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Abstract: Large-scale short-term monitoring and prediction of surface deformation are of great signif-
icance for the prevention and control of geohazards in rapidly urbanizing developing cities. Most
studies focus on individual cities, but it would be more meaningful to address large urban agglomer-
ations and consider the relevance of the regions within them. In addition, the commonly used linear
fitting prediction methods cannot accurately capture the dynamic mechanisms of deformation. In
this study, we proposed an automatic PS extraction method (named PS-SBAS-InSAR) that improves
SBAS-InSAR to extract surface deformation and an Informer-based short-term surface deformation
prediction method for case studies in 16 typical cities of the Yangtze River Delta (YRD). The results
show that PS-SBAS-InSAR successfully extracted accurate surface deformation sequences of the YRD.
During the period from January 2019 to January 2021, the YRD experienced a slight deformation
with an average deformation rate within [−4, 4] mm/year. Geographically neighboring cities may
have associated deformation distributions and similar deformation trends, as indicated by average
deformation rate maps and landscape metrics. Both types of deformation (i.e., subsidence/uplift)
tend to occur simultaneously, with specific areas of subsidence/uplift occurring in close proximity to
areas of concentrated deformation. The Informer model effectively captured the time-series variation
in surface deformation, suggesting a slowdown of deformation over the next two months (Febru-
ary 2021–March 2021). Our work contributes to a better understanding of changes and trends in
large-scale surface deformation and provides useful methods for monitoring and predicting surface
deformation in coastal areas.

Keywords: surface deformation; Sentinel-1A; PS-SBAS-InSAR; intelligent prediction; urban agglomeration

1. Introduction

Surface deformation is a slowly changing environmental geohazard caused by both
natural conditions and human activities [1,2]. More than 150 cities and regions worldwide
are experiencing or have experienced surface deformation, with about 80% occurring
in riverbeds, floodplains, or deltas [3–5]. Ground subsidence in deltas, when combined
with sea level rise, heavy rainfall (e.g., monsoons), or storms, could worsen the risk of
storm surges and tidal inundation, causing great economic losses [5–7]. Conventional
engineering surveys are generally used to monitor the deformation of individual projects
or buildings, but they are time-consuming and labor-intensive for large-scale monitoring
such as monitoring the Yangtze River Delta (YRD). Therefore, it is necessary to integrate
satellite remote sensing and deep learning to monitor and predict the surface deformation
in large-scale areas.
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Interferometric synthetic aperture radar (InSAR) extracts ground elevation and de-
formation information by acquiring phase information from coherent images [8,9]. In
comparison to other methods (e.g., leveling and real-time kinematic equipment), InSAR
technology offers significant advantages, such as a broad monitoring range, low operating
costs, and a high spatial resolution [7,10,11]. The time-series InSAR (TS-InSAR) technique
is an advancement of the traditional InSAR technique that uses more observations and
an improved signal-to-noise ratio to reconstruct the deformation history of a deformation
region [12]. Common TS-InSAR methods include permanent scatterer InSAR, small base-
line subset InSAR (SBAS-InSAR), and temporally coherent point InSAR for deformation
monitoring in different scenarios [13,14].

SBAS-InSAR technology attenuates the decoherence caused by excessively long spa-
tiotemporal baselines by defining optimal baseline thresholds and segmenting a whole SAR
dataset into several smaller datasets [14,15]. The SBAS-InSAR method imposes stringent
criteria for identifying ground control points (GCPs), requiring a high degree of consis-
tency across all GCPs. However, the geography of a coastal/reclaimed area with dense
vegetation and numerous lakes presents challenges in finding stable and highly coherent
GCPs through manual visual interpretation. In general, GCPs can be selected [16] from
relevant targets that maintain backscattering characteristics for a long period (i.e., perma-
nent scatterers, PSs). In 2022, Feng et al. [17] developed a new method (auto-PS-GCP-Thin)
to automatically extract robust GCPs from candidate PSs, enhancing the efficiency and
accuracy of GCP selection. We thus utilized this method to automatically select GCPs and
applied the GCPs to SBAS to develop a new deformation detection method (PS-SBAS-
InSAR), aiming to solve the insufficient and unreliable samples in coastal lowlands and
improve subsidence monitoring accuracy.

Long-term surface deformation is not only affected by urban construction but also by
crustal movement and other human activities, and long-term prediction has rather high
uncertainties, so short-term prediction has commonly been used to support the analysis of
urban construction and development. Current short-term prediction methods for surface
deformation can generally be divided into two categories. The first category estimates the
deformation value by simulating the physical evolution process [18,19], which is limited by
the difficulty of acquiring parameters and constructing models. The second category applies
mathematical and statistical methods to predict ground deformation. This is performed by
extracting the intrinsic relationships and development patterns from extensive historical
monitoring datasets [20,21]. Currently, machine learning and deep learning methods
(e.g., neural networks) can effectively address the highly complex nonlinear relationships
involved in surface deformation prediction.

The Transformer model is a neural network that relies entirely on an attention mecha-
nism to characterize the global dependencies between the inputs and outputs. It has a great
capability to capture short- and long-term dependencies and interactions [22]. The Informer
model is an improvement on the Transformer model developed for time-series prediction
tasks [23]. The Informer model proposes a multi-headed ProbSparse self-attention layer
based on the standard encoder–decoder structure. This improves model efficiency and
reduces the number of model parameters that can be applied to power load and traffic flow
forecasting [23]. Nevertheless, the potential of the Informer model for time-series trend
prediction of surface deformation has not been elaborated.

The YRD is a region dominated by impact plains [24,25], and studies have found that
its geological structure is not sufficiently stable or geologically strong [10,26,27]. Since
cities in the YRD are part of the same hydrogeologic unit and the groundwater aquifer
systems are interconnected, surface deformation in one area can have a significant impact
on neighboring areas. Surface deformation in the YRD varies with the urbanization process
and has been influenced by industrialization and the prevention and control policies in
different periods, showing stage-specific characteristics [28,29]. Although there have been
some studies on the surface deformation of individual cities in the YRD [12,30], surface
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deformation and its regional correlation at large scales in the urban agglomeration have
not been sufficiently elaborated.

Large-scale short-term monitoring and prediction of surface deformation can provide
timely and important information that can help to identify potential problems early and
reduce hazard risk, ensuring the sustainable development of urban areas. This study
addresses three questions: (1) Can the automatically extracted PS points be applied to
SBAS to extract urban surface deformation? (2) Is there a regional correlation of surface
deformation in a large-scale urban agglomeration? (3) Is it possible to use deep learning
methods for the short-term prediction of surface deformation? To answer these questions,
we selected 16 typical cities in the YRD, used the PS-SBAS-InSAR technology to monitor
the surface deformation of each city from January 2019 to January 2021, measured the
spatial pattern of the deformation using six landscape metrics at the class level, and then
applied the Informer model to predict the deformation trend for the next 2 months. Our
study should provide methodological references for monitoring and predicting surface
deformation in similar coastal regions.

2. Materials and Methods

Figure 1 illustrates the main technical processes: (a) data pre-processing, including
remote sensing image clipping of the study area as well as the atmospheric correction and
radiometric calibration of the SAR images using ENVI tools to ensure that the amplitudes
of all images correctly reflect the scattering from ground targets; (b) PS-SBAS InSAR
processing, including using the auto-PS-GCP-Thin method to intelligently identify highly
coherent GCPs and applying the GCPs to the SBAS process to calculate the spatiotemporal
variation in regional deformation; and (c) using Informer models to predict short-term
future surface subsidence and uplift in 16 typical cities.
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Figure 1. Process of monitoring and predicting surface deformation in typical cities of YRD.

2.1. The PS-SBAS-InSAR Technology

Conventional InSAR technology mainly performs coherent processing of radar signals
and uses the relationship between phase/spatial distance differences in two observations
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to extract topographic and surface deformation information [8]. The interference phase
(φint) is given by

φde f = φ1 − φ2 = −2π

λ
(R1 − R2) = −

2π

λ
∆R (1)

where φ1 and φ2 are the phases of the echo signals from the two observations of the same
target; λ is the radar wavelength; R1 and R2 are the distances from the two antennas to the
observation target; and ∆R is the difference between the distances.

The Differential InSAR (D-InSAR) technique requires two SAR images of the same area
in different time periods and removes the constant phase from the two observed phases
with differential processing to derive the surface deformation information. The acquisition
of the deformation phase (φde f ) using the D-InSAR technique can be defined as [14]

φde f = φ− φ f lat − φdem − φatm − φnoise (2)

where φ f lat is the flat-earth phase (i.e., reference surface phase); φdem is the terrain phase;
φatm is the atmospheric phase; and φnoise is the noise phase. Usually, the D-InSAR technique
extracts deformation information that is not only affected by the constant phase error. There
may also be spatiotemporal decoherence phenomena, resulting in insufficient extracted
deformation information [1,10].

PS-SBAS-InSAR is divided into two modules: a PS module and an SBAS module. The
PS module considers temporal stability and spatial continuity to select a suitable number
of PSs and then identifies the GCPs by automatically evaluating the coherence, average
amplitude, and amplitude deviation index (ADI) of the PSs [17]. The evaluation of the
coherence coefficient, average amplitude, and ADI are defined as

standard.γ :
{

γpix = 1
K ∑K

1 γ

s.t.γpix > γpix−thd

standard.A :

{
Aimg−thd=min{∑K

1 Aimg}
s.t.Apix > Aimg−thd

standard.ADI :

{
ADI =

Apix−σ

Apix

s.t.ADI < ADIthd

(3)

where γpix is the average coherence of pixels at an identical location across K time-series
images; γpix−thd is a pre-defined coherence threshold and is defined here as 0.4 [31]; Aimg
is the average amplitude of an SAR image; Aimg−thd is the minimum value of the average
amplitude in the K time series and can use Aimg−thd as the threshold to eliminate the points
with low amplitudes but high coherence; Apix is the average amplitude of a pixel at the
same position in K time-series images; Apix−σ is the standard deviation (σ) of the amplitude
of a pixel in K time-series images; and ADIthd is the pre-defined ADI threshold value,
which is set to 0.15 here [32]. After these three screening steps, the highly consistent and
strongly stable GCP points were derived. Then, the SBAS method was applied to calculate
the time-series deformation and the annual average deformation rate.

The SBAS module is used to filter and collect combinations with higher quality from
interferograms, and then the singular value decomposition (SVD) method is used for
phase unwrapping according to the relationship between phase and acquisition time,
calculating the surface deformation sequence for the whole period [33]. According to the
interferometric combination condition, a free combination of N + 1 SAR images of the same
region can produce M interferograms, where M satisfies the following [14]:

N + 1
2
≤ M ≤ N

(
N + 1

2

)
(4)

Assuming that the SAR images at moments tA and tB (tA < tB) generate the j-th
interferogram, after removing the common quantities in the two observed phases using
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the previously acquired GCPs (Equation (2)), the differential interference phase at (x, r) in
azimuthal and distance coordinates can be expressed as [14]

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r) ≈ 4π

λ
[d(tB, x, r)− d(tA, x, r)] (5)

where φ(tA, x, r) and φ(tB, x, r) are the phase of the pixel point (x, r) at moments tA and
tB, respectively, and d(tA, x, r) and d(tB, x, r) are the displacement information in the radar
line-of-sight direction (RLOS) relative to the reference moment d(t0, x, r) = 0 at moments tA
and tB, respectively. In this study, we followed the literature [6,26] to define the positive
and negative displacements as uplift and subsidence, respectively. In addition, the two
deformation types were assumed to be vertical, and horizontal deformation was neglected.

The specific steps for PS-SBAS-InSAR processing (Figure 2) include (1) defining spa-
tiotemporal baseline thresholds to filter image pairs for matching; (2) differential inter-
ference processing to generate interferograms; (3) conducting phase wrapping of the
interferograms with flattening using the Delaunay 3D method; (4) constructing the observa-
tional equations based on the GCPs; (5) using the SVD method to solve the equations, then
calculating the annual average surface deformation rate; and (6) separating the modeling
residuals and deriving the time-series surface deformation.
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Figure 2. PS-SBAS-InSAR process for extracting surface deformation.

Many studies [33,34] have used intra-accuracy analysis to validate a method’s perfor-
mance and results when field monitoring data are not available. The estimated residuals
of the average surface deformation rate are calculated, and smaller residuals imply better
model performance.

2.2. The Landscape Metrics

Landscape metrics are typically used to quantitatively reflect the structural compo-
sition and characteristics of spatial patterns and can be calculated using Fragstats soft-
ware [34]. Usually, landscape metrics can be divided into path, class, and landscape. We
selected six class-level landscape metrics (Table 1) to further analyze the spatial pattern of
the deformation fields [35–37].
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Table 1. Remote sensing datasets of typical cities in the YRD.

Metric Abbreviation Category Description

Largest patch index LPI Area-Edge
Indicates the percentage of the
largest patches of a given type
over the entire landscape area.

Edge density ED Area-Edge
Refers to the length of the edge
between patches of landscape

elements.
Perimeter–area fractal

dimension index PAFRAC Shape Reflects the complexity of the
patch shape.

Landscape shape
index LSI Aggregation Reflects the complexity of the

landscape shape.

Landscape division
index DIVISION Aggregation

Represents the degree of
separation between patches of

a certain class.

Aggregation index AI Aggregation Indicates connectivity between
patches of the same class.

2.3. The Informer Model

For univariate time-series forecasting, it is usually necessary to find a suitable function
to establish the relationship between observations and time covariates, which can be
expressed as [38] 

vt ∼ f (Yt)

yt , [dt−1 ◦ xt]

Yt = [y1, . . . , yt]
T

(6)

where vt (t = 1, 2, . . .) is the observed value at time step t, which is the cumulative deforma-
tion rate in this study; xt (t = 1, 2, . . .) is a vector of time-based covariates that are assumed
to be known throughout a time period, such as a day of the week or an hour of the day;
and yt is an augmentation matrix where [· ◦ ·] is the concatenation.

In the traditional attentive layer, the multi-headed self-attentive sub-layer simulta-
neously transforms Y into query matrix Q = YWQ, key matrix K = YWK, and value
matrix V = YWV , where WQ, WK, and WK are the weight matrices. The self-attention (A)
is defined based on the tuple inputs A(Q, K, V), and the i-th query’s attention is defined
as [22] {

A(Q, K, V) = So f tmax
(

QKT
√

d

)
V

A(qi, K, V) = ∑j p
(

k j
∣∣qi
)
vj

(7)

where qi, ki, and vi are the i-th rows of the Q, K, and V matrices, respectively, and p
(

k j
∣∣qi
)

is the distribution of keys given the condition of query i. For multi-head self-attention, each
head takes the same optimization strategy [22]. However, an element in the sequence will
generally only have high similarity/association with a few elements, and the involvement
of each element in the computation leads to substantial computational complexity. The
Informer model proposes a ProbSparse self-attention from a probabilistic view, which
applies a criterion to measure the sparsity of self-attention. This criterion measures the
difference between the attention probability distribution (p) and the uniform distribution
(q) using Kullback–Leibler (KL) divergence and screens out the most important queries.
The measure of self-attention sparsity can be given as [23]

Attention probability : p
(

k j
∣∣qi
)
=

exp

(
qikj

T
√

d

)
∑l exp

(
qikl

T
√

d

)
Uni f orm probability : q

(
k j
∣∣qi
)
= 1

Lk

KL(q||p) = ∑j qln
(

q
p

) (8)
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If p
(

k j
∣∣qi
)

is close to q
(

k j
∣∣qi
)
, it indicates that query i cannot select the important key

and will be defined as ‘lazy’; conversely, it will be defined as ‘active’. These active queries
contribute more to self-attention and need to be selected to participate in dot product
operations. The similarity of p

(
k j
∣∣qi
)

and q
(

k j
∣∣qi
)

can be measured using KL divergence.
The larger the value of query sparsity, the greater the difference between the probability
distribution and the uniform distribution and the more active the query is. Therefore, the
self-attentiveness is further optimized in Informer as [23]

A(Q, K, V) = So f tmax

(
QKT
√

d

)
V (9)

The evaluation of sparsity followed by dot product operation can greatly reduce the
computational complexity and thus improve the efficiency of timing prediction. In addition,
the Informer model proposes self-attention distilling for down-sampling operations to
reduce the number of dimensions and network parameters, and it proposes a generative
style decoder for all predictions in one step. These optimizations make the Informer model
more suitable for the simulation and prediction of long time series. Here, the Informer
model is only applied to achieve the prediction of future surface deformation rates, and
more details about this model can be found in a previous study [23].

In addition, we applied four common metrics to measure the ability of the Informer
model to capture deformation time-series information, including the Mean Square Error
(MSE), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE), and Pearson product-
moment correlation coefficient (PCC).

3. Study Area and Datasets

The YRD (Figure 3) is located at the intersection of coastal and riverine economic zones,
encompassing a land area of 358,000 km2. By the end of 2019, the regional population was
about 227 million, with more than 60 percent being urban residents.
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The urban spatial pattern of the YRD can be described as “one core, five circles, and
four belts” [39]. “One core” refers to the core city of Shanghai; the “five circles” include
Nanjing, Hangzhou, Hefei, Su-Xi-Chang, and the Ningbo metropolitan area; and the
“four belts” refer to the four economic belts through which the major economic corridor
runs right through these five cities (Figure 3). The YRD has high urbanization rates and
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vulnerable geological environments, resulting in a region that is experiencing surface
deformation [7,10]. The surface deformation is strongly correlated with the urbanization
rate and intensity. Therefore, we selected 16 important cities across these five metropolitan
areas (excluding Zhoushan) as representatives. City centers are usually situated on flat
terrain and densely built up, so high-quality interference images can be acquired readily.
Therefore, we selected the central urban parts of these cities as our study areas and identified
the boundaries of each urban center according to local land-use planning departments.
The ascending SAR data for each city were collected from the ESA’s Sentinel-1A single-
observation composite data for a one-month interval from January 2019 to January 2021,
totaling 25 images (search.asf.alaska.edu (accessed on 13 August 2023)). Table 2 shows the
image information for the 16 cities, while Table 3 shows each orbit imaged for no more than
10 days in the same period (one month). In addition, we applied the DEM elevation data to
eliminate the topographic phases during the PS-SBAS-InSAR processing, where the 90 m
resolution STRM DEM was acquired from the Geospatial Data Cloud (www.gscloud.cn
(accessed on 13 August 2023)).

Table 2. Remote sensing datasets of typical cities in the YRD.

Category City Abbreviation Sentinel-1A
Footprint

Angle of
Incidence

Core city Shanghai SH 171-96 39.032◦

Nanjing metropolitan area
Nanjing NJ 69-99 39.037◦

Zhenjiang ZJ 69-99 39.037◦

Yangzhou YZ 69-99 39.037◦

Hangzhou metropolitan area

Hangzhou HZ 69-94 39.083◦

Jiaxing JX 69-94 39.083◦

Huzhou HuZ 69-94 39.083◦

Shaoxing SX 69-94 39.083◦

Hefei metropolitan area
Hefei HF 142-101 39.007◦

Wuhu WH 142-96 39.072◦

Maanshan Ma 69-99 39.037◦

Su-Xi-Chang metropolitan area
Suzhou SZ 69-99 39.037◦

Wuxi WX 69-99 39.037◦

Changzhou CZ 69-99 39.037◦

Ningbo metropolitan area Ningbo NB 171-91 38.867◦

Taizhou TZ 171-91 38.867◦

For the “Sentinel-1A footprint’ item, for example, for 171-96, 171 indicates the orbital number and 96 indicates the
map width number.

Table 3. The acquisition dates for different orbital data.

Image No.
Acquisition Date

Orbital No. 69 Orbital No. 142 Orbital No. 171

1 17 January 2019 22 January 2019 24 January 2019
2 22 February 2019 27 February 2019 17 February 2019
3 18 March 2019 23 March 2019 13 March 2019
4 11 April 2019 16 April 2019 6 April 2019
5 29 May 2019 22 May 2019 24 May 2019
6 22 June 2019 27 June 2019 17 June 2019
7 16 July 2019 21 July 2019 11 July 2019
8 21 August 2019 26 August 2019 16 August 2019
9 26 September 2019 19 September 2019 21 September 2019
10 20 October 2019 25 October 2019 15 October 2019
11 13 November 2019 18 November 2019 8 November 2019
12 19 December 2019 24 December 2019 14 December 2019
13 12 January 2020 17 January 2020 7 January 2020
14 17 February 2020 22 February 2020 12 February 2020
15 24 March 2020 29 March 2020 19 March 2020

search.asf.alaska.edu
www.gscloud.cn
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Table 3. Cont.

Image No.
Acquisition Date

Orbital No. 69 Orbital No. 142 Orbital No. 171

16 17 April 2020 22 April 2020 12 April 2020
17 23 May 2020 28 May 2020 18 May 2020
18 16 June 2020 21 June 2020 11 June 2020
19 22 July 2020 27 July 2020 17 July 2020
20 15 August 2020 20 August 2020 10 August 2020
21 20 September 2020 25 September 2020 15 September 2020
22 14 October 2020 19 October 2020 9 October 2020
23 7 November 2020 12 November 2020 2 November 2020
24 13 December 2020 18 December 2020 8 December 2020
25 18 January 2021 23 January 2021 13 January 2021

4. Results
4.1. Deformation Results and Assessment

A core concept of SBAS is to extract surface deformation information using only
interferometric pairs with short spatiotemporal baselines. We pre-processed the SAR
images by defining thresholds of 45% for spatial baselines and 200 days for temporal
baselines to segment datasets into subsets. Figure 4 shows the connection pattern of the
interferometric image pairs in SH, where the yellow dots indicated the super-master image,
while the green dots were the rest of the image. The connection pattern was uniform and
dense, satisfying the required number of image pairs.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 22 
 

 

7 16 July 2019 21 July 2019 11 July 2019 

8 21 August 2019 26 August 2019 16 August 2019 

9 26 September 2019 19 September 2019 21 September 2019 

10 20 October 2019 25 October 2019 15 October 2019 

11 13 November 2019 18 November 2019 8 November 2019 

12 19 December 2019 24 December 2019 14 December 2019 

13 12 January 2020 17 January 2020 7 January 2020 

14 17 February 2020 22 February 2020 12 February 2020 

15 24 March 2020 29 March 2020 19 March 2020 

16 17 April 2020 22 April 2020 12 April 2020 

17 23 May 2020 28 May 2020 18 May 2020 

18 16 June 2020 21 June 2020 11 June 2020 

19 22 July 2020 27 July 2020 17 July 2020 

20 15 August 2020 20 August 2020 10 August 2020 

21 20 September 2020 25 September 2020 15 September 2020 

22 14 October 2020 19 October 2020 9 October 2020 

23 7 November 2020 12 November 2020 2 November 2020 

24 13 December 2020 18 December 2020 8 December 2020 

25 18 January 2021 23 January 2021 13 January 2021 

4. Results 

4.1. Deformation Results and Assessment 

A core concept of SBAS is to extract surface deformation information using only in-

terferometric pairs with short spatiotemporal baselines. We pre-processed the SAR im-

ages by defining thresholds of 45% for spatial baselines and 200 days for temporal base-

lines to segment datasets into subsets. Figure 4 shows the connection pattern of the inter-

ferometric image pairs in SH, where the yellow dots indicated the super-master image, 

while the green dots were the rest of the image. The connection pattern was uniform and 

dense, satisfying the required number of image pairs. 

 

Figure 4. Spatiotemporal baselines and interferometric image pairs involved in Delaunay 3D un-

wrapping (for the SH city). 

We then applied the PS-SBAS-InSAR technique to calculate the annual average de-

formation rates of 16 typical cities over the two years (January 2019–January 2021). Figure 

5 shows that there was a correlation among the spatial patterns of deformation fields in 

geographically neighboring cities. During the monitoring period, the geographically con-

tiguous zones in the northwest corner of the WX city and the southwest corner of the CZ 

city showed a more pronounced uplift, and a similar trend was observed in the HZ and 

SX cities. In addition, we categorized the annual mean surface deformation rate into 12 

Figure 4. Spatiotemporal baselines and interferometric image pairs involved in Delaunay 3D un-
wrapping (for the SH city).

We then applied the PS-SBAS-InSAR technique to calculate the annual average defor-
mation rates of 16 typical cities over the two years (January 2019–January 2021). Figure 5
shows that there was a correlation among the spatial patterns of deformation fields in
geographically neighboring cities. During the monitoring period, the geographically con-
tiguous zones in the northwest corner of the WX city and the southwest corner of the
CZ city showed a more pronounced uplift, and a similar trend was observed in the HZ
and SX cities. In addition, we categorized the annual mean surface deformation rate into
12 classes at 2 mm/year intervals and calculated the percentage of pixels in each grade
(Figure 5b). Most of the pixels were distributed within [−4, 4] mm/year, suggesting that
the YRD typically experienced slight deformation during the observational period (January
2019–January 2021).
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Figure 5. Geographic distribution and grading statistics of RLOS annual average deformation rate.

Table 4 presents the average deformation rates with estimated residuals for the period
January 2019–January 2021 in the 16 study areas. The standard deviation of the estimated
residuals for all cities was <2 mm/year, demonstrating the validity of the Informer model.
The mean of the annual average deformation rates of all pixels is a more important indicator
of the deformation to characterize the entire region. The mean values showed an overall
uplift in the ZJ and CZ cities during the observation period and a subsidence in other cities.
The HZ, NB, and TZ cities exhibited typical significant subsidence trends with average
deformation rates of <−3 mm/year.

Table 4. RLOS annual average deformation rate and its estimated residuals (January 2019–January
2021).

Category City

Average Deformation Rate
(mm/year)

Estimated Residuals
(mm/year)

Low High Mean Mean Standard
Deviation

Core city SH −14.988 6.004 −1.817 2.103 1.922

Nanjing metropolitan
area

NJ −59.050 9.016 −1.345 2.486 1.139
ZJ −29.431 21.386 1.359 2.843 1.344
YZ −24.027 15.314 −0.034 2.635 1.380

Hangzhou metropolitan
area

HZ −40.213 12.898 −3.937 1.961 0.916
JX −20.627 9.832 −2.511 2.379 0.969

HuZ −52.280 18.304 −1.824 2.516 1.072
SX −28.226 9.599 −0.697 2.647 1.611

Hefei metropolitan area
HF −28.017 17.880 −0.152 2.955 1.350
WH −51.116 67.897 −0.956 3.274 1.168
Ma −34.247 6.921 −2.972 3.343 1.571

Su-Xi-Chang
metropolitan area

SZ −16.831 9.391 −0.312 2.203 1.230
WX −29.147 11.381 −0.282 2.337 1.737
CZ −16.259 13.532 3.832 2.417 1.223

Ningbo metropolitan
area

NB −67.455 37.083 −3.247 3.514 1.909
TZ −73.640 34.860 −3.551 3.355 1.577
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The respective spatial visualization (Figure 6) reveals that most of the study areas
displayed uniformity and minor local changes, such as in the YZ and HF cities. In contrast,
the average deformation rate in the HZ city had a more distinct spatial pattern, gradually
transitioning from an uplift in the northwestern region to subsidence in the southeastern
region. Similarly, the JX city displayed a gradual shift from subsidence to uplift from west
to east. Furthermore, there were clear uplift areas to the northwest of the WX city and
southeast of the CZ city.
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We classified local areas of each city into three categories based on average annual
deformation rates: subsidence (<−2 mm/year), uplift (>2 mm/year), and terrain stability
zones (others). We then selected six class-level landscape metrics to delineate the spatial
patterns of the surface subsidence and uplift classes in terms of area/edge, shape, and
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aggregation. Table 5 shows that the subsidence class in the SH city had an LPI of 9.1%,
a PAFRAC of 1.3, and an AI of 93.7%, indicating the existence of subsidence areas with
high aggregation. The LPIs in the NJ, YZ, HuZ, and SZ cities did not exceed 1%, while
the DIVISIONs all reached 1. These results suggest that the subsidence and uplift were
relatively steady in these four cities, and the deformation was sporadically distributed
across the region. The ZJ, WX, and CZ cities had more dispersed subsidence areas and
more concentrated uplift areas. The CZ city had a wide range of uplift areas, with an LPI of
11.9% in the uplift class. In addition, the HZ, JX, and NB cities showed more concentrated
subsidence (LPI > 5.0) and more dispersed uplift (LPI < 0.5). These metrics indicate that
similar deformation patterns may exist among geographically neighboring cities.

Table 5. Landscape metrics (class-level) for RLOS annual average deformation rate.

City

Subsidence Uplift

Area-Edge Shape Aggregation Area-Edge Shape Aggregation

LPI
(%)

ED
(m/ha) PAFRAC LSI DIVISION AI

(%)
LPI
(%)

ED
(m/ha) PAFRAC LSI DIVISION AI

(%)

SH 9.137 25.745 1.263 66.69 0.990 93.741 0.026 1.519 1.255 30.397 1.000 78.069
NJ 0.765 11.281 1.261 61.849 1.000 88.521 0.346 4.196 1.267 40.356 1.000 86.967
ZJ 0.046 3.654 1.196 27.98 1.000 77.849 1.801 18.892 1.265 42.553 0.999 90.016
YZ 0.098 9.165 1.223 57.061 1.000 79.217 0.414 9.563 1.26 51.796 1.000 83.596
HZ 6.633 28.834 1.274 64.266 0.993 91.756 0.448 9.344 1.268 43.079 1.000 88.641
JX 5.784 22.396 1.273 34.192 0.996 90.848 0.386 5.856 1.227 20.558 1.000 87.533

HuZ 0.521 19.259 1.256 47.76 1.000 85.650 0.124 3.241 1.202 24.258 1.000 78.181
SX 2.331 14.676 1.265 36.628 0.999 88.549 1.136 11.861 1.259 33.508 1.000 88.190
HF 0.259 15.051 1.277 57.557 1.000 81.654 0.261 12.367 1.271 50.56 1.000 82.807
WH 1.062 11.967 1.247 67.633 1.000 88.582 0.156 9.659 1.228 71.2 1.000 84.280
Ma 21.353 51.903 1.295 37.896 0.954 90.950 0.093 1.224 1.199 9.266 1.000 78.197
SZ 0.772 11.434 1.245 44.454 1.000 85.050 0.163 7.334 1.261 37.496 1.000 83.475
WX 0.316 15.628 1.25 57.279 1.000 86.054 2.505 10.121 1.252 39.172 0.999 90.016
CZ 0.068 1.518 1.195 24.082 1.000 79.840 11.851 26.357 1.258 60.167 0.986 92.637
NB 6.103 16.099 1.279 92.438 0.996 92.047 0.219 8.330 1.24 86.289 1.000 86.608
TZ 3.757 33.883 1.3 86.533 0.998 89.427 0.083 13.720 1.262 78.294 1.000 78.599

4.2. Deformation Time-Series Analysis

Time-series analysis was required to further explore the spatial and temporal distribu-
tion characteristics of surface deformation in the YRD. Using Jan 2019 as the starting point,
we calculated the displacements against Jan 2019 for the remaining 24 months. Negative
and positive displacements denote subsidence and uplift, respectively. We selected SH (a
coastal city), HF (an inland city), and CZ (a typical uplift city) as examples to show the
time-series surface deformation every three months (Figures 7–9). The maps show the
changes in the spatial distribution of deformation, while each curve represents an uplift or
subsidence process at a different sampling point against January 2019.

Figure 7 shows the spatial distribution of surface deformation in the SH city from
January 2019 to January 2021. Overall, the SH city was observed to have minor deformation
in local areas, including subsidence in the peripheral regions and uplift in the central region.
Subsidence in the SH city showed an initial rise until July 2021, reaching a peak of about
10 mm, followed by a gradual decline until the end of the observation period. In contrast,
there were more fluctuations in the uplift in the SH city, with two typical inflection points
in January 2021 and July 2021, but it still showed an increase at the end of the observation
period.

Figure 8 illustrates the changes in surface deformation over time in the HF city, with a
typical subsidence funnel in the southeastern part. The subsidence in this funnel increased
over time and stabilized by September 2021. The uplift in the HF city was characterized
by alternating subsidence and uplift, as in the southern part. The uplift curves also show
that two typical inflection points occurred in January 2021 and July 2021. These suggest
that the deformation pattern was not temporally constant and may have shifted between
subsidence and uplift.
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The surface deformation in the CZ city from January 2019 to January 2021 showed high
regularity (Figure 9), with a general upward trend that continued to rise slowly, peaking
in September 2020 (>15 mm). Over time, the distribution of the uplifted areas shifted
from dispersed to clustered, with a trend of a gradual southward shift in location. At the
monitoring start time, the subsidence area was distributed in the southernmost part of
central CZ city and then gradually moved northward. The subsidence first increased then
decreased, reaching about −5 mm at the end of the observation.
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4.3. Future Deformation Prediction

As the Informer model requires long time-series data, we expanded the data from
25 samples (with an interval of 1 month) to 2194 (with an interval of 8 h) using cubic spline
interpolation while randomly selecting 10% of the samples to add Gaussian noise (error
level 0.1). We used 80% of the new samples for training and the remaining 20% for testing.
The Informer model was assigned an input sequence length of 120, a label length of 60,
and a predicted future sequence length of 180. By default, the training epoch was set to 6,
with a batch size of 32 and a learning rate of 0.0001. We then used the Informer models to
predict future surface deformations for the next 2 months (180 time steps).

The surface deformation of the 16 selected typical cities in the YRD varied temporally
but was expected to stabilize in the future (Figure 10). Some cities, such as YZ and WH,
even showed a tendency for subsidence accumulation approaching zero. Geographically
neighboring cities tended to have similar deformation trends. For example, the subsidence
in the SZ, WX, and CZ cities typically showed an increasing pattern and then decreased
over time, with a final subsidence of about −5 mm. These phenomena demonstrate the
regional correlation of surface subsidence throughout the YRD. In addition, a few cities,
including HZ, JX, and SZ, displayed more evident inflection points and thus required
further attention.

Figure 11 shows the changes in uplift for typical cities in the YRD over the next
2 months, as predicted by the Informer model. Throughout the observational period,
there were increased levels of uplift in the SH and NB cities, which were more volatile,
with multiple extremes and inflection points. In contrast to the subsidence trends, most
cities will still experience uplift in the future, which may reach about 5 mm by March
2021. Furthermore, the deformation patterns of the SH, NB, and TZ cities displayed great
fluctuations compared to other cities, likely due to their proximity to the East China Sea,
which is subject to more tidal action and sedimentation [3,40].
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Figure 10. Prediction of RLOS surface subsidence in typical cities of the YRD (February 2021–March
2021).

Table 6 shows that the RMSE of the time-series fit in most cities did not exceed 2
mm/year and that all the PCCs were greater than 0.9. This indicates that the Informer
model can accurately capture the historical subsidence changes.

Table 6. Assessment of Informer model for RLOS time-series deformation (January 2019–January
2021).

City
Subsidence Uplift

MSE
(mm/year)

RMSE
(mm/year)

MAE
(mm/year) PCCs MSE

(mm/year)
RMSE

(mm/year)
MAE

(mm/year) PCCs

SH 5.298 2.302 1.547 0.963 1.167 1.080 0.899 0.980
NJ 1.265 1.125 1.048 0.953 0.796 0.892 0.745 0.986
ZJ 1.034 1.017 0.929 0.998 1.123 1.060 1.000 0.933
YZ 0.890 0.944 0.647 0.978 0.185 0.430 0.374 0.992
HZ 3.127 1.768 1.610 0.870 0.089 0.299 0.241 0.946
JX 5.989 2.447 2.226 0.782 0.358 0.598 0.511 0.906
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Table 6. Cont.

City
Subsidence Uplift

MSE
(mm/year)

RMSE
(mm/year)

MAE
(mm/year) PCCs MSE

(mm/year)
RMSE

(mm/year)
MAE

(mm/year) PCCs

HuZ 4.081 2.020 1.968 0.969 2.298 1.516 1.377 0.964
SX 1.510 1.229 1.079 0.298 0.524 0.724 0.541 0.987
HF 2.599 1.612 1.383 0.994 0.148 0.384 0.294 0.956
WH 1.769 1.330 1.181 0.754 3.225 1.796 1.666 0.690
Ma 1.233 1.111 0.924 0.978 0.533 0.730 0.566 0.928
SZ 0.384 0.620 0.504 0.954 0.608 0.780 0.697 0.819
WX 0.142 0.377 0.305 0.955 1.134 1.065 0.998 0.596
CZ 0.528 0.727 0.570 0.587 1.957 1.399 1.217 0.783
NB 1.846 1.359 1.144 0.943 4.485 2.118 1.512 0.651
TZ 1.000 1.000 0.837 0.941 0.945 0.972 0.869 0.996

Figure 11. Prediction of RLOS surface uplift in typical cities of the YRD (February 2021–March 2021).

5. Discussion

Large-scale short-term monitoring and prediction of ground deformation can effec-
tively prevent and mitigate geohazards, ensuring sustainable urban development. Rapid
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economic development has led to the integration of towns and cities; therefore, geohazards
are not usually based on administrative districts. Therefore, our study focused on the
correlation of deformations among regions in the rapidly urbanizing and developing YRD.
We monitored the surface deformation of 16 typical cities in the YRD from January 2019
to January 2021 using PS-SBAS-InSAR technology and successfully captured the spatial
pattern and temporal evolution of deformation in each city. We used time-series analysis
and landscape metrics to further delineate the spatiotemporal distribution and evolution of
deformation in the YRD. Then, we reprocessed the time-series InSAR results and applied
the Informer models to derive the uplift/subsidence intensity and trend for each city for
the next 2 months (February 2021–March 2021).

The PS-SBAS-InSAR technique can provide complete and precise surface deformation
sequences, and the standard deviations of the estimated residuals are basically < 2 mm/year
for the representative cities of the YRD. Our findings are consistent with the conclusions in
the literature [3,12] on urban surface deformation in the YRD region. In 2017, Han et al. [3]
reported a maximum subsidence rate of −30.2 mm/year for the typical area of Shaoxing in
2013–2015, while the maximum subsidence rate in our study was −28.2 mm/year, both of
which were very close to each other. These results prove that our approach is correct and
effective for short-term monitoring and forecasting on a large scale [41].

All 16 representative cities experienced minor subsidence and uplift from January
2019 to January 2021, with mean deformation rates in the range of [−4, 4] mm/year. The
deformation intensities within the monitoring period varied across space, but geographi-
cally neighboring cities had relatively similar deformation distributions (e.g., the WX and
CZ cities). The distribution of the average deformation rate (Figures 5 and 6) suggests
that if one type of deformation (subsidence/uplift) is spatially concentrated, another type
of deformation (uplift/subsidence) may be spread out in its vicinity. Landscape metrics
subsequently quantified this phenomenon, which led to the recommendation that if local
deformation is identified, it is necessary to broaden the monitoring area and make a unified
decision about a large-scale area.

The trends of time-series deformation in 16 cities could not be fully expressed by the
same specific mathematical expression [32]. However, cities within the same metropolitan
area had highly similar temporal variations, such as the ZJ and YZ cities in the Nanjing
metropolitan area and the HZ and JX cities in the HZ metropolitan area. Time series of
deformation in many cities had one or several distinct inflection/extreme points, suggesting
that the pattern of deformation is not static and may shift between subsidence and uplift.
Interestingly, most of these points occurred near March, in spring, and July, in summer. In
the Yangtze River Delta region, the early spring is cold and dry, and the summer is hot and
rainy with frequent typhoons, so the change in soil water content is obviously seasonal.
Studies have shown that changes in soil moisture content would lead to decreases in the co-
hesion and friction angle of compacted soil, thereby leading to ground deformation [42,43].
This further demonstrates the necessity for surface deformation monitoring on a large scale,
especially in areas sharing the same hydrogeological unit. Therefore, we propose actively
taking advantage of policies to achieve coordination and cooperation in the development,
utilization, and management of groundwater resources in the YRD and jointly managing
the regional surface deformation.

The Informer model provides a powerful tool for predicting future deformation
patterns [23]. It is capable of capturing the variability in time-series deformation in the YRD.
The predicted results of subsidence and uplift indicate that the 16 selected cities will have
relatively stable deformation trends in the short term and will not show large fluctuations.
This cumulative time-series slowdown was also evidenced in the early literature [44].
Nevertheless, consistent and precise monitoring of these regions is still necessary to assess
potential risks and formulate appropriate measures for hazard prevention.

Additionally, the Informer model used in this study offers greater flexibility and adapt-
ability than conventional time-series prediction models [23]. Several time-series models for
InSAR deformation monitoring, such as recurrent neural networks, are thought to be sensi-
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tive to fixed input sequence lengths and require manual adjustment and preprocessing [45].
The Informer model features a highly configurable architecture that can process time-series
data of varying lengths, frequencies, and characteristics. We compared the Informer model
and the Long Short-Term Memory (LSTM) network in predicting the sinking of the city of
Shanghai over the next two months (Figure 12). The Informer model had a smaller (by 1.5)
RMSE than the LSTM model, indicating a better performance of the former in capturing
the variations in the time-series data. The two methods are both neural network models,
and they need to update their network layers in real time to capture temporal features
when making predictions, whereas to capture the variation patterns of small samples
requires identifying global signatures. LSTM is a model that captures local features and
is susceptible to gradients, resulting in a possible failure to reflect the hidden patterns of
small samples [45]. The Informer model introduces a global focus mechanism that allows
the model to establish periodic dependencies between different time steps of the input time
series. This helps the Informer model to be suitable for short-term predictions of surface
deformation with smaller samples.
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(the SH city).

In the future, we will consider acquiring local groundwater data and engineering
construction data to quantitatively analyze their correlations with deformation, optimize
prediction models, and offer recommendations for managing surface deformation on a
large scale.

6. Conclusions

In this study, we acquired 25 Sentinel-1 images from January 2019 to January 2021. We
used the PS-SBAS InSAR technique to capture the surface deformation of 16 representative
cities in the YRD and then applied the Informer model to make short-term predictions of fu-
ture deformation trends. The results show that from January 2019 to January 2021, the YRD
experienced slight deformation, with an average deformation rate within [−4, 4] mm/year.
The Informer model successfully captured the time-series change in deformation, and
its predicted deformation trend will slow down in the next 2 months. Nevertheless, we
still recommend continuous monitoring of surface deformations in the YRD to support
sustainable urban development.

We found that surface deformation in the YRD is regionally correlated. At a small
scale (within an urban area), a concentrated distribution of deformation (subsidence/uplift)
may be accompanied by some scattered distribution of another kind of deformation (up-
lift/subsidence). At a large scale (within an urban agglomeration), spatially neighboring
cities may have a correlated deformation distribution and similar deformation time-series
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trends. Therefore, we suggest that there is a critical need to establish a comprehensive,
large-scale monitoring network for ground deformation dynamics within urban conglom-
erates (e.g., the YRD). In addition, it is essential to take advantage of policies to jointly
prevent and manage geological hazards.

Our methods contribute to resolving the problems of insufficient monitoring of large-
scale deformation in coastal areas and attaining short-term high-precision time-series
predictions with small samples. Future work will expand the scope and duration of
monitoring while identifying the drivers of surface deformation, such as infrastructure
development, groundwater extraction, and land reclamation. The drivers will then be
added to the predictive model to optimize model performance and inform the prevention
and management of large-scale surface deformation.
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