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Abstract: Landslides pose significant and serious geological threat disasters worldwide, threatening
human lives and property; China is particularly susceptible to these disasters. This paper focuses
on Pengyang County, which is situated in the Ningxia Hui Autonomous Region of China, an area
prone to landslides. This study investigated the application of machine learning techniques for
analyzing landslide susceptibility. To construct and validate the model, we initially compiled a
landslide inventory comprising 972 historical landslides and an equivalent number of non-landslide
sites (Data sourced from the Pengyang County Department of Natural Resources). To ensure an
impartial evaluation, both the landslide and non-landslide datasets were randomly divided into two
sets using a 70/30 ratio. Next, we extracted 15 landslide conditioning factors, including the slope
angle, elevation, profile curvature, plan curvature, slope aspect, TWI (topographic wetness index), TPI
(topographic position index), distance to roads and rivers, NDVI (normalized difference vegetation
index), rainfall, land use, lithology, SPI (stream power index), and STI (sediment transport index),
from the spatial database. Subsequently, a correlation analysis between the conditioning factors and
landslide occurrences was conducted using the certainty factor (CF) method. Three landslide models
were established by employing logistic regression (LR), functional trees (FTs), and random subspace
functional trees (RSFTs) algorithms. The landslide susceptibility map was categorized into five levels:
very low, low, medium, high, and very high susceptibility. Finally, the predictive capability of the
three algorithms was assessed using the area under the receiver operating characteristic curve (AUC).
The better the prediction, the higher the AUC value. The results indicate that all three models are
predictive and practical, with only minor discrepancies in accuracy. The integrated model (RSFT)
displayed the highest predictive performance, achieving an AUC value of 0.844 for the training
dataset and 0.837 for the validation dataset. This was followed by the LR model (0.811 for the training
dataset and 0.814 for the validation dataset) and the FT model (0.776 for the training dataset and 0.760
for the validation dataset). The proposed methods and resulting landslide susceptibility map can
assist researchers and local authorities in making informed decisions for future geohazard prevention
and mitigation. Furthermore, they will prove valuable and be useful for other regions with similar
geological characteristics features.

Keywords: landslide susceptibility; logistic regression; functional trees; random subspace functional
trees; certainty factor; Pengyang County
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1. Introduction

Landslides are frequent and common geological disasters, and it is estimated that
in the years 2020–2021 alone, the global direct economic losses attributable to landslide
disasters reached a staggering amount of USD 380 million. These events impacted ap-
proximately 190,000 individuals and tragically resulted in causing more than 700 fatalities
(disaster data sourced from the Global Disaster Database at of the University of Leuven,
Belgium) [1]. Within China, the loess region stands out as one of the areas that is most
susceptible to geological disasters, with loess landslides emerging as the predominant
type. As urbanization accelerates and human activities continue to exert influence on the
natural environment, landslide disasters have surged in frequency across numerous regions.
This surge presents a looming threat to the safety of residents as well as the integrity of
transportation and communication infrastructure.

Pengyang County, our study area, is renowned for its extensive hilly terrain, thick
loess deposits, loose soil structure, severe soil erosion, and frequent landslides. These
distinctive features have significantly disrupted daily life and productive activities in the
region. Therefore, to minimize economic losses and ensure the safety of its residents, it is
imperative to conduct a comprehensive study on landslide susceptibility. By analyzing
the landslide susceptibility to landslides in this area, we can provide valuable insights and
guidance to serve as an inspiration for local disaster prevention and mitigation efforts.
The continuous advancements in machine learning and geographic information systems
(GISs) have offered an array that provides a wide range of quantitative methods and
techniques for landslide modeling. This progress has led to the development and successful
implementation of various landslide models, facilitating a better understanding through a
variety of landslide models that help to understand landslide patterns and their triggering
mechanisms [2,3]. When the geological conditions of a specific site closely resemble areas
where landslides have previously occurred, the likelihood of landslides happening at that
site increases significantly [4–6]. In this paper, we will employ three machine learning
models to analyze landslide susceptibility in Pengyang County. Landslide susceptibility
studies typically employ three primary techniques: heuristic approaches, deterministic
methods, and statistical methods [7].

1.1. Heuristic Methods

Heuristic methods entail assigning weights to various elements and ranking them
based on their significance in causing slope failures. Experts determine these weights using
techniques such as fuzzy logic methods [8], spatial multi-criteria evolutionary methods [9],
and weighted linear combinations [10,11]. For instance, in the Kakan catchment, M. H.
Tangestani’s [12] research involved the utilization of diverse gamma values. Output
maps were assessed using known landslide data, and a fuzzy gamma operation with a
gamma value of 0.94 was applied. This approach categorized the areas and generated
output sensitivity maps. The study’s results indicated that the majority of landslides
were concentrated in the high-susceptibility areas identified using this comprehensive
approach. Heuristic methods, although not reliant on intricate mathematical models or
extensive datasets, do rely on the expertise and judgment of experts. However, the use
of deterministic methods can sometimes make it difficult to integrate this wide range of
data into a cohesive analytical framework. They can only provide determinative results,
i.e., they provide absolute conclusions about whether a landslide has occurred or not. This
can lead to incomplete and inaccurate findings, posing results with limitations. In contrast,
statistical methods are capable of handling the need to deal with data from various sources
and different types of data, such as the slope gradient, slope direction, and rainfall records.
Furthermore, statistical methods have the capacity to also provide the probability of a
landslide occurring or the probability distribution of the risk rather than merely delivering
deterministic outcomes results. This facilitates risk assessment and decision making, aiding
decisionmakers in comprehending the extent and probability of risk. Consequently, it
enables them to implement suitable and appropriate disaster prevention measures.
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1.2. Deterministic Methods

Deterministic methods, when applied on large and detailed scales (≥1:5000), effec-
tively reduce redundancy by scrutinizing existing or potential failure mechanisms. They
utilize physically based models that are calibrated using onsite and laboratory test results.
These methods significantly enhance the accuracy and reliability of the evaluation pro-
cess [13,14]. For instance, Diana Salciarini et al. [15] conducted a study in the mountainous
regions of central Italy. In this research, the authors employed the Transient Rainfall In-
filtration and Grid-based Slope-stability (TRIGRS) model to assess the susceptibility of
shallow landslides triggered by rainfall. The researchers discovered that the susceptibility
results obtained from the TRIGRS model exhibited substantial agreement with the observed
landslide inventory in the region, exceeding 80%. Nevertheless, deterministic approaches
do possess certain limitations. They are often founded on simplified assumptions and mod-
els, which may not fully encapsulate the complexity of landslide formation mechanisms
and the multitude of associated factors. Depending on fixed assumptions and models
can restrict their adaptability and flexibility when applied to diverse regions and specific
contexts. In contrast, statistical methods rely on the analysis of historical landslide events.
These methods harness extensive observational data and statistical information to assess
landslide susceptibility. They eschew specific assumptions or models, instead employing
statistical patterns and correlations inherent in the data to analyze and draw inferences.

1.3. Statistical Methods

Statistical methods that are used in landslide susceptibility analysis can be divided
into two categories: binary statistical techniques (such as frequency ratios [5,16–19], evi-
dence belief functions [20–22], value of information [23–25], weight of evidence [26,27], etc.)
and multivariate statistical techniques (such as artificial neural networks, logistic regres-
sion [17,28–31], etc.). For instance, Paola Reichenbach et al. [32] conducted an extensive
review of landslide susceptibility modeling based on statistical methods and related topo-
graphic zoning approaches. The primary focus of their review was on sensitivity modeling
methods that were grounded in statistics. The study concluded that the researcher’s exper-
tise and proficiency at applying a particular classification method hold more significance
than the method itself. Furthermore, the authors advocated for the use of multiple methods
to derive various susceptibility assessments using the same landslide and thematic data.
These assessments can then be combined to create “optimal” models, which typically yield
a superior performance compared with a single approach. It is important to note that
statistical methods heavily rely on having ample data for effective modeling and validation
purposes. However, obtaining and processing such data can be demanding in terms of time
and resources. Additionally, the complexity of certain statistical techniques often necessi-
tates specialized knowledge and skills, particularly in tasks such as modeling, parameter
estimation, and interpretation.

To tackle these challenges, researchers have increasingly turned to efficient machine
learning algorithms and artificial intelligence techniques in recent years. These methods
offer several advantages, including the ability to automatically process substantial amounts
of data. They also enable the rapid generation of predictive models and facilitate the
integration of diverse data sources, such as topography, rainfall, vegetation, remote sensing,
and geographic information system (GIS) data. By leveraging these capabilities, these
advanced techniques provide a more comprehensive analytical and predictive capability, ef-
fectively mitigating the limitations associated with traditional statistical methods. Machine
learning algorithms and artificial intelligence techniques encompass a range of methods,
including support vector machines (SVMs) [33,34], decision trees (DTs) [35–37], naive Bayes
(NB) [38–42], kernel logistic regression (KLR) [43–45], random forests [46], and more. For
instance, in a comparative study conducted by Biswajeet Pradhan [47] in the Penang Hill
area, Malaysia, the prediction performance of decision tree (DT), support vector machine
(SVM), and adaptive neuro-fuzzy inference system (ANFIS) models was evaluated for
landslide susceptibility mapping. The findings indicated that all three methods were found
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to be suitable for conducting landslide susceptibility mapping in the area. Among these
models, ANFIS model 5 demonstrated the highest predictive ability, achieving a perfor-
mance rate of 94.21%. Similarly, Dieu Tien Bui et al. [48] developed five landslide models
for the Son La hydropower basin in Vietnam by employing various machine learning tech-
niques, including support vector machine (SVM), multilayer perceptron neural networks
(MLP neural nets), radial basis function neural networks (RBF neural nets), kernel logistic
regression (KLR), and logistic model tree (LMT). The results underscored the importance of
selecting an optimal machine learning technique using an appropriate conditional selection
method. This approach proved to be valuable in enhancing the accuracy and effectiveness
of the landslide models.

1.4. Models Used in This Study

The random subspace (RS) model is an advanced machine learning technique that
enhances training efficiency by randomly selecting features from a pool of landslide con-
ditioning factors instead of using all of them. Conversely, the FT model (functional trees)
outperformed other models by employing a similar approach, which involves randomly
selecting features from the set of landslide conditioning factors when constructing the
framework of multivariate trees for classification and regression tasks. This technique has
proven effective in improving the performance and accuracy of the models. It is worth
noting that there are currently various methods available for combining landslide suscep-
tibility models. However, it is noteworthy that few scholars have employed the random
subspace functional trees (RSFTs) model for evaluation purposes.

In this research, we focused on analyzing the landslide susceptibility of Pengyang
County, which is situated in the landslide-prone region in the southern part of the Ningxia
Hui Autonomous Region, China. Our study involved the selection of three models: the
logistic regression (LR), functional tree (FT), and random subspace functional tree (RSFT)
models. These three methods all belong to the field of machine learning. The LR model is
a traditional machine learning approach used for building a binary classification model,
the FT is a decision tree-based machine learning approach used for constructing a decision
tree model, and the RSFT model can be considered a comprehensive model that combines
elements of function trees and rule-based systems. By comparing the performance of
traditional machine learning models with new algorithms and models—especially the
RSFT model, which has been developed and evolved in recent years based on traditional
machine learning models for landslide susceptibility assessment—we aim to gain valuable
insights into the effectiveness and performance of these models in assessing landslide
susceptibility in a given area.

2. Description of Study Area
2.1. Geographic Location

Pengyang County is situated in the southeastern edge of Ningxia at the eastern foot of
Liupan Mountain. It falls under the administrative jurisdiction of Guyuan City and shares
its borders with Zhenyuan County, Pingliang City, and Huan County of Gansu Province to
the east, south, and north, respectively. To the west, it is adjacent to the Yuanzhou District
of Ningxia. The county is geographically located from 106◦32′ to 106◦58′ east longitude
and 35◦41′ to 36◦17′ north latitude, encompassing a total area of 2533.49 km2. It spans
approximately 62 km from north to south and approximately 58 km from east to west
(Figure 1).

2.2. Climate

Pengyang County experiences a temperate semi-humid and semi-dry climate, marked
by four distinct seasons. It has hot and rainy summers, while winters tend to be dry with
less rainfall. The average annual temperature is 6.3 ◦C, with the highest temperatures typi-
cally occurring in July, averaging around 19.0 ◦C; the lowest temperatures occur in January,
averaging approximately −8.2 ◦C. Precipitation levels in most areas of the region range
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from 400 to 500 mm, gradually decreasing from south to north, resulting in a difference
of approximately 150 mm between the two ends. The annual precipitation in Pengyang
County displays significant interannual variability. Within the same year, the distribution
of precipitation is highly uneven, characterized by distinct rainy and dry seasons. Rain-
fall mainly occurs in the form of continuous overcast and rainy days, as well as heavy
rain events.
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2.3. Topography

Slope topography is a fundamental factor contributing to landslides. In Pengyang
County, the thickness of loess accumulation varies from tens of meters to over 100 m, which
is characterized by a loose structure, significant rock and soil erosion, and the presence of
well-developed surface water systems [49]. The region features numerous river tributaries
and a rugged topography, creating favorable topographic and geomorphologic conditions
conducive to the occurrence of landslides. The landforms in Pengyang County mainly
consist of loess hilly area, stony mountainous terrain, and a valley district, which account
for 86.68%, 7.94%, and 5.38% of the total area, respectively (Figure 2).

2.4. River System

The rivers within Pengyang County are part of the Jing River system, which is primar-
ily composed of the Ru River, Hong River, Anjiachuan River, and various smaller streams
(Figure 3). The Ru River and Hong River flow in an east-to-west direction, encompassing a
sizable watershed area. In Yuanzhou District, water resources are limited, and there is a
notable contrast in water quality, with poorer quality water being found in the northern part
of the district and better quality water being found in the southern region. Atmospheric
precipitation serves as the primary source of surface water within the district [50].
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Given the uneven distribution of annual precipitation and occasional heavy rainfall
in Pengyang County, there is a significant issue with rock and soil erosion. The rugged
terrain further exacerbates these conditions, creating natural predispositions for landslide
development. Consequently, Pengyang County experiences a high number of landslides
that are widely distributed throughout the region. This underscores the necessity of
studying landslide susceptibility in this area.
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3. Methodology

This study can be divided into four stages (Figure 4): (1) the construction of the
landslide inventory map and preparation of the landslide conditioning factors; (2) an
analysis of the correlation between landslides and conditioning factors; (3) an evaluation
of landslide susceptibility using LR, FT, and RSFT models; and (4) a comparison of the
accuracy of the three models and the selection of the optimal model.
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3.1. Preparation of Spatial Database

The landslide allocation map was generated using historical landslide records, field
investigations (part of the Geological Hazard Detailed Investigation Project at a 1:50,000
scale in Pengyang County), and interpretation of satellite images (GF-2). Unlike previous
studies that have often represented landslides as individual points for analyzing their
spatial distribution, this study took a different approach. We compiled a comprehensive
dataset consisting of 972 landslide locations within the study area. Out of this dataset, a
total of 680 landslide locations were meticulously selected for the training dataset, while
the remaining 292 locations formed the verification dataset. This careful selection process
ensured the effective utilization of both datasets for the study (refer to Figure 1 for further
details). To ensure a balanced representation, an equal number of non-landslide-prone
areas were randomly chosen from regions prone to landslides. These non-landslide-prone
areas were then split into two separate groups, maintaining a 70:30 ratio. This division
facilitated the creation of both the training and validation datasets, respectively. This
methodology ensured a robust and unbiased evaluation of the models’ performance. The
division guaranteed that both datasets contained representative samples of non-landslide-
prone areas, allowing for the effective training and validation of the landslide susceptibility
analysis models [46,51–57]. The landslide inventory map and survey data analysis revealed
that the primary type of landslides in the study area were tractive landslides (Figure 5),
which mainly occurred along river and valley slopes (Figure 1). Due to the varying sizes
of landslides, the statistical calculations in this study were based on the area of landslides
without categorizing them in multiple ways by type or characteristics. It is important to
note that all data utilized in this research were generously provided by the Ningxia Land
Resources Survey and Monitoring Institute.
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Figure 5. Typical landslides at the research region: (a) landslide in Changgou Village, Honghe Town-
ship (106◦40′47′′E, 35◦44′16′′N); (b) landslide in Changgou Village, Honghe Township (106◦47′51′′E,
35◦43′47′′N); (c) landslide in Zhaike Village, Luowu Township (106◦37′35′′E, 35◦10′05′′N); (d) land-
slide in Zhaogou Village, Wangwa Township (106◦41′47′′E, 35◦03′40′′N).

Various factors play a significant role in influencing the occurrence of landslide-
prone areas, which are collectively known as landslide conditioning factors. [20,58–60].
In this study, we conducted extensive research on the local geological environment and
characteristics of landslide development. Moreover, we analyzed the relationship between
the occurrence of landslides and the conditions in the study area in collaboration with
previous scholars, leading to the identification of 15 conditioning factors [50]. These
factors include the slope angle, elevation, profile curvature, plan curvature, slope aspect,
topographic wetness index (TWI), topographic position index (TPI), distance from roads,
distance from rivers, normalized difference vegetation index (NDVI), rainfall, land use,
lithology, stream power index (SPI), and sediment transport index (STI). The thematic map
resolution for each conditioning factor is set at 25 × 25 m.

Among the array of factors examined, slope angle emerges as a pivotal element
significantly influencing slope instability. It is widely recognized as a critical factor and is
commonly integrated into landslide susceptibility models [61,62]. In this study, the slope
angle was categorized into one grade for every 10 degrees in the range of 0–60 degrees,
with an additional grade for slopes greater than 60 degrees, resulting in a total of 7 grades.
(Figure 6a).

Elevation holds substantial importance in landslide susceptibility analysis due to its piv-
otal role in determining the stress distribution of a slope [63–65]. For this study, the elevation
map was derived from digital elevation model (DEM) datasets with 200 m intervals. Seven
elevation categories were established: <1300 m, 1300–1500 m, 1500–1700 m, 1700–1900 m,
1900–2100 m, 2100–2300 m, and >2300 m (Figure 6b).

Profile curvature is a metric used to quantify variations in ground elevation along the
maximum slope direction of a terrain surface, which in turn influences airflow acceleration
across the surface [66–70]. The profile curvature value is derived from a digital elevation
model (DEM) and directly reflects the geometric characteristics of the slope profile. In this
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research, section curvature was categorized into ranges of 11.54 to 9.14, 11.54 to 1.08, 1.08
to 0.43, 0.43 to 0.22, 0.22 to 0.95, and 0.95 to 9.145 (Figure 6c).

Plane curvature, on the other hand, results from the slope aspect analysis of the
DEM and significantly impacts surface runoff and infiltration characteristics [71–77]. The
range of plane curvature in this study spanned from −5.63 to 7.68 and was divided into
five categories: −5.3 to −0.98, −0.98 to 0.37, −0.37 to 0.25, 0.25 to 0.91, and 0.91 to 7.68
(Figure 6d).

Slope aspect refers to the orientation or direction of the slope’s free surface, which
is a crucial factor in evaluating landslide sensitivity [78,79]. It can affect slope stability
through variations in precipitation, wind, solar radiation, climate conditions, vegetation,
soil, geomorphology, hydrology, and more [80–83]. For instance, this study found that
slopes facing north are generally more prone to landslides than those facing south. The
slope direction map was generated using DEM data and was divided into 10 categories
(Figure 6e).
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Figure 6. Landslide conditioning factors: (a) slope angle, (b) elevation, (c) profile curvature, (d) plan
curvature, (e) slope aspect, (f) TWI, (g) TPI, (h) distance to roads, (i) distance to rivers, (j) NDVI,
(k) rainfall, (l) land use, (m) lithology, (n) SPI, (o) STI.

The topographic wetness index (TWI) plays a significant role in landslide analysis and
is calculated as TWI = ln(a/tanβ) [78,81,82], combining the local uphill contribution area
(a), representing water flow towards a specific location, with the local slope (tanβ). The
resulting TWI map was classified into five distinct classes: 2.21–6, 6–10, 10–14, 14–18, and
>−18, as shown in Figure 6f.

The terrain position index (TPI) measures the slope position of the terrain and au-
tomatically classifies it [84]. TPI values in this study ranged from −34.64 to 37.93 and
were divided into five categories using the Jenks natural fracture classification method
(Figure 6g).

Human engineering activities, particularly road construction, have a significant impact
on the geological environment and can influence the occurrence of landslides [85]. The
proximity between a slope and a road is considered a conditioning factor, with six buffer
zones being constructed at intervals of 100 m, ranging from 0–100 m to >500 m (Figure 6h).
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Figure 3 depicts the water system map of the study area, and the seepage erosion
of these rivers at the foot of slopes can alter the slope’s nature and significantly impact
landslides [86–89]. Consequently, the distance between the slope and the river was also
considered a conditioning factor, and it was divided into six categories ranging from
0–200 m to >1000 m. (Figure 6i).

The normalized difference vegetation index (NDVI) holds significant importance in
the assessment of landslide susceptibility and is commonly used in related studies due to
its ability to indicate vegetation growth levels and their correlation with surface infiltration,
runoff, and weathering dynamics [90,91]. In this study, NDVI values were computed and
subsequently categorized into five distinct levels, ranging from −0.22 to 0.03, 0.03 to 0.11,
0.11 to 0.15, 0.15 to 0.19, and 0.19 to 0.43 (Figure 6j).

Rainfall is a significant factor in triggering landslides [92–95], particularly in the
study area, where rainfall-induced landslides are prevalent. Rainfall distribution gradually
increases from north to south, with the southern region experiencing a higher concentration
of landslides. Therefore, rainfall is recognized as a crucial factor influencing landslide
occurrence in the study area. To analyze its impact, a rainfall factor map was generated
based on the annual mean rainfall map. The rainfall factor map categorized rainfall
levels into five intervals at 20 mm/year increments: <450 mm/year, 450–470 mm/year,
470–510 mm/year, 510–530 mm/year, and >530 mm/year (Figure 6k).

Land use type represents another significant factor influencing landslide susceptibil-
ity [96–98]. In this study, land use types were classified into five categories: agricultural
land, forest, grassland, water, and residential areas (Figure 6l).

Different physical and mechanical properties of soils and rocks are key factors affecting
slope stability [99,100]. In this study, nine lithology types were identified using a geological
map at a scale of 1:50,000 (Figure 6m).

The stream power index (SPI) is a factor related to rock lithology, grain size, and
permeability; it is used to measure the frequency of surface water erosion and sediment
transport on the landscape [101,102]. Fine channel erosion and sediment accumulation can
often occur on the slope surface, and instability may occur when the slope shear stress
exceeds the surface shear strength. The SPI in this study was divided into five classes
ranging from 0–200 to >800 (Figure 6n).

The Sediment Transport Index (STI) is utilized to quantify the sediment transport
capacity of an area [103,104]. Generally, areas with high runoff volumes have a greater
ability to transport sediment compared with areas with lower runoff volumes. In this study,
the STI was classified into five classes using the natural interval method. The classification
ranges were as follows: 0–1.89, 1.89–4.12, 4.12–6.36, 6.36–9.11, and 9.11–42.8, respectively
(Figure 6o).

3.2. Spatial Prediction Modeling of Landslides
3.2.1. Certainty Factor (CF)

Researchers commonly employ the certainty factor (CF) model in the field of landslide
susceptibility mapping [105,106]. The CF method provides a valuable approach for address-
ing the challenge of integrating diverse data layers while considering the heterogeneity
and uncertainty of the input data. To determine the CF, an equation can be used as follows
(Equation (1)):

CF =


PPa−PPs

PPa(1−PPs) if PPa ≥ PPs

PPa−PPs
PPs(1−PPs) if PPa ≤ PPs

(1)

In this equation, PPa represents the conditional probability of an event occurrence
within the impact factor hierarchy. It is determined by the ratio of the number of grids
where landslides occurred to the total number of grids within each factor. On the other
hand, the prior probability (PPs) indicates the likelihood of landslide occurrence across the
entire study area. It is determined by dividing the number of grids with landslides by the
total number of grids in the study area.



Remote Sens. 2023, 15, 4952 14 of 34

The condition factor (CF) is a numerical measure that falls within the range of −1 to
1. A CF value close to 1 signifies a strong positive correlation between the variables being
assessed. In this context, it suggests a robust positive relationship between the condition
factor and landslide incidence.

3.2.2. Logistic Regression (LR)

The logistic regression (LR) model is employed to evaluate the occurrence of landslides
as a binary problem, and it determines whether a landslide occurs or not. It allows for the
assessment of the impact of various factors and parameters on landslide occurrence and
the prediction of landslide probability [80,88].

The generalized linear model (GLM) is a statistical model that incorporates logistic
regression and enables the establishment of multiple regression relationships between
dependent and independent variables [107,108]. In landslide susceptibility assessment, the
LR model aims to identify the optimal model that describes the relationship between
the presence (dependent variable) and absence (binary values 0 and 1) of landslides.
It accomplishes this by considering a set of causal factors, also known as independent
variables [31]. A binary logistic regression model is then developed to identify the optimal
fitting model [109,110]. The binary logistic regression model is expressed mathematically
as follows (Equation (2)):

P =
1

1 + e−z (2)

Here, P represents the probability of landslide occurrence, ranging from 0 to 1, and z
is the linear combination of a constant, an independent variable, and its coefficient. It can
be represented as (Equation (3)):

z = β0 + β1x1 + β2x2 + · · ·+ βnxn (3)

Among them, β0,β1,β2, · · · ,βn are the parameters of the model, while x1, x2, · · · , xn
are the independent variables, which are factors related to the occurrence of landslides.
In the LR model, the model parameters need to be estimated, and the commonly used
method is maximum likelihood estimation. This involves finding the parameter values
that maximize the probability of the dependent variable given the independent variables.
Ultimately, the resulting model can be used to predict whether landslides will occur at new
data points, providing important support for landslide prevention and control [86,111,112].

3.2.3. Functional Trees (FTs)

The Functional Tree (FT) model is a powerful tool for processing large-scale data. Its
core idea is to divide the dataset into multiple subsets, aggregate and process each subset,
and finally merge the results into a complete result set. This process can be carried out
recursively until the final result is achieved. In the FT model, each node is a function that
receives input data and returns processing results. Each node has multiple children, and
each child node corresponds to a subset of the data. When a node is called, it assigns input
data to its children and waits for their processing results. When all child nodes return
results, the node aggregates the results of all child nodes and returns them to its parent
node. The FT model is typically structured as a tree, with the root node representing the
entire dataset and each leaf node corresponding to one data item. In this model, each node
is a pure function that only depends on its input parameters and does not modify external
state, making it well-suited for parallelization [113].

Consider a training dataset D consisting of n samples (Xi, Yi) where Xi ∈ Rn represents
an input vector comprising the 15 landslide conditioning factors mentioned earlier and
where Yi ∈ {1, 0} represents the output variable and consists of two classes: landslide
and no-landslide. Functional Trees (FTs) aim to create a decision tree that accurately
distinguishes between the two classes using the given training data. The key difference
between traditional decision tree algorithms and FTs lies in the splitting process at the tree
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nodes. While traditional algorithms utilize a constant value to compare input attribute
values and partition the data, FTs utilize logistic regression functions for oblique splits at
inner nodes and make predictions at the leaves. This oblique splitting approach allows
FTs to capture more complex relationships and interactions between the input variables,
enhancing their ability to accurately classify the data into the landslide and no-landslide
classes [114–117].

The FT algorithm incorporates several techniques to enhance its performance:
(1) splitting criterion: the gain ratio is utilized as the criterion for selecting the input
attribute to split on at each tree node; (2) pruning: to prevent overfitting and improve
generalization, standard C 4.5 pruning is applied to the constructed decision tree; and
(3) logistic regression at leaves: at the leaves of the decision tree, logistic regression func-
tions are fitted using the LogitBoost algorithm. The least-squares fits are employed for each
class Yi (Equation (4))

fYi (X) = ∑15
i=1 βiXi + β0 (4)

where P(X) represents the predicted probability value, βi denotes the coefficient of the
ith component in the input vector Xi, and N is the number of components. The posterior
probabilities in the leaves, P(X), are calculated accordingly (Equation (5)):

P(X) =
e2 fYi

(X)

1 + e2Yi(X)
(5)

3.2.4. Random Subspace Functional Trees (RSFTs)

Random subspace (RS) is an integrated learning technique introduced by Ho, also
known as attribute bagging or feature bagging. This stochastic subspace model combines
two algorithms. Firstly, the proposed method generates low-dimensional subspaces by
randomly sampling high-dimensional feature vectors. Within these subspaces, multiple
classifiers are combined to generate prediction results. [118–120]. In other words, the RS
model differs from other methods by randomly selecting features from the original training
dataset. Compared with traditional methods such as bagging, boosting, and rotation forest,
RS has been shown to be superior [118].

Currently, RS has found widespread applications in fields such as automation tech-
nology [121], computer software, computer applications [122], telecommunication technol-
ogy [123], mathematics [124], and many others. However, it has been rarely used in research
fields related to geology, especially in the context of landslide susceptibility research.

Let us consider a training dataset, denoted as Z = (Z 1, Z2, . . . , Zi), (i = 1, 2, . . . , n),
where Zi is a p-dimensional vector and i ranges from 1 to n. In the random subspace (RS)
method, an r-dimensional vector Ẑi is derived from the p-dimensional vector Zi (r < p).
where r < p. The r-dimensional random subspace can be represented as (Equation (6)):

Ẑ =


Ẑ11 Ẑ21 . . . Ẑn1
Ẑ12 Ẑ22 . . . Ẑn2
. . . . . . . . . . . .
Ẑ1r Ẑ2r . . . Ẑnr

 (6)

To obtain multiple random subspaces, this selection process is repeated several times.
Each subspace Ẑ is used to construct a classifier C(x), and the results of these classifiers are
combined using a simple majority vote [125]. The final decision rule is defined as follows
(Equation (7)):

β(x) = argmax∑δ

b
δsgn

(
cb(x)

)
, y; y ∈ {−1, 1} (7)

where δi,j(i = 1, 2, . . . , n, j = 1, 2, . . . , r) represents the Kronecker symbol and y ∈ {1,−1}
is a class label indicating landslide or non-landslide.

The RSFT model, as mentioned in Section 3.2.3, is a combination of two models: ran-
dom subspace (RS) and functional trees (FTs). It involves the following steps:
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(1) Randomly select the feature subspace: In this step, a smaller subset of features is
randomly chosen from the original feature set. This selection can be achieved through
methods such as random selection or feature importance evaluation. (2) Construct the func-
tion tree: The selected feature subspace is used to construct a function tree. At each node of
the tree, the best segmentation function is chosen to divide the data into different subsets.
The segmentation function can be linear, non-linear, or of other types. The construction
of the tree is performed recursively until a predefined stopping condition is met, such as
reaching the maximum tree depth or having a sample count below a certain threshold.
(3) Repeat the first two steps: These steps are repeated multiple times, with each iteration
utilizing a different feature subspace and a randomly selected feature subset. This process
results in the construction of multiple function trees, each with a unique set of features.
(4) Prediction: The final prediction category is determined by aggregating the predictions
of multiple function trees. This can be achieved through voting, where each tree’s predic-
tion contributes to the final decision. By combining the RS and FT models, RSFT aims to
leverage the benefits of both approaches. The RS component introduces randomness by
considering different feature subspaces, while the FT component incorporates the use of
function trees for improved modeling and prediction. This hybrid approach helps reduce
repetition and enhances the overall performance of the model.

4. Results
4.1. Correlation between Landslides and Conditioning Factors

The relationship between the landslide location and adjustment factor is shown in
Table 1 using the CF (certainty factor) method.

Table 1. Spatial relationship between landslides and conditioning factors using the CF method.

Conditioning
Factors Class Pixels Landslides

Pixels PPa CF

Slope angle (◦)

0–10 1,233,976 9539 0.0077 −0.472
10–20 1,884,829 31,370 0.0166 0.128
20–30 808,346 16,669 0.0206 0.299
30–40 121,503 1454 0.0120 −0.180
40–50 6305 0 0.0000 −0.98
50–60 221 0 0.0000 −1
>60 8 0 0.0000 −1

Elevation (m)

<1300 6481 1 0.0002 −0.985
1300–1500 666,680 16,643 0.0250 0.423
1500–1700 2,225,730 33,370 0.0150 0.030
1700–1900 977,391 8945 0.0092 −0.374
1900–2100 121,612 73 0.0006 −0.959
2100–2300 46,744 0 0.0000 −1

>2300 11,320 0 0.0000 −1

Profile curvature

−11.54–−1.08 197,001 1592 0.0081 −0.448
−1.08–−0.43 913,652 10,276 0.0112 −0.230
−0.43–0.22 1,587,299 30,351 0.0191 0.243
0.22–0.95 1,085,198 13,861 0.0128 −0.124
0.95–9.14 272,807 2951 0.0108 −0.259

Plan curvature

−5.3–−0.98 194,476 2913 0.0150 0.029
−0.98–−0.37 896,797 15,324 0.0171 0.151
−0.37–0.25 1,684,370 24,543 0.0146 0.001
0.25–0.91 1,041,768 11,731 0.0113 −0.229
0.91–7.68 238,546 4520 0.0189 0.236
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Table 1. Cont.

Conditioning
Factors Class Pixels Landslides

Pixels PPa CF

Slope aspect

F 28,771 0 0.0000 −1
N 214,182 2853 0.0133 0.214

NE 582,880 6117 0.0105 −0.282
E 729,709 5268 0.0072 −0.508

SE 420,997 2582 0.0061 −0.582
S 387,178 8034 0.0208 0.303

SW 467,527 6471 0.0138 −0.49
W 618,183 12,621 0.0204 0.292

NW 455,474 9785 0.0215 0.327
N 150,287 5301 0.0353 0.596

TWI

2.21–6 2,328,468 35,112 0.0151 0.036
6–10 1,451,293 21,950 0.0151 0.039

10–14 201,447 1709 0.0085 −0.420
14–18 55,808 129 0.0023 −0.842
>18 18,942 131 0.0069 −0.529

TPI

−34.64–−7.04 324,193 4526 0.0140 −0.041
−7.04–−2.2 899,770 10,850 0.0121 −0.173
−2.2–1.78 1,438,547 21,517 0.0150 0.028
1.78–6.34 997,182 14,002 0.0140 −0.035
6.34–37.93 396,266 8137 0.0205 0.296

Distance to
roads (m)

0–100 232,634 2893 0.0124 −0.147
100–200 207,063 10,041 0.0485 0.710
200–300 195,015 13,289 0.0681 0.798
300–400 189,552 10,407 0.0549 0.746
400–500 179,935 5074 0.0282 0.491

Distance to
rivers (m)

0–200 899,311 4349 0.0048 −0.671
200–400 767,341 4570 0.0060 −0.594
400–600 600,724 4300 0.0072 −0.512
600–800 426,497 4860 0.0114 −0.219

800–1000 271,523 4276 0.0157 0.077
>1000 1,078,500 36,676 0.0340 0.581

NDVI

<0.03 6732 0 0.0000 −1
0.03–0.11 573,462 5068 0.0088 −0.396
0.11–0.15 2,027,374 26,021 0.0128 −0.119
0.15–0.19 1,180,464 23,438 0.0199 0.271
0.19–0.43 255,862 4506 0.0176 0.176

Rainfall (mm/yr)

<450 3007 0 0.0000 −1
450–470 718,693 724 0.0010 −0.932
470–490 1,544,756 8802 0.0057 −0.612
490–510 1,714,702 46,595 0.0272 0.471

>510 62,471 2911 0.0466 0.698

Land use

farmland 1,675,029 29,433 0.0176 0.175
forest 215,769 1698 0.0079 −0.463
grass 2,114,613 27,901 0.0132 −0.094
water 18,869 0 0.0000 −1

residentialareas 20,311 0 0.0000 −1
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Table 1. Cont.

Conditioning
Factors Class Pixels Landslides

Pixels PPa CF

Lithology

1 223,561 2 0.0000 −0.999
2 3,387,689 54,833 0.0162 0.103
3 1804 10 0.0053 −0.638
4 1889 0 0.0000 −1
5 70,175 1157 0.0165 0.199
6 26,678 833 0.0312 0.542
7 326,333 1757 0.0054 −0.633
8 548 440 0.8028 0.996
9 81 0 0.0000 −1

SPI

0–200 748,095 3344 0.0045 −0.696
200–400 1,239,924 25,522 0.0206 0.297
400–600 1,151,603 17,331 0.0150 0.034

600–800 591,663 8632 0.0146 0.003
>800 324,673 4202 0.0129 −0.126

STI

0–1.89 964,332 7705 0.0080 −0.833
1.89–4.12 1,275,764 20,177 0.0158 0.088
4.12–6.36 1,018,068 17,450 0.0171 0.181
6.36–9.11 597,977 11,886 0.0199 0.374
9.11–42.8 199,817 1813 0.0091 −0.613

According to Table 1, it is evident that slope angle classes of 20–30◦ (0.299) and 10–20◦

(0.128) exhibit the highest number of landslides, indicating a significantly higher probability
of landslide occurrence within these ranges. Conversely, the CF values for other slope
angle ranges are less than 0, indicating a very low probability of landslide occurrence in
those intervals. Regarding elevation, the CF value is above 0 in the range of 1300–1500 m,
suggesting a higher probability of landslide occurrence at this elevation. However, the CF
value decreases as elevation increases, indicating a decreasing likelihood of landslides at
higher elevations. In terms of profile curvature, the range of −0.432 to 0.22 exhibits the
highest probability of slope damage, as indicated by a CF value of 0.243. In contrast, the CF
values associated with different intervals of profile curvature are predominantly negative,
suggesting a reduced likelihood of landslide occurrence.

For plan curvature, the highest probability of landslide occurrence lies within the
0.91–7.68 category with a maximum CF value of 0.236. The observed pattern indicates that
as the plan shape transitions from concave to convex, the stability of the slope tends to
improve.

Overall, these findings provide valuable insights into the relationships between vari-
ous factors and the probability of landslide occurrence. They highlight the importance of
slope angle, elevation, profile curvature, and plan curvature in assessing landslide suscep-
tibility and can aid in implementing appropriate mitigation measures. Regarding slope
aspect analysis, most landslides occur towards the north (0.596) and northwest (0.327),
while the CF values are less than 0 for slopes facing east and southeast, southwest, and
northeast. In terms of soil moisture, the ranges of 6–10 and 2.21–6 have the highest sus-
ceptibility to slope damage, with CF values of 0.039 and 0.036, respectively, while the CF
values for the other ranges are less than 0. This indicates that soil moisture has a greater
influence on landslide development. Regarding the distance from the road, the CF values
for the ranges of 100–300 m and 300–400 m are all above 0.7, indicating a high probabil-
ity of slope damage within these distances. As the distance from the road increases, the
likelihood of slope damage decreases. Conversely, in terms of distance from rivers, the CF
value increases as the distance decreases, suggesting a higher probability of slope damage
with closer proximity to a river. The highest CF value is 0.581 in the >1000 m category,
indicating that landslides mainly occur on slopes in loess hilly areas far from rivers. The
NDVI analysis indicates that the sensitivity of landslide occurrence is elevated in the range
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of 0.15–0.19 (CF value of 0.271) and 0.19–0.43 (CF value of 0.176). These ranges suggest a
higher likelihood of landslides in areas with these specific NDVI values. Regarding the
influence of rainfall on landslides, the results demonstrate that a significant proportion of
landslides in the study area are induced by rainfall. Moreover, the probability of landslides
occurring increases as the amount of rainfall increases [126]. In terms of land use type,
the highest CF value was found for cropland (0.175), followed by grassland (−0.094) and
finally forest land (−0.463). With respect to the lithology, the CF value of the eighth group
(shale) is the highest at 0.996, but due to the limited number of shale samples, the error
is relatively large and this finding is therefore not discussed. The CF value of the sixth
group (sandstone and sandy mudstone) is 0.542, while the CF values of the fifth group
(Brown-red mudstone) (0.199) and second group (loess) are relatively high, indicating a
higher probability of slope failure for these lithological units. Finally, the analysis results of
SPI show that the CF value is lowest in the range of 0–200 (−0.696) and highest in the range
of 200–400 (0.297). Regarding STI, the CF value is lowest in the ranges of 0–1.89 (−0.833),
while the highest CF value is in the range of 6.36–9.11 (0.374).

4.2. Multicollinearity Analysis of Landslide Conditioning Factors

Multicollinearity in landslide studies refers to the high correlation and non-independence
of conditioning factors in datasets, which can lead to inaccurate system analysis. To quantify
multicollinearity, various methods are available, including variance decomposition propor-
tions, the conditional index, and the widely used variance inflation factors (VIFs) and tol-
erances. VIFs and tolerances methods are frequently employed to assess multicollinearity
among conditioning factors in landslide studies.

A multicollinearity analysis was conducted using SPSS 27.0.1 software, and the corre-
lation between the 15 conditioning factors is presented in Table 2. In general, the presence
of covariance in the data can be indicated when the tolerance (TOL) is below 0.1 or the vari-
ance inflation factor (VIF) is above 10. Conversely, values within these ranges suggest no
significant covariance. The analysis results indicate that there is no evidence of collinearity
among the factors. Therefore, all of these conditioning factors can be considered suitable
inputs for the machine learning algorithm.

Table 2. Multicollinearity analysis for the landslide conditioning factors.

NO. Factor TOL VIF

1 Slope angle 0.681 1.469
2 Elevation 0.836 1.196
3 Profile curvature 0.970 1.031
4 Plan curvature 0.981 1.020
5 Slope aspect 0.958 1.044
6 TWI 0.785 1.274
7 TPI 0.944 1.060
8 Distance to roads 0.759 1.317
9 Distance to rivers 0.680 1.470
10 NDVI 0.931 1.074
11 Rainfall 0.855 1.169
12 Landuse 0.943 1.060
13 Lithology 0.799 1.251
15 STI 0.586 1.705

4.3. Contribution of Conditioning Factors

To assess the contribution of landslide conditioning factors, a comparative analysis was
conducted utilizing the CorrelationAttributeEval function available in Weka 3.9 software.
The results, presented in Table 3 and Figure 7, indicate that all factors play a role in the
model. Notably, rainfall emerges as the most important factor, with a correlation value
of 0.3534. This is followed by the distance to rivers (0.3287) and elevation (0.2899) as
significant contributors. Conversely, factors such as TWI (0.0435), land use (0.0264), and
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profile curvature (0.0188) have relatively smaller contributions to the landslide model.
Given that all 15 conditioning factors exhibited positive contributions in the analysis, it
was determined that all of them would be taken into account during the construction of
landslide susceptibility maps. By considering all conditioning factors, a comprehensive and
robust understanding of the factors contributing to landslide susceptibility can be achieved,
leading to more accurate and reliable susceptibility maps.

Table 3. Assessing the relevance of conditioning factors using CorrelationAttributeEval.

NO. Factors Relevance

1 Rainfall 0.3534
2 Distance to rivers 0.3287
3 Elevation 0.2899
4 Lithology 0.26
5 Slope angle 0.2347
6 SPI 0.1856
7 Slope aspect 0.112
8 Distance to roads 0.0908
9 NDVI 0.0884
10 TPI 0.0525
11 Plan curvature 0.0483
12 STI 0.0448
13 TWI 0.0435
14 Land use 0.0264
15 Profile curvature 0.0188
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4.4. Application of LR Model

In this study, the LR (Logistic Regression) model was implemented using Weka 3.9
statistical software to generate the landslide susceptibility mapping. To evaluate the
model’s accuracy, the mean squared error (MSE) was computed for both the training and
validation datasets. The MSE values obtained were 0.177 for the training data and 0.176
for the validation data (Figure 8b). To facilitate the creation of the landslide susceptibility
map, all LSI (latent semantic indexing) values were converted into ArcGIS format. This
conversion allowed for seamless integration with ArcGIS 10.8 software, enabling efficient
mapping and analysis. The resulting landslide susceptibility map was classified into five
classes using the natural break method. The classified map obtained through this process
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is presented in Figure 9. The reclassified results are presented in Table 4 and Figure 10.
Among the susceptibility categories, the “very low susceptible” category exhibited the
largest area percentage, accounting for 26.98% of the total area. The area percentages of
the “low”, “medium”, “high”, and “extremely susceptible” categories were 24.02%, 19.65%,
16.22%, and 13.12%, respectively.
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Table 4. Statistics table of the five susceptibility levels in the susceptibility maps of the three models.

Model Type Levels Reclassified Value Area Covered (%)

LR model

Very Low 0–0.145 26.98
Low 0.145–0.306 24.02

Moderate 0.306–0.486 19.65
High 0.486–0.678 16.22

Very High 0.678–1 13.13
Total 0–1 100

FT model

Very Low 0–0.161 76.92
Low 0.161–0.478 1.51

Moderate 0.478–0.717 3.97
High 0.717–0.894 7.26

Very High 0.894–1 10.34
Total 0–1 100

RSFT model

Very Low 0–0.147 34.72
Low 0.417–0.311 25.42

Moderate 0.311–0.512 17.67
High 0.512–0.734 14.22

Very High 0.734–0.990 7.97
Total 0–0.990 100
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4.5. Application of FT Model

For constructing the FT model, this research utilized Weka 3.9 software, which incor-
porated all fifteen conditioning factors. For model evaluation, mean squared error (MSE)
values were computed for both the training and validation datasets. These MSE values are
depicted in Figure 11a for the training dataset and Figure 11b for the validation dataset,
respectively. The computed MSE values were 0.219 for the training data and 0.243 for the
validation dataset. Following this, all datasets were fed into the FT model to generate
landslide susceptibility index values, representing probabilities ranging from 0 to 1. Finally,
ArcGIS 10.2 software was utilized to produce the final landslide susceptibility map.
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Landslide susceptibility classification methods can be categorized as either user-
defined or automatic. The user-defined method is subjective and prone to variations
in the final results due to individual opinions. In contrast, the natural break method utilizes
digital elevation models and other geographic data to extract information, leading to more
accurate data and reducing the potential for human error. In this study, an automatic
classification system known as the natural break method was utilized to subdivide the land-
slide susceptibility. This method helps to categorize the susceptibility values into distinct
groups based on natural breaks in the data distribution. Based on the analysis, the landslide
susceptibility map was divided into five distinct classes: very low, low, moderate, high, and
very high susceptibility. The reclassification results are presented in Figure 9, Table 4, and
Figure 10, providing additional insights into the distribution of these susceptibility classes.
Notably, the largest percentage of the study area corresponds to the very low susceptibility
class, encompassing approximately 76.92% of the total area. Following that, the very high
susceptibility class represents around 10.34% of the area, while the high susceptibility
class covers approximately 7.26%. The moderate susceptibility class accounts for approxi-
mately 3.97% of the area, and the low susceptibility class encompasses roughly 1.51% of the
study area.

4.6. Application of RSFT Model

In this study, the RSFT model was implemented using Weka 3.9 software. The predic-
tive power of the RSFT model was evaluated by incorporating the training and validation
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datasets and by calculating the mean squared error (MSE) values for each dataset. The
MSE values that were obtained were 0.16 for the training data (Figure 12a) and 0.164 for
the validation dataset (Figure 12b). Following the analysis, the landslide susceptibility map
was categorized into five distinct classes using the natural break method. These classes
were defined as very low, low, moderate, high, and very high susceptibility. The resulting
classification can be observed in Figure 9c. An analysis of Table 4 and Figure 10 indicates
that the “very low susceptible” class occupies the largest area percentage (34.22%), fol-
lowed by “low susceptible” (24.92%), “moderate susceptible” (17.17%), “high susceptible”
(13.82%), and “very high susceptible” (9.75%).
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4.7. Validation and Comparison of Different Models

Validating the results is a critical component of landslide susceptibility research to
ensure the reliability and scientific significance of predictive models. In this study, we
compared the performance of three prediction models using the receiver operating charac-
teristic curve (ROC), with the area under the ROC curve (AUC) serving as a quantitative
measure of model evaluation. Figures 13 and 14 display the ROC curves for the three
models, illustrating their performance on the training and validation datasets, respectively.
The summarized results of the three models can be found in Tables 5 and 6. In the ROC
curve, the diagonal line represents the subject’s discriminative power of 0. The further away
from the diagonal line, the stronger the predictive power. When considering the training
dataset, the RSFT model demonstrates the highest prediction rate (0.844), followed by the
LR model (0.811) and the FT model (0.776). The standard errors for the LR, FT, and RSFT
models are 0.0116, 0.0125, and 0.0105, respectively. Similarly, for the validation dataset, the
RSFT model achieves the highest prediction rate (0.837), followed by the LR model (0.814)
and the FT model (0.760). The corresponding standard errors are 0.0163, 0.0180, and 0.0188,
respectively. Hence, significant performance differences exist among the LR, FT, and RSFT
models. In Table 7, we compared the frequency ratio (FR) precision of the three models
used to evaluate the ROC results. FR precision was calculated by dividing the sum of high
and very high FR values by the sum of all FR values. The LR model showed FR values
of 0.10, 0.27, 0.67, 1.38, and 4.22 for very low to very high susceptibility levels. The FT
model had FR values of 0.30, 1.36, 1.94, 2.81, and 4.50 for the corresponding susceptibility
levels. The RSFT model exhibited FR values of 0.08, 0.23, 0.71, 1.59, and 7.07. Comparing
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the magnitude of the frequency ratio precision, we observed that the RSFT model had the
highest value (0.895), followed by the LR model (0.843); the FT model had the lowest value
(0.669). This finding is consistent with the ROC results. Therefore, based on the findings
and evaluations of this study, we conclude that the RSFT model is the most suitable for
landslide susceptibility mapping in the study region.
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Table 5. Area under the curve of the three models on the training dataset.

Test Variables LR FT RSFT

ROC Curve Area 0.811 0.776 0.844
Standard Error 0.0116 0.0125 0.0105

95% Confidence Interval 0.789 To 0.832 0.752 To 0.797 0.823 To 0.863
p Value <0.0001 <0.0001 <0.0001



Remote Sens. 2023, 15, 4952 26 of 34

Table 6. Area under the curve of three models on training dataset.

Test Variables LR FT RSFT

ROC Curve Area 0.814 0.760 0.837
Standard Error 0.0180 0.0188 0.0163

95% Confidence Interval 0.780 To 0.845 0.723 To 0.794 0.804 To 0.866
p Value <0.0001 <0.0001 <0.0001

Table 7. Frequency ratio precision analysis of the susceptibility graphs of the LR, FT, and RSFT models.

Model Type Susceptibility
Levels Pixels Pixels (%) landslides Landslides (%) FR Frequency Ratio

Precision

LR model

Very low 1,094,297 26.98 27 2.78 0.10

0.843
Low 974,241 24.02 62 6.38 0.27

Moderate 796,996 19.65 128 13.17 0.67
High 657,876 16.22 217 22.33 1.38

Very high 532,142 13.12 538 55.35 4.22

FT model

Very low 3,119,843 76.92 227 23.35 0.30

0.669
Low 61,245 1.51 20 2.06 1.36

Moderate 161,022 3.97 75 7.72 1.94
High 294,463 7.26 198 20.37 2.81

Very high 419,386 10.34 452 46.50 4.50

RSFT model

Very low 1,408,229 34.72 26 2.67 0.08

0.895
Low 1,031,025 25.42 56 5.76 0.23

Moderate 716,688 17.67 122 12.55 0.71
High 576,757 14.22 220 22.63 1.59

Very high 323,260 7.97 548 56.38 7.07

5. Discussion

Landslide susceptibility studies are crucial for understanding the complex relationship
between landslide occurrences and various conditioning factors. These studies provide
essential tools for predicting landslide probabilities, offering valuable insights for land use
planning and government decisionmaking. However, the accuracy of landslide predictions
using GIS-based methods has been a subject of ongoing debate, prompting the need to
explore new and more reliable approaches.

In this research, we conducted a comprehensive comparison and evaluation of the LR,
FT, and RSFT algorithms in the context of spatial landslide prediction. Our study resulted
in the development of a landslide susceptibility map for Pengyang County, which holds
significant implications for multiple domains, including geological hazard management,
land use planning, engineering projects, environmental preservation, and related fields.
The LR model, while relatively straightforward to construct and interpret, assumes a linear
relationship between independent and response variables. This assumption may limit its
ability to capture complex nonlinear relationships effectively. Additionally, the LR model
assumes that samples are independent, which might not hold true in practical applications
where sample correlations exist.

In contrast, the FT model offers several advantages over the LR model. It can account
for the combined influence of multiple conditioning factors, allowing for a comprehensive
analysis of these factors and their effects on landslide susceptibility. It provides the flexibil-
ity to evaluate factors both qualitatively and quantitatively, allowing for the quantification
of the relative importance of different factors. However, the FT model’s results can be
influenced by data quality and the selection of independent variables, and it may encounter
challenges when dealing with large datasets. Our research aims to contribute to the ongo-
ing efforts to enhance landslide susceptibility modeling and prediction, recognizing the
importance of robust and accurate methodologies for addressing geological hazards and
land management challenges.

The RSFT model presents several advantages, notably its capacity to effectively reduce
dimensionality and eliminate redundant information between features, leading to improved
model generalization. By employing the random subspace method and by constructing FT
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multiple times, it mitigates overfitting issues and enhances model robustness. However,
it is essential to acknowledge that the construction of multiple trees in the RSFT model
demands substantial computational resources and time, particularly when dealing with a
high number of features, resulting in high time and space complexity. Additionally, the
RSFT model heavily relies on feature selection, requiring a careful analysis and evaluation
of feature importance to ensure optimal predictive accuracy.

Throughout the validation and comparison of the LR, FT, and RSFT models, consistent
findings emerge, with the RSFT model consistently achieving the highest AUC values for
both the training and validation datasets. Following the RSFT model, the LR model exhibits
the next highest AUC values. The FT model, on the other hand, demonstrates the lowest
predictive power, primarily due to the unrealistic independence assumption it makes re-
garding the training data, which is rarely met in practical scenarios. These modeling results
align with those of prior studies. For instance, Chen et al. [4] compared various machine
learning models, including FT, RSFT, BFT, CART, and NBTree, for landslide susceptibility
mapping. They found that the RSFT model outperformed other single machine learning
models, including FT, with an AUC value of 0.838. Additionally, Amirhosein Mosavi
et al. [114]. applied the RSFT model to assess avalanche susceptibility and found that it
outperformed other benchmark models, achieving a sensitivity of 94.1%, specificity of
92.4%, accuracy of 93.3%, and Kappa coefficient of 0.782. While most research reports
favor hybrid models in comparative studies, there are exceptions. For example, in Zhao
et al.’s [127] study of landslide susceptibility modeling in Zichang County, the FT-related
hybrid models (BFT, RSFT, DFT) and zone models outperformed the FT model, with the
BFT model performing the best. However, the FT model did not achieve the lowest AUC
value, highlighting that an integrated model may not always surpass a single model in
terms of effectiveness.

In this study, three methods, namely CorrelationAttributeEval, ReliefFAttributeEval,
and GainRatioAttributeEval, were employed to assess the contribution of conditioning
factors in predicting landslide susceptibility. These methods aim to evaluate the importance
of each factor concerning the prediction of landslide occurrence. CorrelationAttributeEval
measures an attribute’s value by calculating its correlation with the class variable. For
nominal attributes, it treats each value as an indicator and computes an overall correlation
using a weighted average. ReliefFAttributeEval assesses the significance of an attribute by
sampling instances and evaluating the attribute’s value for the nearest instances in both the
same and in different classes. This approach provides a reliable measure of the attribute’s
relevance without redundantly emphasizing the same information. GainRatioAttributeEval
evaluates the worth of an attribute by measuring the gain ratio of the class variable. It
takes into account the number of classes and the distribution of instances among them. The
contributions of the conditioning factors evaluated using these three methods are presented
in Figure 15. This information can help identify the most important factors in landslide
susceptibility and provide guidance for future research and mitigation efforts.

Figure 15 presented in this study reveals that both ReliefFAttributeEval and Gain-
RatioAttributeEval identify one or more conditioning factors that did not significantly
contribute to the model. This differs from the findings of most previous studies. However,
CorrelationAttributeEval produced results that align with the majority of previous studies,
suggesting that it may be more suitable for evaluating the contribution of conditioning
factors in this region [128–130].

Despite the promising results of this study, there are still some limitations that need
addressing in future research. Firstly, the selection of factors affecting landslides was based
on a literature review and actual surveys of the study area, but the data for individual
factors may not be precise enough. For example, the CF value calculated for shale in the
lithology classification was 0.996, which does not align with common sense. Potential
sources of data inaccuracy also include measurement errors, sampling bias, missing data,
data integration incompatibility problems, and data timeliness. Because errors cannot be
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entirely eliminated, future studies should focus on collecting more accurate data to enhance
data quality and reduce the impact of errors on the analysis results.
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Secondly, because this study focused on Pengyang County as the study area, further
discriminative analysis is needed for areas with different geological and environmental
characteristics. Additionally, more advanced methods of landslide susceptibility mapping
should be explored to improve evaluation accuracy. In subsequent studies, a deeper
exploration of factors such as the ratio of training samples to validation samples and the
selection of landslide conditioning factors can help produce more reliable and accurate
results in future landslide susceptibility studies.

6. Conclusions

This study aimed to assess the spatial prediction of landslides in Pengyang County,
Ningxia Hui Autonomous Region, China, utilizing the LR, FT, and RSFT models. A total
of 972 landslides were randomly divided into a training dataset (70%, 680 landslides) and
validation dataset (30%, 292 landslides). Fifteen conditioning factors, including slope angle,
elevation, profile curvature, plan curvature, slope aspect, TWI, TPI, distance to roads,
distance to rivers, NDVI, rainfall, land use, lithology, SPI, and STI, were selected for the
analysis. The contribution of these factors was evaluated using the CorrelationAttributeEval
function in Weka 3.9 software, and it was demonstrated that all factors contributed to the
model without collinearity issues. The landslide susceptibility in Pengyang County was
assessed using the LR, FT, and RSFT models. The accuracy of the assessment results was
verified using the ROC curve, which indicated that all three models demonstrated good
applicability for landslide susceptibility assessment. While there are considerations such
as data limitations, model assumptions, spatial scales, uncertainties in validation, future
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conditions, and climate change, the overall results provided are valuable and informative.
Among the three models, the RSFT model exhibited the highest prediction rates for both
the training and validation datasets, achieving rates of 0.844 and 0.837, respectively. The
LR model closely followed with prediction rates of 0.811 and 0.814, while the FT model had
prediction rates of 0.776 and 0.760 for the training and validation datasets, respectively.

In summary, the LR, FT, and RSFT models proposed in this study offer a novel ap-
proach for assessing landslide susceptibility. The results suggest that the RSFT model
in particular is more applicable in the study area, consistently outperforming the other
models in terms of prediction rates. These findings underscore the potential of the RSFT
model for accurate landslide susceptibility assessment in Pengyang County. The impli-
cations of these findings are significant for predicting and preventing landslide disasters,
reducing associated costs, and informing decision-making. However, further research and
development are necessary to obtain even more accurate and reliable results. This may
involve a more in-depth exploration of factors such as the ratio of training samples to
validation samples, the selection of landslide conditioning factors, and the application of
more advanced models in different areas. In conclusion, landslide susceptibility assessment
using machine learning models, especially integrated models, can provide valuable insights
for informed decision-making, risk reduction, and sustainable development in Pengyang
County or similar landslide-prone areas.
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