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Abstract: Solar-induced chlorophyll fluorescence (SIF) is a reliable proxy for vegetative photosynthe-
sis and is commonly used to characterize responses to drought. However, there is limited research
regarding the use of multiple high-resolution SIF datasets to analyze reactions to atmospheric drought
and soil drought, especially within mountain grassland ecosystems. In this study, we used three types
of high-spatial-resolution SIF datasets (0.05◦), coupled with meteorological and soil moisture datasets,
to investigate the characteristics of atmospheric, soil, and compound drought types. We centered this
investigation on the years spanning 2001–2020 in the Three-River Headwaters Region (TRHR). Our
findings indicate that the TRHR experienced a combination of atmospheric drying and soil wetting
due to increases in the standardized saturation vapor pressure deficit index (SVPDI) and standardized
soil moisture index (SSMI). In the growing season, atmospheric drought was mainly distributed in
the southern and eastern parts of the TRHR (reaching 1.7 months/year), while soil drought mainly
occurred in the eastern parts of the TRHR (reaching 2 months/year). Compound drought tended
to occur in the southern and eastern parts of the TRHR and trended upward during 2001–2020. All
three SIF datasets consistently revealed robust photosynthetic activity in the southern and eastern
parts of the TRHR, with SIF values generally exceeding 0.2 mW· m−2·nm−1·sr−1. Overall, the rise
in SIF between 2001 and 2020 corresponds to enhanced greening of TRHR vegetation. Vegetation
photosynthesis was found to be limited in July, attributable to a high vapor pressure deficit and low
soil moisture. In the response of CSIF data to a drought event, compound drought (SVPDI ≥ 1 and
SSMI ≤ −1) caused a decline of up to 14.52% in SIF across the source region of the Yellow River
(eastern TRHR), while individual atmospheric drought and soil drought events caused decreases
of only 5.06% and 8.88%, respectively. The additional effect of SIF produced by compound drought
outweighed that of atmospheric drought as opposed to soil drought, suggesting that soil moisture
predominantly governs vegetation growth in the TRHR. The reduction in vegetation photosynthesis
capacity commonly occurring in July, characterized by a simultaneously high vapor pressure deficit
and low soil moisture, was more pronounced in Yellow River’s source region as well. Compound
drought conditions more significantly reduce SIF compared to singular drought events. Soil drought
evidently played a greater role in vegetation growth stress than atmospheric drought in the TRHR
via the additional effects of compound drought.

Keywords: solar-induced chlorophyll fluorescence (SIF); grassland; atmospheric drought; soil
drought; compound drought

1. Introduction

As highlighted in the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR6), the global surface temperature increased by 0.99 [0.84–1.1] ◦C
during the years between 2001 and 2020 compared to the period of 1850–1900, with land
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areas experiencing more pronounced warming than oceans [1]. The frequency, duration,
and intensity of global land-based droughts are projected to increase significantly under
global warming, especially during the summer months [2,3]. These increasingly frequent
and severe droughts pose substantial threats to the structure and function of terrestrial
ecosystems [4,5]. In broader terms, soil drought and atmospheric drought are recognized
as important factors affecting plant hydraulic processes and ecosystem productivity [5,6].
The significance of these drought types lies in their impact on vegetative photosynthesis.
Plant roots extract water molecules from the soil, facilitating the process of vegetative
photosynthesis. Soil drought, which is usually characterized by diminished available
soil moisture (SM), signifies reduced water availability. This condition marks vegetation
stress, which significantly impacts productivity [7,8]. Atmospheric drought, conversely, is
defined by a high vapor pressure deficit (VPD), which causes plants to reduce water loss at
the leaf level, thereby curtailing photosynthesis across the ecosystem [8,9]. Both soil and
atmospheric droughts can significantly limit plant photosynthesis, consequently reducing
terrestrial carbon uptake and crop yields.

Grassland ecosystems are vital carbon sinks due to their capacity to absorb carbon
dioxide through photosynthesis [10,11]. However, the susceptibility of grassland ecosys-
tems to drought raises concerns regarding their potential transformation from carbon sinks
to carbon sources. Such shifts have the potential to reshape the structure and functions
of terrestrial ecosystems [12]. Notably, mountain grassland ecosystems are particularly
sensitive to SM and temperature. The combined stress of low SM and elevated temperature,
often accompanied by a high VPD, can severely impact vegetation growth [9,13]. Soil
drought events reduce water uptake through plant roots, while atmospheric droughts
prompt the closure of plant stomata, thus affecting vegetation photosynthesis. Interest-
ingly, atmospheric droughts, often induced by heatwaves, can coincide with soil droughts.
For example, the simultaneous occurrence of atmospheric and soil droughts in southern
China during the 2019 summer–autumn transition season had severe repercussions for
both crops and ecosystems [14]. The scientific community and the public alike are growing
increasingly aware of such compound events, given their heightened capacity to inflict
damage compared to singular or isolated events [15,16]. The alignment of atmospheric and
soil droughts into a compound drought exemplifies this concept. A compound drought
can significantly amplify the adverse consequences inherent to individual drought events.
While previous research has centered on singular atmospheric drought or soil drought
events over large scales (typically at spatial resolutions around 0.5◦) or within specific small
areas [9,11,17–19], research on compound droughts in grassland ecosystems is still very
limited [5,6], especially in the case of mountain grasslands based on high-resolution data.

Vegetation is a crucial component of terrestrial ecosystems, serving as a natural linkage
connecting soil, atmosphere, and water dynamics. Modern advances in remote sensing
technology have facilitated the utilization of various vegetation indicators, such as the
normalized difference vegetation index (NDVI) and the leaf area index (LAI), for com-
prehensive vegetation monitoring. These indicators are advantageous in terms of their
extensive spatial coverage and provision of continuous temporal observations [9,20–22].
Further, to assess the terrestrial carbon balance, gross primary productivity (GPP) and
net ecosystem productivity (NEP) are often used to explore the relationships between
droughts and carbon fluxes [6]. For example, Deng, et al. [23] assessed the carbon cycle
response to extreme drought conditions in China from 2000 to 2015 based on GPP and NEP
datasets, concluding that the Loess Plateau and a segment of the Tibetan Plateau suffered
severe losses under extreme drought conditions. Chlorophyll fluorescence, the long-wave
radiation emitted during vegetation photosynthesis, is also promising as an effective re-
mote sensing indicator. Solar-induced chlorophyll fluorescence (SIF) is a significant optical
indicator of photosynthetic status and associated stress effects in terrestrial vegetation [24].
SIF has heightened responsiveness to drought compared to traditional vegetation indi-
cators and offers the unique capability to directly capture dynamic fluctuations during
vegetation photosynthesis [18,25]. SIF is mechanistically related to photosynthesis and
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shows a nearly linear correlation with GPP, making it a suitable surrogate indicator for
GPP at the ecosystem level. Liu et al. [8] disentangled the relative roles of SM and the VPD
in determining the response of vegetation (SIF) to drought using a decoupling method.
They found that SM played a dominant role over the VPD in determining dryness stress
impacting ecosystem productivity across terrestrial vegetated regions. However, previous
studies have mainly focused on single sets of SIF data at large scales (typically around
0.5◦ spatial resolution) [8,18,26], with few studies on the response of vegetation photosyn-
thesis to drought based on multiple high-resolution SIF datasets. This gap is particularly
pronounced in terms of the response of SIF to compound droughts in mountain grasslands.

The standardized precipitation evapotranspiration index (SPEI) can effectively reflect
the dynamics of dry and wet conditions across multiple timescales [27]. Recently, scholars
have explored the relationship between SPEI and SIF and analyzed the feedback character-
istics of vegetation photosynthesis under drought conditions [11,28]. For example, Geng
et al. [25] investigated the response characteristics of different vegetation types to drought
in the Yellow River basin based on SPEI and SIF data, finding that the SIF of croplands
responded to drought most rapidly, followed by grasslands and forest areas. Others have
used VPD and SM datasets to investigate the responses of vegetation growth to droughts
directly from the perspective of atmospheric and soil dryness [5,8,19]. The coupling effect
of a high VPD and low SM is more obvious in warmer seasons [6], which increases the
probability of simultaneous atmospheric and soil drought events, which exacerbate the ad-
verse effects of droughts on terrestrial ecosystems. There is an urgent need for quantitative
analyses of multiple SIF datasets with high spatial resolution under compound drought
conditions at regional scales, particularly in alpine grasslands during the warmest months.

In this study, we used the Three-River Headwaters Region (TRHR) as an illustra-
tive case, representing the mountain grasslands in the hinterlands of the Tibetan Plateau.
Our objective is to build a comprehensive understanding of the response of vegetation
photosynthesis to atmospheric drought, soil drought, and compound drought based on
high-resolution gridded meteorological, SM, and SIF datasets. The primary goals of this
work include (1) an exploration of atmospheric drought, soil drought, and compound
drought, especially as they affect the vegetation growing season (GS); (2) an investigation
of the changes in vegetation photosynthesis capacity during 2001–2020; and (3) an evalua-
tion of SIF feedback characteristics to atmospheric drought, soil drought, and compound
drought in the TRHR, especially during the hottest month (July). The compound drought
criteria defined in this study can be applied to most regions of the world. To this effect, our
results may provide an in-depth understanding of the impacts of drought on the carbon
cycle in regions with similar climatic and vegetation characteristics. This work also may
provide a valuable reference for developing new strategies to prevent and mitigate drought
disasters in ecologically fragile regions.

2. Materials and Methods
2.1. Study Area

The TRHR is located in the southern part of Qinghai Province, China, the hinterlands
of the Tibetan Plateau. It has an average elevation surpassing 4000 m (Figure 1a). The
topography of the TRHR gradually descends from the southwest to the northeast, marked
by elevations exceeding 5000 m in the southwest, 4000–5000 m in the central region, and
3000–4000 m in the northeast. TRHR is the origin of the Yangtze, Yellow, and Lancang
rivers, encompassing an area of approximately 3.6 × 105 km2. The TRHR is one of the most
concentrated areas of high-altitude biodiversity in the world. This region features dense
river networks, rich lakes, extensive snowy mountains, and an interwoven landscape of
glaciers [20]. These features earned the TRHR the moniker of the “Chinese Water Tower”.
The climate in the TRHR is typical of plateau continental climates [29]. Its annual mean
maximum temperature, minimum temperature, and precipitation are 4.9 ◦C, −8.8 ◦C,
and 498.9 mm, respectively (Supplementary Materials, Figure S1). The months from May
through September constitute the GS in the TRHR [13]. During the GS, the average temper-
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atures (calculated as the mean of the maximum and minimum temperatures) consistently
exceed 0 ◦C, and GS precipitation accounts for 85% of the annual total. The spatial distri-
bution of the annual mean precipitation declines from over 600 mm in the southeast to
under 300 mm in the northwestern corners (Supplementary Materials, Figure S2a). This
pattern echoes in the GS precipitation distribution, albeit with slightly lesser magnitudes
(Supplementary Materials, Figure S2b). The annual mean temperatures are >0 ◦C in the
eastern and southern parts of the TRHR (Supplementary Materials, Figure S2c), further
escalating during the GS in these locales (Supplementary Materials, Figure S2d). According
to the land cover data with a 30 m spatial resolution [30], grasslands accounted for 87.89%
(Figure 1b) and 85.85% (Figure 1c) of the TRHR’s total area in 2001 and 2020, respectively.
This illustrates a subtle decline in grassland coverage over the past two decades, though it
is still the predominant land cover type in the region.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 25 
 

 

rivers, encompassing an area of approximately 3.6 × 105 km2. The TRHR is one of the most 
concentrated areas of high-altitude biodiversity in the world. This region features dense 
river networks, rich lakes, extensive snowy mountains, and an interwoven landscape of 
glaciers [20]. These features earned the TRHR the moniker of the “Chinese Water Tower”. 
The climate in the TRHR is typical of plateau continental climates [29]. Its annual mean 
maximum temperature, minimum temperature, and precipitation are 4.9 °C, −8.8 °C, and 
498.9 mm, respectively (Supplementary Materials, Figure S1). The months from May 
through September constitute the GS in the TRHR [13]. During the GS, the average tem-
peratures (calculated as the mean of the maximum and minimum temperatures) consist-
ently exceed 0 °C, and GS precipitation accounts for 85% of the annual total. The spatial 
distribution of the annual mean precipitation declines from over 600 mm in the southeast 
to under 300 mm in the northwestern corners (Supplementary Materials, Figure S2a). This 
pattern echoes in the GS precipitation distribution, albeit with slightly lesser magnitudes 
(Supplementary Materials, Figure S2b). The annual mean temperatures are >0 °C in the 
eastern and southern parts of the TRHR (Supplementary Materials, Figure S2c), further 
escalating during the GS in these locales (Supplementary Materials, Figure S2d). Accord-
ing to the land cover data with a 30 m spatial resolution [30], grasslands accounted for 
87.89% (Figure 1b) and 85.85% (Figure 1c) of the TRHR’s total area in 2001 and 2020, re-
spectively. This illustrates a subtle decline in grassland coverage over the past two dec-
ades, though it is still the predominant land cover type in the region. 

 
Figure 1. (a) Location of TRHR, (b) 2001 land cover, (c) 2020 land cover. 

2.2. Data 
Daily precipitation, relative humidity, maximum temperature (Tmax), and minimum 

temperature (Tmin) data spanning the period of 2001–2020 were obtained from the Climate 
Change Research Center of the Chinese Academy of Sciences (https://ccrc.iap.ac.cn/, ac-
cessed on 1 September 2023). This dataset has a 0.25° spatial resolution and incorporates 
observations from around 2400 meteorological stations across China. It was subjected to 
rigorous quality checks prior to its release.  

Figure 1. (a) Location of TRHR, (b) 2001 land cover, (c) 2020 land cover.

2.2. Data

Daily precipitation, relative humidity, maximum temperature (Tmax), and minimum
temperature (Tmin) data spanning the period of 2001–2020 were obtained from the Climate
Change Research Center of the Chinese Academy of Sciences (https://ccrc.iap.ac.cn/,
accessed on 1 September 2023). This dataset has a 0.25◦ spatial resolution and incorporates
observations from around 2400 meteorological stations across China. It was subjected to
rigorous quality checks prior to its release.

To gather daily SM values, we utilized the Chinese version 1.0 of in situ data, SMCI1.0,
accessed through the National Tibetan Plateau/Third Pole Environment Data Central,
China (https://data.tpdc.ac.cn/zh-hans/data/49b22de9-5d85-44f2-a7d5-a1ccd17086d2,
accessed on 1 September 2023). We focused on SMCI1.0 data for the period 2001–2020,
which has a spatial granularity of 0.1◦ (approximately 9 km), encompassing 10 layers
spaced at 10 cm intervals. For ease of understanding and analysis, SM at 10 cm is re-
ferred to as the 0–10 cm average SM in this study, the SM at 20 cm is referred to as the
10–20 cm average SM, and so on, and the SM at 100 cm is referred to as the 90–100 cm
average SM. The dataset was enriched by incorporating various inputs, including ERA5-

https://ccrc.iap.ac.cn/
https://data.tpdc.ac.cn/zh-hans/data/49b22de9-5d85-44f2-a7d5-a1ccd17086d2
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Land meteorological forcing data, leaf area index, land cover types, topography, and soil
properties, using a robust machine learning approach (random forest) [31]. The in situ SM
observations from 1648 stations were employed as the SM modeling target after quality
control procedures. After the SMCI1.0 dataset was validated by in situ SM observations,
it became a useful complement to existing model-based and satellite-based SM datasets
for various hydrological, meteorological, and ecological analyses and modeling processes.
The 0–100 cm SM was used as the root-zone SM, which was calculated by combining the
weights of each soil thickness.

SIF is an intrinsic tool for studying the relationship between vegetation photosyn-
thesis and environmental dynamics [8]. This pivotal role positions SIF as a suitable ap-
proximation of GPP in terrestrial ecosystems. In this study, three types of SIF datasets
(2001–2020) were used to investigate vegetation growth under compound drought con-
ditions in the TRHR: the contiguous SIF (CSIF), the global orbiting carbon observatory-2
(OCO-2) SIF (GOSIF), and the reconstructing tropospheric monitoring instrument
(TROPOMI) SIF (RTSIF). These three SIF datasets were subjected to rigorous quality control
prior to release. The CSIF dataset was generated based on moderate-resolution imag-
ing spectroradiometer (MODIS) surface reflectance and OCO-2 SIF data using a trained
neural network approach [32]. The CSIF has a 0.05◦ spatial resolution and four-day tem-
poral resolution under clear-sky conditions. The CSIF was obtained from the National
Tibetan Plateau/Third Pole Environment Data Central, China, and is available online at
https://data.tpdc.ac.cn/zh-hans/data/d7cccf31-9bb5-4356-88a7-38c5458f052b, accessed
on 1 September 2023. The GOSIF dataset was constructed with discrete OCO-2 SIF sound-
ings, MODIS remote sensing data, and a meteorological reanalysis [33]. Monthly GOSIF
data with a 0.05◦ spatial resolution were utilized in this study. The GOSIF can be accessed
at http://data.globalecology.unh.edu/data/GOSIF_v2/Monthly/, accessed on 1 Septem-
ber 2023. Additionally, the RTSIF was reconstructed by TROPOMI SIF under clear-sky
conditions using a machine learning approach [34]. TROPOMI, which embarked on the
Copernicus Sentinel-5P mission, significantly increased the spatial and temporal resolution
of SIF observations. Our analysis hinged on the deployment of eight-day RTSIF data with a
0.05◦ spatial resolution. The RTSIF was obtained from the National Tibetan Plateau/Third
Pole Environment Data Central, China, and was downloaded from https://data.tpdc.ac.
cn/zh-hans/data/2b8ffbf4-90ac-4e3d-9ae4-a8be31ae93d4, accessed on 1 September 2023.
Finally, the GOSIF GPP data were applied to assess the reliability and consistency of the
three SIF datasets. These GPP data were derived through robust linear correlations linking
GOSIF with tower GPP measurements [11,33]. The GPP data were obtained from the
National Tibetan Plateau/Third Pole Environment Data Central, China, and are available
for download at http://data.globalecology.unh.edu/data/GOSIF-GPP_v2/Monthly/, ac-
cessed on 1 September 2023. We employed monthly GOSIF GPP data with a 0.05◦ spatial
resolution to verify the reliability of the above three SIF datasets in the context of the TRHR.

The grid coordinates of the CSIF data were used as a benchmark in this study. We in-
terpolated the meteorological and SM data uniformly to a 0.05◦ resolution using the bilinear
interpolation method. The grid coordinates of the GOSIF, GOSIF GPP, and RTSIF data were
slightly shifted to align with the corresponding CSIF spatial coordinates. These datasets
were spatially processed to streamline spatial computations, validation procedures, and
spatial visualizations specific to the TRHR. All data time-series were converted to monthly
series to facilitate the calculation of drought characteristics and vegetation photosynthesis
capacity in specific months of the year. The area covered by vegetation was defined as
an annual GS mean CSIF greater than 0 mW·m−2·nm−1·sr−1. Subsequent analyses were
carried out only for this vegetation area.

https://data.tpdc.ac.cn/zh-hans/data/d7cccf31-9bb5-4356-88a7-38c5458f052b
http://data.globalecology.unh.edu/data/GOSIF_v2/Monthly/
https://data.tpdc.ac.cn/zh-hans/data/2b8ffbf4-90ac-4e3d-9ae4-a8be31ae93d4
https://data.tpdc.ac.cn/zh-hans/data/2b8ffbf4-90ac-4e3d-9ae4-a8be31ae93d4
http://data.globalecology.unh.edu/data/GOSIF-GPP_v2/Monthly/
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2.3. Definition of Compound Droughts

The VPD is defined by the difference between saturation (es) and actual (es) vapor
pressure and is an effective indicator of atmospheric drought [6,8,9]. The relationship
between saturation vapor pressure and air temperature is expressed as follows:

e0(T) = 0.6108· exp
(

17.27·T
T + 237.3

)
(1)

where e0(T) is the saturation vapor pressure (kPa) at an air temperature of T (◦C). The
Food and Agriculture Organization recommends the following formula [35] to calculate
the saturation vapor pressure (es):

es =
e0(Tmax) + e0(Tmin)

2
(2)

where es is the average saturation vapor pressure at the daily Tmax and Tmin. The actual
vapor pressure is calculated as:

ea = es·
RH
100

(3)

where RH is the relative humidity (0–100).
The standardized precipitation index (SPI), based on a two-parameter gamma distribu-

tion, is widely used to identify meteorological drought conditions over a range of various
timescales [27,36–38]. The SPI at short timescales can reflect SM conditions, and the SPI
at long timescales can describe runoff, groundwater, and reservoir conditions. Here, we
converted the monthly VPD and root-zone SM into the standardized vapor pressure deficit
index (SVPDI) and standardized soil moisture index (SSMI) via a similar SPI calculation
method (i.e., the two-parameter gamma distribution). The probability density distribution
f (x) and cumulative distribution F(x) functions of the gamma distribution can be calculated
as follows [37,39]:

f (x) =
1

βαΓ(α)
xα−1e−x/β (4)

F(x) =
1

βαΓ(α)

∫ ∞

0
xα−1e−x/βdx (5)

where β is a scale parameter, α is a shape parameter, x denotes the monthly data, and Γ(α) is
the gamma function. In this study, the SVPDI and SSMI were used to describe the dry and
wet conditions of monthly-scale atmospheric and soil conditions in the TRHR. The wet and
dry classification criteria for the SVPDI and SSMI are similar to those of the SPI [37], as
shown in Table 1.

Table 1. Wet and dry (drought) categories according to SVADI/SSMI values.

SVPDI Value SSMI Value Category

(−∞, −1.5] [1.5, +∞) Severely wet
(−1.5, −1.0] [1.0, 1.5) Moderately wet
(−1.0, −0.5] [0.5, 1.0) Slightly wet
(−0.5, 0.5) (−0.5, 0.5) Normal
[0.5, 1.0) (−1.0, −0.5] Mild drought
[1.0, 1.5) (−1.5, −1.0] Moderate drought
[1.5, +∞) (−∞, −1.5] Severe drought

Compound atmospheric and soil droughts, referred to here as simply “compound
droughts”, were defined in this study as simultaneously meeting the definition of atmo-
spheric drought and soil drought for the same month at a given grid. Generally, atmospheric
droughts can occur when the VPD is high. We adopted 1-month SVPDI ≥ 0.5 as the thresh-
old for an atmospheric drought. Similarly, soil droughts can occur when SM is low. We used
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1-month SSMI ≤ −0.5 as the threshold for a soil drought. We used 12-month SVPDI/SSMI
values in December of each year and 5-month SVPDI/SSMI values in September of each
year to identify atmospheric/soil droughts throughout each whole year and their GS.

2.4. SIF Reduction Rate

We used the anomaly percentage approach [25] to characterize the impact of drought
stress on vegetation photosynthesis in the TRHR.

Anomaly =
X − N

N
× 100% (6)

where Anomaly is the reduction rate of SIF caused by drought, X denotes the SIF value
under drought conditions, and N denotes the mean SIF values for a specific time period
(e.g., the GS or July).

2.5. Overview of Methodologies

As illustrated in Figure 2, we first calculated the monthly SM and VPD based on the
daily SM, Tmax, Tmin, and RH, then calculated SSMI and SVPDI using the gamma distribu-
tion function. Next, we obtained the spatial and temporal patterns of the photosynthetic
capacity of vegetation based on the three sets of SIF data, then analyzed changes in the
SIF under the conditions of different combinations of the SSMI and SVPDI. Finally, we
investigated the effects of atmospheric droughts, soil droughts, and compound droughts
on the SIF and analyzed the response characteristics of the SIF through a typical compound
drought event.
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3. Results
3.1. Characteristics of Atmospheric Droughts, Soil Droughts, and Compound Droughts

The SVPDI trend showed an upward trajectory from 2001 to 2010, followed by a
decline. This temporal pattern reflects a pre-2010 phase of atmospheric drying followed
by a post-2010 period of wetting (Figure 3a). When viewed across the entirety of the
2001–2020 period, the atmosphere showed a subtle increase in moisture levels (Figure 3a)
with a distinct drying trend within the GS (Figure 3b). The rates of change are
−0.007/decade for the entire observation period and 0.224/decade during the GS. Con-
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versely, the SSMI showed a significant upward trend on both annual and GS timescales
throughout 2001–2020, indicating a wetting trend of the soil in the TRHR.
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The annual SVPDI showed a clear increasing trend in the western parts of the TRHR
(>0.5/decade) and a clear decreasing trend in the eastern parts of the TRHR (<−0.5/decade)
(Figure 4a,b). This spatial differentiation underscores a discernible shift towards dryness in
the western parts of the region, accompanied by a pronounced tendency towards wetness
in the eastern parts. The spatial trends of the GS SVPDI were generally similar to those of
the annual SVPDI, but the areas characterized by wetting trends shrank in the eastern parts
while areas marked by drying trends expanded in the western parts (Figure 4c,d). The
annual SSMI showed a clear decreasing trend (<−0.5/decade) in the central and eastern
regions of the TRHR and a clear upward trend (>0.5/decade) in most of the remainder
of the region (Figure 4e,f). These changes suggest that the soil is trending wetter in most
areas of the TRHR, with a tendency to become drier in a small portion of the east-central
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areas. The spatial trends of the GS SSMI are generally similar to those of the annual SSMI
(Figure 4g,h).
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Figure 4. Spatial distribution of (a,b) annual and (c,d) GS SVPDI trends in the TRHR during
2001–2020. Spatial distribution of (e,f) annual and (g,h) GS SSMI trends in the TRHR during
2001–2020. The statistical significance was identified at p < 0.05.

The spatial durations of the annual (Figure 5a) and GS (Figure 5b) atmospheric
droughts were generally similar, with longer durations in the southern parts of the TRHR.
Soil droughts with relatively long duration occurred mainly in the eastern parts of the
TRHR, at up to 5 months/year (Figure 5c) and 2 months/year (Figure 5d) on the annual
and GS timescales, respectively. Annual compound droughts generally lasted from 1 to
2.5 months/year (Figure 5e), while GS compound droughts generally lasted from 0.3 to
1.2 months/year (Figure 5f). Areas with lengthy annual compound droughts reaching
2 months/year were distributed throughout the western and southern parts of the TRHR.
The spatial durations of GS compound droughts were broadly similar to those of annual
compound droughts, but generally longer in southern and eastern parts.
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Figure 5. Spatial duration (months/year) patterns of (a,b) atmospheric, (c,d) soil, and (e,f) compound
droughts during 2001–2020. Left column indicates annual timescale and right column indicates GS
timescale.

As depicted in Figure 6a, the atmospheric drought duration increased more
intensely on the GS timescale (0.23 months/decade) than on the annual timescale
(0.11 months/decade). We estimated the trends of atmospheric drought durations during
equal time periods (2001–2010 and 2011–2020) to further analyze trend characteristics
across distinct temporal divisions. For both the annual and GS timescales, the atmospheric
drought showed significant increasing trends from 2001 to 2010 (6.35 months/decade on
the annual timescale and 2.61 months/decade on the GS timescale), which reversed in
2011 and markedly decreased from 2011 to 2020 (−1.63 months/decade on the annual
timescale and −1.08 months/decade on the GS timescale). The more recent decreasing
rates of atmospheric droughts were substantially smaller than the increasing rates before
2011. Although the soil drought durations generally showed no significant upward or
downward trends during 2001–2020, a downward trend during 2011–2020 was observed
(Figure 6b). The increasing rate of compound drought durations on the GS timescale was
slightly higher than that on the annual timescale (Figure 6c). The upward rate of compound
drought durations on the annual timescale during 2001–2010 was about twice as high as
the downward rate during 2011–2020, whereas the upward and downward rates of the
preceding and following decades were approximately equal on the GS timescale.
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3.2. SIF Characteristics

As illustrated in Figure 7, the spatial distributions of the CSIF, GOSIF, and RTSIF
during the GS were similar. The SIF values were relatively high in the eastern and
southern parts of the TRHR (CSIF and GOSIF reaching 0.2 mW·m−2·nm−1·sr−1, with
RTSIF reaching 0.3 mW·m−2·nm−1·sr−1), whereas they were relatively low in the western
parts of the region (CSIF and GOSIF below 0.05 mW·m−2·nm−1·sr−1, and RTSIF below
0.1 mW·m−2·nm−1·sr−1). The correlation coefficients of the annual GS-averaged GOSIF
GPP with CSIF, GOSIF, and RTSIF, respectively, were high—especially in eastern parts of
the TRHR (>0.9). These results together indicate that SIF effectively captures vegetation
photosynthesis dynamics.
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Figure 7. Spatial distribution of mean (a) CSIF, (b) GOSIF, and (c) RTSIF during GS from 2001 to 2020.
Relationships between GPP and (d) CSIF, (e) GOSIF, and (f) RTSIF at annual GS timescale.

The annual GS-averaged SIF showed increasing trends during 2001–2020 (Figure 8),
which was especially the case for GOSIF (0.0068 mW·m−2·nm−1·sr−1·decade−1). This sug-
gests that vegetation greening significantly increased in the TRHR during those years. The
annual variations in GPP and SIF were more consistent, with a trend value of
4.12 gC·m−2·month−1·decade−1. The correlation coefficients of GPP and the three types
of SIFs exceed 0.9 on the annual timescale, indicating that SIF responds well to GPP
characteristics in the TRHR.

The spatial characteristics of the three distinct SIF trends exhibited a consistent pattern
across the TRHR (Figure 9), with positive trends in most areas and especially in the
northeastern parts of the region (0.05 mW·m−2·nm−1·sr−1·decade−1). The TRHR shows
far more areas with significant greening than those with significant browning trends in
terms of vegetation areas, especially in the east–central areas. These observations indicate
enhanced photosynthetic capacity in the TRHR’s vegetation. There were fewer areas with
significant greening in the RTSIF dataset than in CSIF or GOSIF datasets, especially in the
western parts of the region.

The annual mean temperature and precipitation in the TRHR trended upward
(Figure 10a), reaching 0.34 ◦C/decade and 33.04 mm/decade, respectively, indicating
that warming and wetting have become more pronounced in the TRHR over the past two
decades. The variations in the GS temperature and precipitation (Figure 10b) were similar
to those occurring on the annual scale, but with a more intense warming of temperature
(0.42 ◦C/decade). Grass grew more prolifically under these warmer and wetter conditions
in the TRHR, which supports the significant increases in the SIFs observed previously.
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Figure 10. Anomalies of air mean temperature and precipitation, (a) annual and 
(b) GS, across TRHR grasslands during 2001–2020. Red dotted lines and blue 
dotted lines indicate temperature and precipitation trends, respectively. 

 

Figure 10. Anomalies of air mean temperature and precipitation, (a) annual and (b) GS, across
TRHR grasslands during 2001–2020. Red dotted lines and blue dotted lines indicate temperature and
precipitation trends, respectively.

3.3. Response of SIF to Compound Droughts

The SVPDI and SSMI were found to be negatively correlated, especially in the 1-month
SVPDI and 1-month SSMI for July and August (Supplementary Materials, Figure S3). This
suggests a strong coupling between the SVPDI and SSMI in warmer seasons and a higher
probability of simultaneous occurrence. We extracted valid grids with time period means
greater than 0.01 mW·m−2·nm−1·sr−1 for SIF to calculate the SIF anomaly percentages
corresponding to different drought thresholds. We divided the monthly SVPDI and SSMI
into 8×8 bins at 0.5 index value intervals, then assessed the SIF anomalies at different
thresholds of compound droughts. As shown in Figure 11, low SSMI and low SVPDI
combination events during the GS correspond to low SIF values. This may be due to the
low SVPDI caused by low temperatures, thus limiting the growth of vegetation in the TRHR
during the GS [6,40]. High SVPDIs corresponding to high temperatures in the GS favor the
growth of vegetation (i.e., promote photosynthesis) and thus correspond to positive SIF
anomalies. The hottest month (July) was analyzed instead of the GS to find that a further
increase in the SVPDI under relatively dry conditions corresponded to a decrease in SIF
due to the closure of vegetative stomata, which prevents vegetative photosynthesis [6,41].
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Therefore, low SSMI and high SVPDI values corresponded to negative anomalies of SIF in
July in the TRHR.
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Figure 11. Mean SIF anomalies for each index bin of SVPDI and SSMI across TRHR grasslands during
2001–2020. Rows represent changes in SIFs (CSIF, GOSIF, and RTSIF); columns represent changes in
study periods (GS and July).

The constraints imposed by elevated SVPDIs and diminished SSMIs in July on veg-
etation photosynthesis prompted a meticulous exploration of SIF anomalies within the
TRHR. In scrutinizing the effects of atmospheric, soil, and compound droughts, we found
that SIF exhibited negative anomalies in the central and eastern parts of the TRHR under
atmospheric stress, which is particularly evident in the CSIF dataset (Figure 12a–c). In the
western part of the region, atmospheric droughts did not cause a decrease in SIF, which
was particularly evident in the RTSIF dataset. This phenomenon stems from the heightened
SVPDI values attributed to warming temperatures, effectively alleviating temperature
constraints within alpine ecosystems. This climatic shift facilitated vegetation growth by
mitigating the temperature-induced restrictions, hence accentuating vegetative photosyn-
thesis, as indicated by the elevated SIF levels. Warming also forces snow and ice to melt,
which bolsters the SM available for vegetation to absorb. The area with declining SIF
caused by soil drought was substantially larger than that caused by atmospheric drought
(Figure 12d–f), which suggests that the mountain ecosystem is more constrained by SM
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than by atmospheric water demand during the hottest months. The areas with declining
SIF caused by compound drought in the central and western parts of the TRHR occupy an
intermediary position between the SIF reduction triggered by SIF caused by atmospheric
drought and that caused by soil drought. Compound droughts in the eastern parts of the
TRHR resulted in a significantly greater decrease in SIF than singular drought events. The
eastern parts of the TRHR are characterized by a relatively low elevation and favorable ther-
mal and hydrological conditions, which are beneficial for vegetative regrowth. Vegetation
photosynthesis in the eastern parts of the TRHR was significantly weaker under compound
droughts than under individual drought events due to land–atmosphere coupling in those
areas (Figure 12g–i). Therefore, compound droughts in the TRHR’s grassland ecosystems
pose a significantly higher threat to carbon uptake than singular droughts.
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pared to other parts of the TRHR. To further analyze this phenomenon, we posed singular 
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Figure 12. July SIF anomalies under atmospheric and soil droughts in the TRHR during 2001 to 2020.
(a) CSIF, (b) GOSIF, and (c) RTSIF in response to atmospheric droughts. (d) CSIF, (e) GOSIF, and
(f) RTSIF in response to soil droughts. (g) CSIF, (h) GOSIF, and (i) RTSIF in response to compound
droughts.

Across the Yellow River source region, the pronounced interplay between high SVPDI
and low SSMI in July triggered a discernible reduction in vegetation. This distinctive set of
interactions underpins a more explicit manifestation of these conditions compared to other
parts of the TRHR. To further analyze this phenomenon, we posed singular anomalies
arising from atmospheric drought, soil drought, and compound drought, each contributing
to the decline in SIF within the Yellow River source region. The delineation was based on
atmospheric drought (SVPDI ≥ 0.5), soil drought (SSMI ≤ −0.5), and compound drought
(both SVPDI ≥ 0.5 and SSMI ≤−0.5) conditions as defining criteria. As shown in Figure 13a,
atmospheric droughts caused SIF anomalies of −3.46%, −0.47%, and 1.2% in the CSIF,
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GOSIF, and RTSIF datasets, respectively. The decline in SIF under the soil drought constraint
was slightly greater than that corresponding to atmospheric drought, with anomalies
of −5.36%, −4.43%, and −3.46% in the CSIF, GOSIF, and RTSIF datasets, respectively.
Compound droughts caused larger decreases in SIF than singular drought events, with SIF
anomalies of −11.29%, −9.09%, and −5.13%, respectively. The SIF values also markedly
decreased as drought severity increased, the sole exception being atmospheric drought
in the RTSIF (Figure 13b). When the criterion of compound drought was SVPDI ≥ 1 and
SSMI ≤ −1, the SIF anomalies were −14.52%, −12.15%, and −7.02% in the CSIF, GOSIF,
and RTSIF datasets, respectively.
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Figure 13. Anomalies of July SIF triggered by atmospheric and soil droughts in the Yellow River
source region during 2001 to 2020. (a) Threshold criterion for atmospheric drought is SVPDI ≥ 0.5;
for soil drought, it is SSMI ≤ −0.5; and for compound drought, it satisfies both SVPDI ≥ 0.5 and
SSMI ≤ −0.5. (b) Threshold criterion for atmospheric drought is SVPDI ≥ 1; for soil drought, it is
SSMI ≤ −1; and for compound drought, it satisfies both SVPDI ≥ 1 and SSMI ≤ −1. Light-red box
indicates the 10th–90th range, and red line marks the mean SIF anomaly.

The compound drought magnitude index in the Yellow River source region was the
largest in July of 2017 (Supplementary Materials, Figure S4), so we used the July 2017
compound drought event as a typical case to analyze the decline in SIF. The average SIF
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anomalies of the Yellow River source region in that month were −13.14%, −10.32%, and
−6.54% in the CSIF, GOSIF, and RTSIF datasets, respectively (Figure 14a–c). Almost the
whole region presented negative SIF anomalies in the CSIF and GOSIF datasets, though
these anomalies were especially pronounced in the western and southern parts of the
region, where SIF decreased by up to 20%. We further analyzed the additional impact
of compound droughts on SIF compared to individual drought events. In comparison
to a singular atmospheric drought, the additional effect of a compound drought was
significantly amplified, resulting in SIF anomalies reaching −9.83%, −9.67%, and −7.68%.
These changes were especially accentuated in the southern parts of the region (Figure 14d–f).
There was a more pronounced decline in SIF attributable to the compound drought in July
2017, surpassing that observed under atmospheric drought conditions; these effects further
inhibited vegetation photosynthesis. The additional effects of compound drought were
less impactful when juxtaposed with atmospheric drought than soil drought (Figure 14g–i),
suggesting that the magnitude of SIF decline triggered by compound drought was closer to
that of a singular soil drought than an atmospheric drought. This reinforces the significant
impact of soil droughts on carbon assimilation.
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Figure 14. (a–c) SIF anomalies of the Yellow River source region in July 2017 caused by compound
drought (SVPDI ≥ 0.5 and SSMI ≤ −0.5). (d–f) Additional effects of compound drought compared to
atmospheric drought (SVPDI ≥ 0.5) causing a decrease in SIF. (g–i) Additional effects of compound
drought compared to soil drought (SSMI ≤ −0.5) causing decrease in SIF. The additional effect of
compound drought was calculated as the difference in SIF anomalies between the July 2017 compound
drought and the multi-year average (2001–2020) July atmospheric drought (or soil drought) alone.



Remote Sens. 2023, 15, 4943 19 of 24

4. Discussion

Both the SVPDI and SSMI showed significant increasing trends across the TRHR
during the GS, suggesting an increasing trend in both atmospheric dryness and SM. An
increase in the VPD can be primarily attributed to the increased saturated vapor pressure
due to warming [9]. This warming, coupled with increased precipitation and the melting
of ice, snow, and permafrost, has led to increased SM levels in the TRHR [42]. Geospatially,
the SVPDI distribution exhibited a clear dichotomy between the eastern and western parts
of the TRHR, with the atmosphere in the eastern areas becoming wetter, while the western
parts became drier. SM, on the other hand, demonstrated marked upward trends, barring
a small section of the east–central region. The concurrent rise in the SVPDI and SSMI
underscores the significant warming and wetting that has occurred across the TRHR [43].

There is an increased probability of heat-related events under global warming,
which in turn increases the probability of atmospheric droughts characterized by a high
VPD [9,44]. An atmospheric drought can actively drive terrestrial evapotranspiration and
thus accelerate SM depletion. The reduction in SM leads to a decrease in evapotranspiration,
which reduces latent heat and increases sensible heat, which further increases temperature
and the VPD [5]. Ultimately, there is an increasing probability of concurrent atmospheric
and soil droughts through strong land–atmosphere coupling [6]. Compound droughts
showed a general upward trend in the TRHR, with larger increases in the GS compared
to the entire year during 2001–2020. A similar pattern was observed by Wu and Hu [45],
who pointed out that compound drought and heat events have significantly increased on
the Tibetan Plateau. Further, the probability of the occurrence of low SM in tandem with
compound drought and heat events is greater than that of individual events.

The spectral emission profile of SIF encompasses approximately 650–800 nm within
intact leaves, with two peaks in the red spectral region (around 685–690 nm) and near-
infrared spectral region (about 730–740 nm) [24]. The inherent capacity of SIF to directly
capture the dynamic processes of plant photosynthesis makes it a valuable indicator for
monitoring vegetation growth and stress responses [19,46]. All three of the SIF datasets
used in this study showed high values in the southern and eastern regions of the TRHR,
which mirror the spatial patterns derived previously from net primary productivity data
by Song et al. [47]. These regions, due to their lower elevations, higher temperatures, and
increased precipitation compared to other parts of the region, offer favorable conditions for
robust vegetation growth. The notably high correlation coefficients observed between SIF
and GPP, especially in the eastern parts of the TRHR (>0.9), further suggest that SIF can
be used as a proxy for GPP to explore vegetation dynamics and carbon cycling processes
across the region. The SIF exhibited a clear overall upward trend in the TRHR, indicating a
clear greening signal from the region’s vegetation. The discernible increase in temperature
and precipitation within the TRHR has engendered substantial warming and increased
moisture availability, thereby fostering an environment conducive to plant growth. Notably,
the decadal attenuation of the summer westerly wind regime, accompanied by increased
wetting, has also played an important role in vegetation greening within the TRHR [48].

The SMCI1.0 data used in this study closely align with in situ SM data for the entirety
of China, but SMCI1.0 is not guaranteed to be of high quality in every region of China
due to the uneven distribution of in situ SM stations, especially in the western part of
the country [31]. Multiple SM datasets from different sources (e.g., observations, remote
sensing, and model simulations) can be fused via a triple collocation analysis [49,50] to
further assess the changes in SM and soil drought in the TRHR.

Droughts generally affect vegetation through cumulative and lagged effects. Different
vegetation types respond to a drought at different speeds. The response of grassland
ecosystems to short-term droughts, for example, is more pronounced than that of other
land types [51]. Regarding grasslands, the cumulative and lagged effects of droughts are
mainly confined to shorter timescales (1–3 months), where the cumulative effect is stronger
than the lagged effect [11]. Accordingly, we focused on the effects of the 1-month SVPDI and
SSMI and their compound events on grassland ecosystems in the TRHR. The responses of
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grasslands to drought also differ within different types of climates. For example, grasslands
in arid regions have a strong tolerance to droughts [11]. In the future, we may explore
the impacts of different combinations of cumulative and lagged effects of atmospheric
and soil droughts on vegetation growth. The compound drought definition utilized in
this study was determined mainly from a temporally compounding perspective at a given
grid. There are other events observable from a temporally compounding perspective; for
example, sequential occurrences of different types of drought (i.e., the drought propagation
perspective) [52]. These include atmospheric droughts in a given month and soil droughts
in the following month. The sequential concurrence of different types of droughts can be as
damaging to the photosynthetic capacity of vegetation as the concurrent different types of
drought events. The effects of different temporally compounding events on SIF may be
explored in our next study.

Overall, SIF increased with precipitation (Supplementary Materials, Figure S5), temper-
ature (Supplementary Materials, Figure S6), and SM (Supplementary Materials, Figure S7)
in the TRHR, especially in July. He, et al. [53] pointed out that precipitation regimes mainly
drive GPP variations across in the Tibetan Plateau, an influence that becomes more pro-
nounced as climate change causes temperatures to warm. In mountain grassland regions,
increased temperatures favor an earlier vegetation growth period and an increase in vege-
tation photosynthesis [54]. An increase in SM can enhance the maximum photosynthetic
capacity of mountain ecosystems, thereby promoting vegetation growth [55]. Overall,
the SIF showed a decreasing trend with an increasing VPD in the TRHR (Supplementary
Materials, Figure S8). A high VPD can also limit vegetative photosynthesis due to high tem-
peratures, and this negative effect of the VPD on the productivity of grassland ecosystems
may be further enhanced in a warming world [9].

We analyzed the characteristics of SIF responses to different combinations of SVPDI
and SSMI during the GS and July in the TRHR, respectively. In general, SIF trended upward
with rising SM levels in July. This observation underscores the dominant role of SM in
driving vegetation growth within the region, a finding that aligns with prior research [8,55].
Strong land–atmosphere interactions fortified the negative VPD–SM coupling in the TRHR
during July, thus increasing the probability of compound droughts. Compound droughts
can significantly reduce carbon uptake in terrestrial systems compared with individual
drought events, which would be especially problematic in the eastern parts of the TRHR
(i.e., the Yellow River source region), where vegetation naturally flourishes. As the severity
of compound droughts intensifies, the influence of reduced vegetation photosynthesis will
become more pronounced in the Yellow River source region.

A typical compound drought occurred in the Yellow River source region in July of 2017,
driven by a precipitation deficit, high temperature, high VPD, and low SM (Supplementary
Materials, Figure S9). This compound drought event resulted in a decrease of about 10%
in the SIF throughout the region but was particularly pronounced in the south, which
experienced a decrease of up to 20%. This substantial decline seriously threatened the
carbon balance of the region’s ecosystem. The additional effect of the July 2017 compound
drought, compared to the soil drought, was relatively smaller in contrast to atmospheric
drought. This suggests that the efficacy of soil drought in restricting vegetation photo-
synthesis was more pronounced in this event than an atmospheric drought. A similar
observation was made in a previous study [5], which highlighted that grasslands in China
experience a slightly more substantial GPP decline under soil drought conditions compared
to atmospheric drought conditions. Echoing these findings, another study found that
SM was the dominant driver of dryness stress on ecosystem production via a decoupled
approach in most of the world’s vegetated land areas [8]. Currently, the contributions of the
VPD and SM to vegetation photosynthetic capacity under compound drought conditions
is still unknown. In the future, we plan to address this knowledge gap. Most previous
studies were based on remotely sensed information in assessing SIF characteristics during
various historical periods [8,25,26,56], while the characteristics of SIF in the future under
different emissions scenarios remain unexplored. The Coupled Model Intercomparison
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Project Phase 6 (CMIP6) and vegetation models may be useful for predicting future GPP
and SIF characteristics, especially responses to drought stress.

5. Conclusions

The escalating repercussions of climate change have led to a surge in droughts and
heat-related events, exerting adverse effects on the photosynthetic capacity of vegetation
and altering carbon cycles across the globe. These phenomena are particularly pronounced
in mountainous terrains, as ecosystems at higher altitudes can be especially fragile. In
this study, we analyzed the effects of atmospheric drought, soil drought, and compound
drought on vegetation photosynthesis using high-resolution meteorological, SM, and
SIF datasets covering the TRHR during the 2001–2020. Our main conclusions can be
summarized as follows.

(1) On the whole, both the SVPDI and SSMI showed increasing trends in the TRHR during
the GS from 2001 to 2020. To this effect, the TRHR has been experiencing atmospheric
desiccation and soil wetting due to climate warming and increased precipitation in
recent decades. Atmospheric drought within the GS was predominantly distributed
in the southern and eastern parts of the TRHR. Soil drought was mainly distributed
in the eastern parts. The combination of atmospheric and soil droughts resulting
in compound drought conditions was more common in the southern and eastern
parts of the region. There was an upward trend in compound droughts in the TRHR
during the GS from 2001 to 2020, which can be attributed to the disparity between
intensifying rates during 2001–2011 and subsequent attenuation during 2011–2020.

(2) Across the various datasets we used, CSIF, GOSIF, and RTSIF showed relatively high
values in the southern and eastern parts of the TRHR, indicating better vegetation
growth in these areas. The correlation coefficients between SIF and GPP reached up to
0.9 in the region as well, which indicated that SIF and GPP have an extremely stable
correlation in the TRHR and further that GPP/SIF can be estimated from the available
SIF/GPP. SIF showed a significant upward trend from 2001 to 2020, indicating that the
vegetation of the TRHR has become significantly greener in the last 20 years, which
may be due to the warming and wetting dynamics of the region having contributed
to a more verdant landscape.

(3) Overall, the high SVPDI and low SSMI in July substantially limited vegetation photo-
synthesis. According to the drought response characterization of SIF in the Yellow
River source region (i.e., the eastern part of the TRHR, where there are better con-
ditions for vegetation growth), compound droughts led to a larger decrease in SIF
than individual events. The additional effect of SIF produced by compound droughts
was stronger for atmospheric drought than soil drought, suggesting that SM may
dominate vegetation growth in the TRHR.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15204943/s1: Figure S1: Monthly average (a) temperature and
(b) precipitation during 2001–2020; Figure S2: Spatial characteristics of annual mean (a,b) temperature
and (c,d) precipitation during 2001–2020; Figure S3: Correlation coefficients of 1-month SSMI and
different cumulative time scales of SVPDI throughout GS. Note: “*”and “**” indicate coefficients
passing 0.1 and 0.05 significance levels, respectively; Figure S4: Compound drought magnitude
index (CDMI) for July during 2001–2020 in the Yellow River source region. CDMI is expressed as the
absolute value of the difference between SVPDI and the atmospheric drought threshold (0.5) in July
multiplied by the absolute value of the difference between SSMI and the soil drought threshold (−0.5);
Figure S5: Average precipitation versus average SIF at each grid in the TRHR during 2001–2020.
Left column represents the GS mean and the right column represents the July mean; Figure S6: The
same as Figure S5, but for temperature; Figure S7: The same as Figure S5, but for SM; Figure S8: The
same as Figure S5, but for VPD; Figure S9: Box-and-whisker plot of precipitation, temperature, VPD,
and SM anomalies during July 2017 compound drought in the Yellow River source area. Top and
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values, respectively.
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