index relatively less useful for discriminating wetland classes in
comparison to the year 2022.
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Visual inspecting of images in Figure 14, we see that wetland labels are dynamic. A
common occurrence is emergent water change due to a rise in water content. These results
suggest that flooding has significant impacts on wetland mapping. On one hand, flooding
can increase the amount of water content, which can make it easier to detect wetlands
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from satellite remote sensing. On the other hand, flooding can also cause wetlands with
little or no vegetation cover to change their appearance temporarily or seasonally. Wetland
dynamism highlights the need for regular inventory updates.
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6. Discussion

The comparison between the baseline and proposed methods across different wetland
and upland classes reveals substantial improvements in accuracy. The proposed method,
employing a change detection technique to filter training samples, shows enhanced ac-
curacy in various classes. This approach leverages the identified stable areas for training
samples selection, thereby enhancing the quality of the training dataset for machine learn-
ing. Consequently, this method attains better results for all classes. The higher accuracy in
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wetland classes, such as emergent (PA: 88%, UA: 76%) and forested (PA: 89%, UA: 87%),
underscores the efficacy of this strategy in mitigating spectral confusion, thereby achieving
more accurate classification. This observation extends to upland classes as well, with
urban (PA: 100%, UA: 99%), forested (PA: 92%, UA: 93%), and agriculture (PA: 91%, UA:
98%) classes also benefiting from the refined training dataset. This systematic approach,
guided by training sample filtering through change detection, offers potential avenues for
improving remote sensing-based classification strategies.

The accuracy of the map produced is 89% which is comparable to previous wetland
mapping studies [7,47–50] especially large scale wetland studies in Minnesota [51,52]. This
study leverages Sentinel-2 and Sentinel-1 data for wetland mapping. The integration of
multisource data, Sentinel-2, and Sentinel-1, improves wetland classification [11,48,52].
Additionally, the adoption of OBIA helps to further minimize spectral variability within
classes, enhancing mapping accuracy [53]. Water bodies achieve high accuracy (PA: 90%,
UA: 93%), attributed to distinct spectral signatures. Conversely, emergent wetlands (PA:
88%, UA: 76%) suffer from spectral confusion due to varied vegetation types, like scrub
shrubs. Forested wetlands share spectral and structural resemblances with forested upland,
leading to misclassification. Spectral similarity also impacts scrub-shrub (PA: 68%, UA:
76%) and emergent (PA: 82%, UA: 88%) classes. Scrub-shrub wetland class especially share
similarities with forested wetland, emergent wetland, and forest upland classes leading to
low classification accuracy.

6.1. Dataset Generation Using Change Detection

To achieve successful training for wetland mapping using remote sensing, it is crucial
to have a substantial training dataset that encompasses a diverse array of class varia-
tions [50]. The size of the study area also plays a critical role in determining the number of
required samples [50]. Additionally, acquiring representative samples of wetlands can be
particularly challenging due to their spatial extent and ecological complexity [50]. There-
fore, to ensure reliable wetland mapping, it becomes imperative to ensure that the collected
samples comprehensively capture the full range of variability present within wetland
ecosystems. However, various challenges like the intricate nature of wetlands, expansive
study areas, and other limitations make it impractical to conduct extensive field campaigns
to collect a sufficient quantity of labeled samples within a reasonable timeframe. To solve
this problem, studies identify areas least likely to have changed leveraging time series data
and change detection [21,22].

In our study, we developed an innovative approach for generating a robust dataset.
This method capitalizes on existing wetland inventories and employs change detection
techniques applied to time series remote sensing data. By combining these resources,
we created a sizable dataset containing around 1.2 million samples, which corresponds
to approximately 5% of the total study area. Our dataset creation strategy was further
refined by filtering out labels with a low chance of being associated with objects to ensure
consistency. Also, by employing a sampling strategy at the ecoregion level, we facilitated
the inclusion of samples that exhibit a broad spectrum of variations within the database.
Additionally, this technique ensured that our database comprised representative samples in
equal proportions across different categories, addressing the need for capturing variability.
This meticulous process was instrumental in enhancing the accuracy and reliability of our
wetland mapping results.

6.2. Effect of SWF Index

Minnesota experienced a significant shift in precipitation patterns in 2022 compared
to the previous year [54]. Above-average precipitation was recorded at monitoring stations
across the state, with the wettest conditions concentrated in northwestern, northern, and
northeastern parts of Minnesota. Some areas received two to five times the precipitation
compared to the same period in 2021 [54]. Parts of the state that were severely impacted
by drought in 2021 saw an extremely wet spring in 2022, leading to high water tables
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and flooding in some areas. Flooding was caused by snowmelt and precipitation. These
changes in precipitation patterns highlight the variability and extreme weather events that
can occur in Minnesota and their impacts on hydrological systems in the state. Flooding can
have significant effects on wetland mapping as an increase in water content could improve
detection of wetlands from satellite remote sensing. Corcoran et al. (2011) explains that
lots of wetlands occur for short periods and could be missed in inventories due to timing
of imagery acquisition [51]. Figure 12 shows that wetland classification improves when
SWF values are higher. Also, analyzing Figure 12 together with Figure 13, higher SWF
values make the SWF index important for the classifier which in turn improves wetland
class discrimination. If water content increases for a wetland pixel, the SWF value will
increase for that pixel, increasing the likelihood of it being identified as a wetland from
satellite remote sensing methods.

6.3. Scalability

The proposed method is scalable as is seen in the application of the approach to
Minnesota which is about 225,000 km2 in area. However, structural limitations placed
by GEE need to be considered when planning to adopt the method based on the size
of the area of study and size of the database that would be used to train a model. The
use of GEE as a remote sensing platform for rapid wetland map update has numerous
advantages, including access to a vast amount of satellite imagery and powerful processing
capabilities [13]. However, there are several limitations that must be considered when
using GEE for training large sample sizes in remote sensing studies. Despite its powerful
processing capabilities, GEE has some limitations in terms of processing time and resource
allocation. Training large sample sizes requires significant computational resources, includ-
ing storage and processing power, which may exceed the limits placed by GEE. This can
result in longer processing times or incomplete processing, leading to potential limitations
in training large sample sizes. Utilizing graphical processing units (GPUs) significantly
reduces the training and inference times and has significant impacts on large-scale updates
of landcover inventories using remote sensing data. cuML RAPIDs [55] is used to train our
RF model on GPU. Comparing inference times for the study area comprising 120 inference
patches each 7168 by 7168 and 21 bands split equally across three machines, inference time
on GPU was about 1 h 30 min compared to 7 h on CPU.

The applicability of this method to other projects depends on multiple factors includ-
ing, the presence of an existing map product for the target study area, the study area’s
size, and the temporal gap between the creation of the original map and the intended
production date of the new product. The size of the study area influences the quantity
of labeled samples that can be extracted. Larger areas typically offer sufficient training
samples, even after applying sample filtering. Also, a significant time lapse might suggest
potential complex changes, necessitating advanced sample filtering techniques and the
availability of extended time series remote sensing data.

7. Conclusions

Reliable samples for training models to predict classes remain an important consider-
ation in the production of landcover maps. Limitations imposed by field data collection
or image interpretation require alternative methods for map production, especially for
large areas, such as state-wide mapping. Training models on a large database of samples
extracted from an existing wetland thematic map is an effective way to update wetland
inventory maps. In this study, we find that using time series information, we can filter an
existing thematic map to produce reliable training sets for inventory updates.

Using LandTrendr, the proposed filtering process for selecting training samples im-
proves the discrimination of wetlands from upland classes as well as the ability to distin-
guish different wetland classes. LandTrendr proved to be particularly useful for modeling
short-term changes in wetland indicators, such as the identification of flooded areas in
northern Minnesota. We also see in this study that increased water content through events
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such as flooding can boost classification of wetlands from remote sensing approaches, and
events are seen to improve wetland classification accuracy, but it is also seen that it can
change the land cover labels of the wetland area especially for wetland ecosystems with
short cover. Dynamism of wetlands highlights the need for regular updates of wetland in-
ventories. The proposed method can be adapted for producing frequent wetland inventory
maps in multiple cycles during the year. Improvements in result can be achieved either
by using iterative sample filtering approaches to refine the training sample database or
post-processing to edit labels generated. Deep learning methodologies could also be used
to take advantage of the extensive database of generated samples.
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Appendix A

Calculating dynamic surface water extent (DSWE) [38,39].
Five conditions are tested and based on the outcome, we set a distinct bit in a 5-bit

number.
The following are the conditions and corresponding values.

Test 1: If (MNDWI > 0.124) set the ones digit (i.e., 00001)
Test 2: If (MBSRV > MBSRN) set the tens digit (i.e., 00010)
Test 3: If (AWESH > 0.0) set the hundreds digit (i.e., 00100)
Test 4: If (MNDWI > −0.44 && B5 < 900 && B4 < 1500 & NDVI < 0.7) set the thousands
digit (i.e., 01000)
Test 5: If (MNDWI > −0.5 && B5 < 3000 && B7 < 1000 && B4 < 2500 && B1 < 1000) set the
ten-thousands digit (i.e., 10000)

After setting the values, the following values are assigned to each pixel:

Table A1. Table summarizing values assigned to each pixel based on the 5-bit value.

Value Assigned Bit Value

Not Water (0)

00000
00001
00010
00100
01000

Water—High Confidence (1)

01111
10111
11011
11101
11110
11111
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Table A1. Cont.

Value Assigned Bit Value

Water—Moderate Confidence (2)

00111
01011
01101
01110
10011
10101
10110
11001
11010
11100

Potential Wetland (3) 11000

Low Confidence Water or Wetland (4)

00011
00101
00110
01001
01010
01100
10000
10001
10010
10100

Also, the following four conditions are tested, and values assigned to get the fi-
nal DSWE:

1. If (percent-slope >= 30% slope) and the initial DSWE is High Confidence Water (1),
the final DSWE is set to 0 otherwise set it to initial DSWE;

2. If (percent-slope >= 30% slope) and the initial DSWE is Moderate Confidence Water
(2), the final DSWE is set 0 otherwise set it to initial DSWE;

3. If (percent-slope >= 20% slope) and the initial DSWE is Potential Wetland (3), the final
DSWE is set to 0 otherwise set it to initial DSWE;

4. If (percent-slope >= 10% slope) and the initial DSWE is Low Confidence Water or
Wetland (4), the final DSWE is set to 0 otherwise set it to initial DSWE.
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