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Abstract: Monitoring the shipyard production state is of great significance to shipbuilding industry
development and coastal resource utilization. In this article, it is the first time that satellite remote
sensing (RS) data is utilized to monitor the shipyard production state dynamically and efficiently,
which can make up for the traditional production state data collection mode. According to the
imaging characteristics of optical remote sensing images in shipyards with a different production
state, the characteristics are analyzed to establish reliable production state evidence. Firstly, in order
to obtain the characteristics of the production state of optical remote sensing data, the high-level
semantic information in the shipyard is extracted by transfer learning convolutional neural networks
(CNNs). Secondly, in the evidence fusion, for the conflict evidence from the core sites of the shipyard,
an improved DS evidence fusion method is proposed, which constructs the correlation metric to
measure the degree of conflict in evidence and designs the similarity metric to measure the credibility
of evidence. Thirdly, the weight of all the evidence is calculated according to the similarity metric to
correct the conflict evidence. The introduction of the iterative idea is motivated by the fact that the
fusion result aligns more closely with the desired result, the iterative idea is introduced to correct the
fusion result. This method can effectively solve the conflict of evidence and effectively improve the
monitoring accuracy of the shipyard production state. In the experiments, the Yangtze River Delta and
the Bohai Rim are selected to verify that the proposed method can accurately recognize the shipyard
production state, which reveals the potential of satellite RS images in shipyard production state
monitoring, and also provides a new research thought perspective for other industrial production
state monitoring.

Keywords: satellite remote sensing; shipyard production state monitoring; convolutional neural
network; evidence fusion

1. Introduction

The shipbuilding industry plays a crucial role in national defense security, transporta-
tion, and marine development [1]. Effective monitoring of the shipyard production state
is essential for the timely understanding of profitability, thereby facilitating the healthy
upgrading and transformation of the shipbuilding industry structure. Additionally, it
enables the orderly reorganization of uncompetitive shipyards during prolonged periods
of losses to prevent wastage of coastal resources. Satellite remote sensing (RS) data offer an
efficient means to accurately monitor the state of shipyard production from both spatial and
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time series perspectives, thus compensating for the limitations associated with traditional
methods used for collecting order data.

With the development of sensor technology, the RS data have found extensive ap-
plications in disaster monitoring [2–7], precision agriculture [8,9], environmental risk
assessment [10,11], and oil spill detection [12]. Furthermore, leveraging the repeated earth
observations facilitated by satellites, multi-temporal RS data have been utilized to enhance
land cover classification accuracy [13–21], object recognition [22–24], as well as disaster
monitoring and assessment [25–27]. In recent years, high-resolution RS (HRS) data together
with thermal infrared and night light data have been effectively employed for global-scale
to local-region monitoring of human economic activities [28–34]. However, there is a dearth
of research articles specifically addressing the shipyard production state.

The fundamental purpose of utilizing satellite remote sensing data for monitoring
the production status of shipyards lies in determining whether the shipyard is engaged
in production activities at the time of imaging, based on its distinctive characteristics. In
simpler scenarios, discerning the state of a scene typically involves integrating relatively
straightforward middle- and low-level semantics with machine learning techniques [35–37].
In more complex scenes, two processing approaches can be employed. The first approach
entails extracting research objects from intricate backgrounds through image processing
or object recognition to eliminate their influence before conducting state recognition on
these research objects [38]. The second approach utilizes deep learning methods to extract
and classify middle- and high-level semantic features of the scene [7,39,40]. In recent years,
the continuous improvement in optical RS image quality has led to a more pronounced
distinction in texture features of ground objects depicted in these images. This advancement
enables the provision of richer semantic information and enhances interpretability. For
extensive areas such as shipyards, employing optical RS images is suitable for identifying
their production state.

The shipyard scene is intricate, comprising multiple core work sites. By leveraging
high-level semantic information and low/middle-level features extracted from RS imagery,
it becomes possible to establish evidence of the shipyard production state. Convolutional
neural networks (CNNs), such as AlexNet [41–43], VGG [44,45], ResNet [46–51], and
Inception [20,52,53], among others, can effectively derive high-level semantic informa-
tion [39,54–56] for extracting optical production state features from optical HRS data.

Given the lengthy shipbuilding procedure, this study proposes the utilization of multi-
temporal RS data to effectively monitor the production state of shipyards. This approach
aims to enhance the quantity of observation data and mitigate errors that may arise from
relying solely on single-phase data.

In the shipyard scene, the dock, berth, material stacking area and assembly area are
closely related to the production state of the shipyard. They are the core categories in
the monitoring of the production state of the shipyard. Therefore, the production state of
the shipyard can be inferred by monitoring the dock, berth, assembly area and material
stacking area in the satellite RS image. There may be differences in the production state of
shipyards pointed to by different core sites, which is related to the manufacturing cycle
of different shipyards and different ship types, the preparation stage of shipyards, and
the preparation work in the outfitting stage of docks. Henceforth, a fusion method is
imperative for resolving conflicts arising from disparate interpretations of a shipyard’s
production state based on various core sites.

In current research, there is a predominant focus on pixel-level and feature-level fu-
sions, with less attention being given to the decision level. However, it should be noted
that the decision-level fusion algorithm exhibits higher accuracy compared to the standard
multi-source data fusion algorithm and has the potential to overcome limitations associated
with multi-source data fusion technology [57–59]. For instance, in other fusion levels, the
loss of one source of data can result in system failure; however, this is not the case for
decision-level fusion systems. Moreover, this approach outperforms both aforementioned
methods in terms of real-time performance [57]. Voting [60], Bayes inference [61], evidence
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theory [62], fuzzy integrals, which include ICA and the support vector machine (SVM) [63],
as well as various other specific methods [64–66], are some important examples of algo-
rithms related to this level [57]. The DS evidence theory [67,68], with its advantages over
other fusion methods [69] in capturing the uncertainty of evidence and without using prior
conditional probability densities, has been widely used in multi-source and multi-temporal
data [70–74]. However, traditional DS evidence fusion fails to address highly conflict-
ing evidence arising from the ambiguity of different core sites within shipyards and the
uncertainty inherent in different shipbuilding stages during production state monitoring.

In order to achieve precise monitoring outcomes, a shipyard production state monitor-
ing approach based on multi-temporal RS images is proposed. The primary contributions
encompass the following: (1) The utilization of a transfer learning network is proposed
to extract high-level semantic information from optical RS images in shipyards located
in coastal areas or on river coasts and map it to the evidence value of their production
state. (2) To address the limitation of single-phase observation data in fully reflecting the
production state across different shipbuilding stages, a multi-phase data-driven approach
is suggested for monitoring the production state of shipyards. (3) Aiming at the problem
of evidence conflict in different core sites, the correlation metric and similarity metric are
constructed, and the monitoring framework of the shipyard production state based on
CNN and improved DS evidence theory is proposed. The problem of evidence conflict
between different core sites in the shipyard production state monitoring is solved, and the
accuracy of shipyard production state monitoring is improved.

2. Data
2.1. Experimental Area and Data

The Yangtze River Delta (26.6◦N–35.3◦N, 116.7◦E–122.8◦E) and the Bohai Rim (34.4◦N–
43.4◦N, 113.5◦E–125.8◦E) regions of China, where the shipyards are densely located, are
selected for this study.

Considering the shipbuilding period and the capacity to acquire RS data, quarter
monitoring and semi-annual monitoring are determined. Based on information from the
China Shipbuilding Industry Yearbook, the International Ship Network and RS images,
the true shipyard production states are collected (see Figures 1 and 2) as a reference. The
production states of shipyards can be divided into two categories: normal and abnormal.
The normal production state means the shipyard runs well with clear signs of production
in the RS images. An abnormal production state means that the shipyard is in a state of
shutdown, without clear production signs in the RS images.
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ZY-3, GF-1 and Google Earth data are used in experiments, with parameters shown in
Table 1.

Table 1. Selected satellite RS data parameters.

Satellite Sensors Level Revisit
Cycle/Day Spatial Resolution/m

ZY-3 Optical True Color Image Products 5 2.1

GF-1 Optical Level-1A 4 2

Google Earth Optical True Color Image Products / 2

Due to weather factors in the coastal area and along the river area, effective optical
HRS imagery can be acquired quarterly. The satellite RS data used in the experimental area
are shown in Table 2.

Table 2. Selected satellite data used in the experimental area #.

Yangtze
River Delta

Time/Month Jan Feb Mar Apr May Jun
Time/Quarter I II
Optical (ZY-3) ○ ○

Bohai Rim
Time/Month Jan Feb Mar Apr May Jun

Time/Quarter I II
Optical (GF-1) ○ ○

# ○indicates data are available.

2.2. Characteristics of Shipyards in Different Production States

In Figure 3, the shipyard scene includes the docks, berths, assembly sites and ma-
terial storage sites which are defined as core sites for production state monitoring. The
docks/berths are defined as shipbuilding core sites (SCSs) and the material storage ar-
eas/assembly areas are defined as material utilization core sites (MUCSs).
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Figure 3. Core sites in the shipyard scene.

In the normal production state shipyard scene, there are generally some hulls, whole
ships or multiple ships under construction in the shipbuilding site, and there are usually
block materials in the material utilization core site, which are arranged more regularly. In
the shipyard scene with an abnormal production state, there are no hulls in the shipbuilding
site, and there is no material stacking in the material utilization core site, which is similar
to bare land. The optical images of core sites in different production states are shown in
Table 3.

Table 3. Images of core sites in different production states.

Core Site
The Normal Production State The Abnormal Production State

ZY-3 Optical Image ZY-3 Optical Image

SCS
(dock/berth)

MUCS
(material storage area/assembly area)

2.3. Optical Sample Datasets

The quantity and quality of the sample datasets are important for the training and
detection accuracy of CNNs. Training samples of SCSs and MUCS in different production
states are made, respectively, by ZY-3 and Google Earth data from 2018 to 2020 (see Table 4).
The number of SCS training samples is 3096, and the ratio of normal and abnormal samples
in the production state is 1:1. The number of MUCS training samples is 888, and the
normal-to-abnormal sample ratio in the production state is 1:1.
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Table 4. Example of training sample datasets.

Core Sites Production State Amount Sample Example

SCS

Normal 1548

Abnormal 1548

MUCS

Normal 444

Abnormal 444

3. Methods

This paper proposes to apply multi-temporal RS data to shipyard production state
monitoring. Firstly, high-level semantic information is extracted by the fine-tuned con-
volutional neural network to obtain the optical production state evidence. Secondly, a
correlation metric and similarity metric are used to solve the highly conflicting evidence,
calculate the weight of all evidence, correct the conflicting evidence, fuse all the evidence
and iteratively correct the fusion results. Finally, the improved DS evidence fusion method
is applied to obtain the production state of the shipyard. The flow chart is as follows (see
Figure 4).

3.1. Neural Network

There are various types of docks and berths available, such as dry docks, water
injection docks, and floating docks. In terms of berths, there are inclined berths and
horizontal berths. However, it should be noted that the number of nationwide samples for
interpretation in China is limited.

For the complex shipyard optical remote sensing scene composed of multiple land
types, Inception v3 [75] and ResNet101 [76] are selected for training based on the character-
istics of CNNs and the number of training samples.

The pre-trained Inception v3 and ResNet101 by the ImageNet datasets [77] are fine-
tuned using core sites samples with different production states, respectively. The devel-
opment of a custom architecture was not undertaken during the pre-training phase. The
training samples undergo data augmentation, including random rotation, flipping, clipping,
scaling, etc., in order to augment the sample size and enhance sample diversity. Manual
parameter adjustments are made based on the loss curves of both the verification set and
training set, while hyperparameters are determined through testing. In the training, a
stochastic gradient descent method and a cross-entropy loss function are used. The learn-
ing rate drops to 0.1 times per 20 epochs. The additional training parameters are listed in
Table 5.
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Table 5. Training parameters.

Sample Datasets Ratio
(Training: Validation)

Training
Optimizer

Momentum
Factor Batch Size Epoch Initial Learning Rate

8:2 SGDM 0.9 64 100 0.001

3.2. Optical Evidence

The fine-tuned CNNs are applied to compute the production state probabilities of the
core sites in a shipyard separately. As the shipbuilding period is lengthy, some core sites
may not be in a use stage at the satellite sensor imaging moment. Hence, the maximum of
the normal production probabilities in core sites of each category is adopted as evidence, as
in Formulas (1) and (2).

Pto
do = max

(
p1, p2, p3, . . . , pr

)
(1)

Pto
mo = max

(
q1, q2, q3, . . . , ql

)
(2)

The to is the imaging time of optical data. In Formula (1), Pto
do is the normal production

probability of the SCS in optical data. pi(1 ≤ i ≤ r) is normal production probability of the
ith SCS in optical data and r is the amount of SCSs in the shipyard. In Formula (2), Pto

mo is
the normal production probability of MUCSs in the optical data. qj(1 ≤ j ≤ l) is the normal
production probability of the jth MUCSs in the optical data and l is the amount of MUCSs
in the shipyard.

The optical SCS evidence Pd consists of the single-phase observation Pto
do as Formula (3).

The optical MUCS evidence Pm consists of the single-phase observation Pto
mo as Formula (4)

and h is the amount of optical RS data.

Pd =
[
PI

do, PII
do, . . . , Pto

do, . . . , Ph
do

]
, to = I, II, . . . , h (3)

Pm =
[
PI

mo, PII
mo, . . . , Pto

mo, . . . , Ph
mo

]
, to = I, II, . . . , h (4)

3.3. Decision-Level Fusion
3.3.1. DS Evidence Fusion Basic Theory

The DS evidence theory defines the recognition frame Θ, in which propositions are
exhaustive and mutually exclusive. The m(A) is the basic probability assignment of
proposition A, indicating the degree of confidence in proposition A that is satisfied with
m(∅) = 0 and ∑

A⊆Θ
m(A) = 1. For ∀A ⊆ Θ, the information fusion rule for evidence

m1, m2, · · · , mn is:

(m1 ⊕ · · · ⊕mn)(A) =
1

1−K
· ∑
A1∩A2∩···An=A

m1(A1)·m2(A2) · · ·mn(An) (5)

Among them,

K = ∑
A1∩A2∩···An=Φ

m1(A1)·m2(A2) · · ·mn(An) =

1− ∑
A1∩A2∩···An 6=Φ

m1(A1)·m2(A2) · · ·mn(An)
(6)

3.3.2. Evidence Analysis

The proposed evidence is derived by two core sites from multi-temporal RS image
data, so there may be conflicts between the evidence.

(1) Due to the different core sites used at different stages of the shipbuilding, there may
be conflicting evidence from the two core sites at the imaging moment.
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(2) Conflict evidence may also be caused by changes in the shipbuilding stage when the
sensor continuously observes the same core site.

The DS evidence fusion theory fails when there is highly conflicting evidence. To
address these issues, this paper defines two metrics to measure the degree of conflict and
credibility of evidence and constructs an improved DS evidence theory calculation system.

The correlation metric is defined to measure the consistency between evidence as
Formula (7). When the correlation metric R < 0, the evidence points to inconsistency with
a high conflict. The similarity metric Sj is defined in Formula (8). The more similarity there
is in the evidence, the more credible it is.

Rdm = (Md − 0.5)(Mm − 0.5) (7)

Sj = 1−
√

1
n− 1

n

∑
i=1

∣∣mi(A)−Mj
∣∣2 (8)

Mj = Avg
(
Pj
)
, j ∈ [d, m] (9)

The symbols d, m, denote the SCS and MUCS data. Pd is the evidence from the SCS.
Pm is the MUCS evidence. In Formula (7), Rdm is the correlation between Pd and Pm. Md,
Mm is the average of Pd, Pm, respectively, which is defined in Formula (9). In Formula (8),
mi(A) is the evidence value and n is the amount of evidence.

3.3.3. Evidence Fusion

The recognition framework of improved DS evidence fusion for the shipyard pro-
duction state is Θ = {Normal, Abnormal}. We assume that proposition A: {shipyard
production state is normal}, B: {shipyard production state is abnormal}. The evidence
combining SCSs with MUCSs is shown below.

m0(A) = [Pd, Pm] (10)

According to the evidence analysis in Section 3.3.2, the following improved DS evi-
dence theory calculation framework is proposed (see Figure 5).

(1) Calculating the correlation Rdm of evidence between two core sites, the SCS and the
MUCS. If the Rdm < 0, the SCS and MUCS indicate evidence conflict. The similarity
metric is calculated and the weight of all evidence is calculated by the similarity metric
(in formula (11)).

(2) In Formula (12) and (13), the conflict evidence is corrected by weight. The greater the
degree of similarity of evidence is, the stronger is the credibility and the greater the
weight. The modified evidence is substituted into Formula (5) for evidence fusion,
and the first evidence fusion result E0 is obtained. The definition of m0 is shown in
Formula (13).

(3) The greater the similarity of evidence is, the stronger the credibility is, the greater
the weight is, and the more biased the evidence fusion result is for the evidence with
greater weight. Therefore, the correlation metric between the corrected evidence with
a larger weight and the fusion result is calculated. If Rm0E0 < 0, it indicates that there
is still a conflict. Otherwise, the conflict problem has been solved and the fusion result
is the output.

(4) Considering that the fusion result is closer to the expected output, if Rm0E0 < 0 the
weight of evidence is re-determined according to the fusion result; that is, the iterative
idea is introduced to correct the fusion result. The ith (i ≥ 1) iteration process is to
calculate the correlation metric and the similarity metric of the modified evidence
and the i-1th evidence fusion result Ei−1. if Rm0Ei−1 < 0, the new evidence weight is
calculated by the similarity metric, and the conflict evidence is corrected according
to the weight to obtain the ith fusion result Ei. The convergence condition of the
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iteration is to end the iteration and output when Rm0Ei > 0; otherwise, we continue
the iteration until the condition is satisfied.

ωj =
Sj

Sd + Sm
, j ∈ [d, m] (11)

Pto
do
′
= ωdPto

do · · ·P
to
mo
′
= ωmPto

mo

P′d =
[
PI

do
′
, PII

do
′
, . . . , Pto

do
′, . . . , Ph

do
′]

, to = I, II, . . . , h

P′m =
[
PI

mo
′
, PII

mo
′
, . . . , Pto

mo
′, . . . , Ph

mo
′]

, to = I, II, . . . , h

(12)

m1 =
n
∑

to=I
ωdPto

do

m2 =
n
∑

to=I
ωmPto

mo

(13)

m0 =

{
m1 ωd > ωm
m2 ωm > ωd

(14)

After the above treatment, the probability of the shipyard production state is calculated.

E(A) = (m1 ⊕m2 ⊕ · · · ⊕mn) =
m1m2 · · ·mn

m1m2 · · ·mn + [1−m1][1−m2] · · · [1−mn]
(15)

E(B) = 1− E(A) (16)

E(A) is the probability that the shipyard is in a normal production state.
The probability of a normal production state takes the value interval of [0, 1]; the

closer it is to 1, the more likely it is that the shipyard is in a normal production state. The
shipyard production state determination is defined and recognized in Formula (16).

Production state of the shipyard =

{
Normal, E(A) ≥ 0.5
Abnormal, E(A) < 0.5

(17)

3.4. Accuracy Evaluation

In order to validate the proposed method, the accuracy, precision, false alarm (FA),
recall, missing alarm (MA) and F1-score are assessed, as follows:

Accuracy = (TA + TN)/(TA + TN + FA + FN) (18)

Precision = TA/(TA + FN) (19)

FA = FN/(TA + FN) (20)

Recall = TA/(TA + FA) (21)

MA = FA/(TA + FA) (22)

F1− score = 2× Precision× Recall/(Precision + Recall) (23)

where TA is the number of abnormal shipyards with correctly recognized and TN is the
number of normal shipyards with correctly recognized. FA is the number of abnormal
shipyards with production states falsely recognized as normal, and FN is the number of
normal shipyards with production states falsely recognized as abnormal.
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4. Results
4.1. Presentation of Results

Taking the Inception v3 network as an example, the state evidence of optical data is
calculated, and the improved DS evidence fusion method is used to obtain the shipyard
production state. The monitoring results are accurate as shown in Table 6.

Table 6. Positive test results display.

Shipyard Images Pto=I
do Pto=II

do Pto=I
mo Pto=II

mo True State

i 0.99 0.99 0.99 0.99 Normal

ii 0.01 0.02 0.01 0.01 Abnormal

iii 0.14 0.02 0.90 0.92 Normal

iv 0.99 0.99 0.01 0.06 Normal

v 0.75 0.04 0.99 0.93 Normal

vi 0.04 0.16 0.82 0.85 Normal

The proposed method can effectively monitor the shipyard production state. The
shipyard production state evidence, Pdo, Pmo, Pds, Pms, is generally consistent with the
acquired RS images, as showing the normal shipyard (i) and the abnormal shipyard (ii).

The improved DS evidence fusion can effectively avoid the uncertainty associatedwith
conflicting evidence. In shipyards (iii) and (iv), evidence is in conflict from the two core
sites with the correlation Rdm < 0. The similarity metric is calculated, the conflict evidence
is corrected, and the fusion result is corrected by iteration, so that the shipyard can be
identified as the normal production state.

Taking the (iii) and the (vi) shipyards in Table 6 as an example, we compare the
traditional DS evidence fusion, the voting fusion, and the Yager [78] fusion results with the
improved DS evidence fusion method. The comparison results are shown in the following
Table 7.

The improved DS evidence fusion method effectively addresses the issue of in different
core sites, which remains unresolved by traditional DS evidence fusion, thereby enabling the
accurate identification of a shipyard production state. As demonstrated by the experimental
data Shipyard (iii) and Shipyard (vi) in Table 7, the traditional DS fusion obtains results
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of 0.47 and 0.36, respectively, both below 0.5, leading to erroneous classification of an
abnormal production state for the shipyard. The voting method fails in this case. The
fusion results obtained by the Yager fusion method are 0.13 and 0.14, respectively, both
below 0.5, which also leads to the classification error of the abnormal production state of
the shipyard. In contrast, the improved DS evidence fusion method involves calculating
the source credibility to determine weights (as per Formula (8)), revising original evidence
values (as per Formulas (11)–(13) following new evidence. Consequently, the improved
fusion results are obtained as 0.58 and 0.88, respectively, accurately identifying the normal
production state of the shipyard.

The monitoring results of the shipyard’s production state show that the proposed
evidence is consistent with the actual situation and can objectively reflect the production
state of the core sites in the multi-temporal data. The improved DS evidence fusion method
can better deal with the problem of evidence conflict from the core sites.

Table 7. Comparison of fusion results.

Shipyard Pto=I
do Pto=II

do Pto=I
mo Pto=II

mo Voting Yager DS
Evidence Fusion

Improved DS
Evidence Fusion True State

iii 0.14 0.02 0.90 0.92 -- 0.13 0.47 0.58 Normal

vi 0.04 0.16 0.82 0.85 -- 0.14 0.36 0.88 Normal

4.2. Evaluation Results

The method proposed in this paper can effectively realize the semi-annual monitoring
of a shipyard production state, and the evaluation results are shown in Table 8.

Table 8. Evaluation of overall results of production state monitoring.

Area CNN Period Accuracy Precision FA Recall MA F1-Score

Yangtze
River Delta

Inception v3 The 1st half-year 99.11% 100.00% 0.00% 94.12% 5.88% 96.97%

ResNet101 The 1st half-year 100.00% 100.00% 0.00% 100.00% 0.00% 100.00%

Bohai Rim
Inception v3 The 1st half-year 97.67% 87.50% 12.50% 100.00% 0.00% 93.33%

ResNet101 The 1st half-year 95.35% 85.71% 14.29% 85.71% 14.29% 85.71%

Through the proposed framework of CNNs and improved DS evidence fusion, the
production state of shipyards can be well monitored. The Inception v3 model combined
with the improved DS evidence fusion method performs well in the Bohai Rim research
area. However, the result is slightly worse than the result from the Yangtze River Delta
study area. The reason is that GF-1 optical RS data are used in the Bohai Rim rather than
the ZY-3 data and Google Earth data involved in the training, and there are differences in
resolution and imaging quality, resulting in decreased accuracy.

In addition, using this framework, the traditional DS evidence fusion method, voting
method and Yager fusion method are compared with the method proposed in this paper.
The evaluation results are shown in Table 9.

Compared with the traditional DS evidence fusion, the improved DS evidence fusion
improves the precision and F1-score while maintaining high recall. In the Yangtze River
Delta study area, for the selected two CNNs, the accuracy of the proposed method is
improved by 0.9% and 2.68%, respectively, compared with the traditional DS evidence
fusion method.

For the voting method and the Yager fusion method, although the high recall is also
maintained, the overall accuracy, precision and F1-score are significantly reduced.
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Table 9. Fusion results of other methods in the study area.

Area Fusion
Method CNN Periods Accuracy Precision FA Recall MA F1-Score

Yangtze
River Delta

Traditional DS
evidence fusion

Inception v3 The 1st half-year 98.21% 89.47% 10.53% 100.00% 0.00% 94.44%

ResNet101 The 1st half year 97.32% 85.00% 15.00% 100.00% 0.00% 91.89%

Voting
Inception v3 The 1st half-year 90.18% 60.71% 39.29% 100.00% 0.00% 75.56%

ResNet101 The 1st half-year 91.94% 65.38% 34.62% 100.00% 0.00% 75.56%

Yager
Inception v3 The 1st half-year 89.29% 58.62% 41.38% 100.00% 0.00% 73.91%

ResNet101 The 1st half-year 88.39% 56.67% 43.33% 100.00% 0.00% 72.34%

Bohai Rim

Traditional DS
evidence fusion

Inception v3 The 1st half-year 97.67% 87.50% 12.50% 100.00% 0.00% 93.33%

ResNet101 The 1st half-year 97.67% 87.50% 12.50% 100.00% 0.00% 93.33%

Voting
Inception v3 The 1st half-year 88.37% 58.33% 41.67% 100.00% 0.00% 73.68%

ResNet101 The 1st half-year 90.70% 63.64% 36.36% 100.00% 0.00% 77.78%

Yager
Inception v3 The 1st half-year 86.05% 53.85% 46.15% 100.00% 0.00% 70.00%

ResNet101 The 1st half-year 86.05% 53.85% 46.15% 100.00% 0.00% 70.00%

4.3. Discussion

The proposed method is limited in recognizing a small/micro shipyard production
state. The partial failure results of the combination of Inception v3 and the improved DS
evidence fusion method are shown in Table 10.

Table 10. False test results display.

Shipyard Images True State

vii Abnormal

viii Abnormal

ix Abnormal

The error reasons of the production state monitoring can be divided into two categories.
The first reason is the impact of small and micro shipyard features. Shipyard (vii) is

located on mudflats with core sites that are similar in texture structures under different
production states, which causes the CNNs to miss detection. Shipyard (viii) is in abnormal
production state. However, the gantry cranes and their shadows around the two core sites
disturb optical evidence extraction, which leads to missed detection of the shipyards in an
abnormal state.

The second reason is the insufficient frequency of optical data acquisition and the
problem of image quality. The production state monitoring of the experimental shipyard is
semi-annual monitoring. The optical data acquisition frequency used in the monitoring
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is insufficient, and in shipyard (ix), the optical image is affected by the cloud layer, which
ultimately leads to shipyard (ix) being mistakenly identified.

The analysis of the monitoring results shows that the method in this paper has high
accuracy in the monitoring of the shipyard production state, but there are still some
limitations, which need to be further improved in the future. The details are as follows:

(1) The method in this paper needs to identify the shipyard and extract the core sites
before monitoring, and the workload is large. There are few studies on the extraction
of special scenes in shipyards and the automatic extraction of internal core sites. Sub-
sequently, the comprehensive identification of the shipyard scene and state attributes
can be carried out.

(2) The method in this paper has a weak detection ability for the quarterly production
state of small/micro shipyards. For the reason of misdetection, it can be improved
from two directions. Firstly, we can increase the training samples of core sites of
small/micro enterprises to improve the reliability of optical evidence; Secondly, more
time-phase optical images can be used to monitor the production state of shipyards in
the future to further improve the monitoring accuracy.

5. Conclusions

Under complex and volatile international circumstances, there is significant fluctu-
ation in the demand for new shipbuilding. The utilization of multi-source satellite RS
images enables the dynamic monitoring of the shipyard production state from both spatial
and temporal perspectives, thereby enhancing the monitoring efficiency and providing
comprehensive and timely insights into changes in the shipyard production status. It is of
immense significance for industrial development, social stability, resource utilization, and
ecological environment restoration.

This paper analyzes the characteristics of shipyards on HRS images and proposes
a shipyard production state monitoring framework based on CNNs and improved DS
evidence theory.

The innovations of this paper are as follows: (1) It proposes the use of multi-source
and multi-temporal satellite RS images to monitor the production state of shipyards, which
reflects the potential of HRS data in monitoring the production state of shipyards, and
also provides a new research thought perspective for other industrial production state
monitoring. (2) A solution strategy is presented that employs a constructed correlation
metric and similarity metric to effectively enhance the accuracy of shipyard production
state monitoring results through high-conflict evidence fusion.

The proposed monitoring framework for the shipyard production state is implemented
in the Yangtze River Delta and Bohai Sea regions. The findings demonstrate that compared
to the conventional DS evidence fusion method, the semi-annual monitoring of the shipyard
production state can be conducted with greater accuracy using our approach. Furthermore,
our proposed method exhibits excellent performance across various types of HRS images.

The article proposes a method that combines the advantages of HRS images and deep
learning techniques, which can provide new ideas for the detection and identification of
industrial sites and related research in remote sensing. This will broaden new perspectives
and application directions for satellite remote sensing applications.
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