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Abstract: In China’s second-largest wheat-producing region, the mid-lower Yangtze River area, cold
stress impacts winter wheat production during the pre-heading growth stage. Previous research
focused on specific growth stages, lacking a comprehensive approach. This study utilizes Unmanned
Aerial Vehicle (UAV) multispectral imagery to monitor Soil-Plant Analysis Development (SPAD)
values throughout the pre-heading stage, assessing crop stress resilience. Vegetation Indices (VIs)
and Texture Indices (TIs) are extracted from UAV imagery. Recursive Feature Elimination (RFE)
is applied to VIs, TIs, and fused variables (VIs + TIs), and six machine learning algorithms are
employed for SPAD value estimation. The fused VIs and TIs model, based on Long Short-Term
Memory (LSTM), achieves the highest accuracy (R2 = 0.8576, RMSE = 2.9352, RRMSE = 0.0644,
RPD = 2.6677), demonstrating robust generalization across wheat varieties and nitrogen management
practices. This research aids in mitigating winter wheat frost risks and increasing yields.

Keywords: unmanned aerial vehicle (UAV); machine learning; winter wheat; SPAD value; texture
indices; vegetation indices

1. Introduction

With the increasing frequency of extreme weather events, the vulnerability of winter
wheat to low-temperature stress in the Yangtze River’s middle and lower reaches has
become an unavoidable challenge in production. Against this backdrop, to breed crops
capable of withstanding environmental stress, it becomes imperative to consider the entire
growth process of winter wheat through its susceptibility to low-temperature stress during
key developmental stages, including tillering, green-up, jointing, and booting stages [1].

During the winter tillering stage, the invasion of northern cold air outbreaks leads to
low-temperature freezing damage, affecting stem internodes’ elongation, and resulting in
phenomena such as shortened internodes and reduced plant height [2]. Long-standing low-
temperature frozen damage has been a significant obstacle to the growth and development
of winter wheat during the tillering stage [3]. Even more critical is the occurrence of “late
spring frost” events (spring freezing damage) during the crucial period for winter wheat
growth in the Yangtze River’s middle and lower reaches: the green-up—jointing—booting
period (mid-February to mid-April) [4]. Data reveal that from 1961 to 2015, Jiangsu Province
experienced an average of 3.8 late spring frost events each year, with an average duration of
3.2 days and a high occurrence rate of moderate-to-severe late spring frost events reaching
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22% [5]. As winter wheat transitions from the green-up to the jointing stage, completing the
vernalization and photoperiod phases, temperatures gradually rise, and the plant enters a
rapid growth and development stage. However, its cold resistance is relatively weak [6,7].
Low temperatures during the booting stage could even affect pollen fertility, increase the
number of degenerated spikelets and florets, and consequently reduce the number of grains
per spike [8]. During late spring frost events, especially following a sharp temperature
drop, external morphological and internal structural damage or even death of crops can
occur, resulting in a 10% to 20% reduction in winter wheat yield. In exceptional years, this
reduction could reach 30% to 40% or even more [9,10].

Therefore, timely and accurate monitoring of the critical developmental stages of
winter wheat susceptible to low-temperature stress (including tillering, green-up, jointing,
and booting stages) holds the potential to provide substantial support for the selection
of cold-resistant varieties, enabling them to better adapt to harsh low-temperature envi-
ronments [11]. Furthermore, to cultivate robust seedlings, precise acquisition of growth
information will aid in fostering more resilient plants, enhancing their capacity to withstand
low-temperature stress [12]. It’s worth emphasizing that, in the event of low-temperature
stress, implementing appropriate supplemental fertilization measures can assist crops in
recovering growth promptly, effectively mitigating the adverse impact on crop growth and
yield [13].

The chlorophyll content is a crucial indicator reflecting a crop’s stress resistance and
growth status. Under low-temperature stress, the synthesis rate of chlorophyll may be
limited, resulting in reduced chlorophyll content in leaves [14,15]. Simultaneously, a close
correlation exists between chlorophyll concentration and nitrogen content within leaves [16].
The crop’s nitrogen requirements change throughout the stages from tillering to booting
in wheat. With the supply and consumption of nitrogen, there are corresponding shifts in
leaf color and nutritional status [17]. Understanding the dynamic changes in chlorophyll
content can aid in determining the optimal timing for nitrogen fertilizer application, thereby
sustaining average plant growth and development. This insight provides a valuable
reference for mitigating the damage caused by low-temperature stress.

The SPAD-502 m (Minolta Camera Co., Osaka, Japan) measures leaf transmittance of
650 nm red light (chlorophyll absorption) and 940 nm near-infrared light (to correct for
leaf thickness), with the ratio of these two transmission values referred to as the SPAD
value [18]. Its SPAD readings provide a non-destructive estimation of leaf chlorophyll
content in crops and have been widely used to assess plant photosynthesis and growth
status [19–21]. Numerous studies have demonstrated that applying the SPAD chlorophyll
meter can rapidly determine the relative chlorophyll content in wheat leaves, facilitating the
diagnosis of the crop’s nitrogen nutritional status and nitrogen fertilizer management [22].
Compared to traditional management approaches, wheat nitrogen application has been
reduced by approximately 18.8%, increasing wheat yield and nitrogen use efficiency [23,24].
Typically, SPAD value measurements are taken on the first fully expanded leaf or flag
leaves at different developmental stages. During the growth stages of wheat nutrition,
SPAD values provide valuable information about the crop’s nutritional status and allow
for supplementary nitrogen application if necessary. During the booting stage of wheat,
SPAD values offer the most accurate yield prediction [25].

However, the use of handheld SPAD-502 m struggles to meet the demands of large-
scale wheat growth monitoring. In recent years, non-destructive detection techniques
primarily centered around acquiring multispectral images from unmanned aerial vehicles
(UAVs) have been widely applied in research concerning wheat leaf chlorophyll content and
distribution. Wu et al. [26] employed a multispectral UAV to capture images of wheat at dis-
tinct nitrogen application levels, spanning 7, 14, 21, and 28 days post-heading. Their study
involved the development of 26 multispectral Vegetation Indices (VIs) and the application
of four machine learning algorithms: Deep Neural Network (DNN), Partial Least Squares
(PLS), Random Forest (RF), and Adaptive Boosting (Ada). These algorithms were harnessed
to construct models for estimating SPAD values corresponding to various post-heading
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time points. The findings highlighted the PLS model as the most adept in forecasting wheat
SPAD values specifically 14 days after heading. Wang et al. [27] used UAVs to obtain multi-
spectral images of winter wheat at three key growth stages (heading, flowering, and grain
filling) under two water treatments (regular irrigation and drought stress). They selected
optimal VIs and nine machine learning algorithms (Cross-Validated Ridge Regression,
Ridge Regression, Ada, Bagging Regressor, K-Neighbor, Gradient Boosting Regressor, RF,
Support Vector Machine (SVM), and Lasso) to build chlorophyll content estimation models
for the three growth stages under the two water treatments. The results indicated that the
prediction models for chlorophyll content exhibited high accuracy under different water
treatment conditions. The highest prediction accuracy under regular irrigation occurred
during the heading stage using the Ridge Regression Cross-Validation model (R2 = 0.63,
RMSE = 3.28, NRMSE = 16.2%).

However, the extraction of spectral features often encounters highly complex chal-
lenges. To overcome the influence of linear and nonlinear imaging conditions, Wang
et al. [28] proposed Spectral Correlation based on Spatial Correlation (SSC-SRM) utilizing
more accurate spectral characteristics. They employed a Mixed Space Attraction Model
(MSAM) based on linear Euclidean distance to obtain spatial correlations. Additionally, a
spectral correlation based on nonlinear Kullback–Leibler distance (KLD) was introduced.
Combining spatial and spectral correlations to mitigate the effects of both linear and nonlin-
ear imaging conditions resulted in improved mapping outcomes. The spectral characteris-
tics utilized were directly extracted from spectral images, thus avoiding spectral unmixing
errors. Results demonstrated that SSC-SRM outperforms existing methods. Shang et al. [29]
aimed to eliminate the impact of uninteresting targets with similar spectral signatures on
target detection. They developed a novel method called Target-Constrained Interference
Minimization Band Selection (TCIMBS) for selecting bands for specific target detection
while suppressing unwanted targets and interference sources in the background. The
concept was inspired by the Target-Constrained Interference Minimization Filter (TCIMF).
By leveraging TCIMF, they derived two Band Priority (BP) criteria, namely Forward Mini-
mum Variance FMinV-BP and Backward Maximum Variance BMaxV-BP, as well as three
Band Selection (BS) corresponding criteria, referred to as Sequential Forward TCIMBS
(SF-TCIMBS), Sequential Backward TCIMBS (SB-TCIMBS), and Improved SB-TCIMBS
(SB-TCIMBS*). Experimental results demonstrated that TCIMBS can enhance detection
accuracy and achieve superior performance compared to existing methods.

To our best knowledge, when it comes to remote sensing monitoring of wheat chloro-
phyll content, many researchers have predominantly focused on studying sample data
from individual growth stages, lacking generality across multiple growth stages [30]. The
primary issue with VIs calculated from spectral measurements in the red and near-infrared
bands is the saturation that occurs when vegetation coverage is high [31–33]. Another
concern is that they often lose sensitivity during the reproductive growth stage [34], making
it inadequate to rely solely on spectral characteristics to accurately estimate crop parameters
for wheat across multiple growth stages [35]. The same crop, but with different varieties
or varying nitrogen management approaches, significantly impacts agricultural remote
sensing models [36,37]. This complexity makes it challenging to establish a single crop
parameter estimation model effective across multiple growth periods.

Previous research has indeed discovered that variations in crop nutrient content lead
to different chlorophyll levels, resulting in significant color changes in wheat leaves and
influencing alterations in crop morphological structures [38]. Texture Indices (TIs) extracted
from remote sensing imagery, based on spatial variations in pixel intensities within the
image, can emphasize crop canopies’ structure and geometric characteristics [39]. This
approach can partly address the saturation issue when estimating crop growth parameters
using VIs and counteract the sensitivity loss during the reproductive growth stage [33,40].
While spectral features cannot describe the overall spatial distribution of chlorophyll,
relying solely on image texture features cannot accurately reflect internal chlorophyll
content [41]. The combined use of spectral and texture information from multispectral
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imagery can enhance the reliability and accuracy of results [42,43]. Guo et al. [44] extracted
common spectral VIs and TIs from multispectral UAV images and employed a stepwise
regression model to select the optimal combination of spectral and TIs for predicting SPAD
values of maize at different growth stages. The results demonstrated a strong correlation
between VIs and TIs with SPAD values. Furthermore, combining VIs and TIs improved the
accuracy of predicting SPAD values of maize.

Due to substantial differences in plant structure, leaf size, morphology, arrangement,
and plant density between wheat and maize, wheat’s texture features differ significantly
from those of maize [45]. However, the role of texture features in estimating wheat SPAD
values still requires further exploration.

In summary, this study hypothesizes that in the winter wheat region of the Yangtze
River’s middle and lower reaches, integrating VIs and TIs from multispectral UAV im-
agery can enable the accurate monitoring of winter wheat’s SPAD values. This approach
establishes SPAD value estimation models applicable across multiple key growth and
developmental stages (tillering, green-up, jointing, and booting stages), various wheat vari-
eties, and different nitrogen management approaches. Such models can assist in promptly
adjusting agricultural management measures, thereby mitigating the damage caused by
extreme weather events like late spring frost and alleviating the impact of low-temperature
stress on winter wheat growth and yield.

To validate this hypothesis, the study focuses on winter wheat, collecting multispectral
UAV imagery and actual SPAD measurements during the tillering, green-up, jointing, and
booting stages. Extracted and constructed VIs, TIs, and a fusion of VIs and TIs are subjected
to machine learning algorithms. The study aims to construct and determine the optimal
SPAD value estimation models suitable for multiple growth stages of winter wheat, various
wheat varieties, and different nitrogen management approaches.

2. Materials and Methods
2.1. Experimental Site and Design

The Yangtze River’s middle and lower reaches, situated in the transitional climate zone
between northern and southern China, constitute China’s second-largest wheat-producing
region. The wheat–rice rotation system is one of the primary cultivation systems employed
in this region [46]. Due to global climate warming and issues related to tight cropping
schedules, the winter wheat varieties cultivated in this area gradually tend toward spring
growth characteristics [13]. However, spring wheat’s overall frost resistance remains
weaker compared to winter and semi-winter wheat varieties [2].

This experiment was conducted during the winter wheat growing season 2022–2023
at the Jiangsu Modern Agricultural Technology Comprehensive Demonstration Base in
Jiangyan District, Jiangsu Province, China (Figure 1). The experimental field consisted of
72 plots, with the initial 48 plots designated for Experiment 1 and the subsequent 24 plots
allocated to Experiment 2. Both Experiment 1 and Experiment 2 focused on investigating
nitrogen fertilizer management in wheat cultivation; however, they differed in research
subjects and design approaches.

Experiment 1 involved the selection of four distinct wheat varieties, namely Yangmai
25 (YM 25), Yangmai 39 (YM 39), Ningmai 26 (NM 26), and Yangmai 22 (YM 22). The
experiment encompassed five different nitrogen treatments, including a control group with
0 kg/ha and treatment groups with pure nitrogen fertilizer rates of 150 kg/ha, 240 kg/ha,
and 330 kg/ha. Employing a split-plot design, the primary plots corresponded to the
nitrogen fertilizer treatments, while the subplots represented the wheat varieties.

Experiment 2 centered on two different wheat varieties, YM 39 and YM 22, and incor-
porated varied nitrogen application methods, including broadcasting, furrow application,
and spaced furrow application. Two nitrogen fertilizer types, urea and resin-coated urea,
were applied at a consistent rate of 240 kg/ha. Similar to Experiment 1, the experimen-
tal setup utilized a split-plot design, where the main plots were attributed to the wheat
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varieties, the subplots denoted the fertilizer types, and the sub-subplots represented the
fertilizer application methods.

For both Experiment 1 and Experiment 2, the wheat sowing was carried out manually
with rows spaced at 25 cm intervals. Each experimental plot covered an area of 12 m2 and
was replicated three times.
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2.2. Data Collection and Processing
2.2.1. Multispectral UAV Data Collection and Processing

The collection of multispectral UAV imagery data for this experiment took place on
18 December 2022, 28 February 2023, 16 March 2023, and 11 April 2023, corresponding to
the tillering stage (Feekes Scale [47] Feekes 2), green-up stage (Feekes 4–5), jointing stage
(Feekes 6–8), and booting stage (Feekes 9–10) of winter wheat, respectively. Data collection
was facilitated using the DJI P4M UAV (SZ DJI Technology Co.; Shenzhen, China). This
UAV was outfitted with five multispectral sensors, corresponding to the blue (B), green (G),
red (R), red edge (Re), and near-infrared (NIR) spectral ranges. The data-gathering activities
were conducted during the time window of 9:00 a.m. to 11:00 a.m., specifically chosen
for clear weather and the absence of wind to minimize potential artifacts like hotspots in
the captured images. All UAV flights were initiated from a fixed location and adhered to
the same launching protocol. Before each flight, two diffuse reflectance standard panels
possessing 50% and 75% reflectance properties were strategically positioned to enable
radiometric calibration. The flight missions were meticulously planned using the DJI
Ground Station Pro version 2.0.17 application (https://www.dji.com/cn/ground-station-
pro, accessed on 17 May 2023). This software factored in the solar azimuth angle to generate
flight paths automatically. The UAV operated at a flight altitude of 20 m, translating to a
spatial resolution of 1.06 cm, while maintaining a constant flight speed of 3 m/s. Overlap
settings of 80% were adopted in both along-track and across-track directions to ensure
comprehensive coverage.

After the flight missions, the acquired images underwent processing using DJI Terra
software version 3.5.5 (https://enterprise.dji.com/cn/dji-terra, accessed on 22 May 2023).
This software was employed for two-dimensional multispectral synthesis and radiometric
calibration, resulting in orthorectified single-band reflectance images.

Background removal was performed using eCognition 9.0 software (http://www.
definiens.com, accessed on 19 May 2023). By analyzing the UAV remote sensing images, the
images were classified into three categories: soil, shadow, and vegetation. Corresponding
VIs (NDVI, NDWI, OSAVI) were selected for each category, and appropriate threshold
ranges were set for image classification. After classification, objects of the same category
were merged, generating vector boundaries for vegetation and non-vegetation areas. The
background removal process was completed using masking operations in ArcMap (ESRI
Inc.; Redlands, CA, USA).

2.2.2. In-Situ Wheat SPAD Measurements

Immediately after each flight, winter wheat SPAD values were measured using the
SPAD-502 m. A “five-point sampling method” was employed within each plot, involving
the random selection of 10 wheat plants. During the tillering, green-up, and jointing stages,
the measurements were taken on the penultimate fully expanded leaves of the selected
plants. In the booting stage, measures were taken at the top, middle, and basal sections
of the flag leaves of the selected plants. The mean SPAD value derived from the chosen
wheat plants at each location served as the representative SPAD value for that specific point.
This was followed by computing the average across the five points to ascertain the SPAD
value corresponding to each individual plot. Due to restrictions imposed by COVID-19
policies, the study could only collect SPAD values for 36 plots during the tillering period
(18 December 2022), while data for all 72 plots were collected during the green-up, joint-
ing, and booting stages. In the tillering stage of winter wheat, although there are only
36 plots with measured SPAD values, they encompass all winter wheat varieties, nitrogen
application levels, and nitrogen application methods.

2.3. Extraction and Construction of VIs and TIs

VIs are combinations of reflectance values from different spectral bands that provide
qualitative and quantitative analysis of surface vegetation canopies. These indices offer
insights into the status of crop growth and have found extensive application in estimat-

https://www.dji.com/cn/ground-station-pro
https://www.dji.com/cn/ground-station-pro
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http://www.definiens.com
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ing vegetation chlorophyll content through spectral data [48]. Leveraging the relevance
of diverse VIs, this study harnessed the ROI function of ENVI 5.3 (ITT Exelis; Boulder,
CO, USA) to extract the spectral reflectance values for each plot. In the pursuit of chloro-
phyll content inversion, 17 widely employed VIs were computed, resulting in a sum
of 22 spectral indices.

The Gray-Level Co-occurrence Matrix method (GLCM) [49] stands out as one of the
most extensively utilized texture extraction techniques, initially introduced by HARALICK
in 1973. Due to its rotational invariance, multi-scale characteristics, and low computational
complexity, it has received significant attention [50]. In this study, ENVI 5.3 was employed
to extract eight texture features based on GLCM from the five spectral bands of the multi-
spectral UAV imagery. The extraction utilized a window size of 7 × 7 and a direction of
(2,2), resulting in 40 TIs (Table 1) for all spectral bands.

Table 1. The 22 VIs and 8 TIs used in this study for estimating SPAD values.

Variables Features Formulation References

VIs

Red (R), Green (G), Blue (B), Rededge (RE),
Near-infrared (NIR) The raw value of each band /

RVI NIR/R [51]
GCI (NIR/G) − 1 [52]

RECI (NIR/RE) − 1 [52]
TCARI 3 × [(RE − R) − 0.2 × (RE − G) × (RE/R)] [38]
NDVI (NIR − R)/(NIR + R) [53]

GNDVI (NIR − G)/(NIR + G) [54]
GRVI (G − R)/(G + R) [51]
NDRE (NIR − RE)/(NIR + RE) [55]
NDREI (RE − G)/(RE + G) [56]
SCCCI NDRE/NDVI [57]

EVI 2.5 × (NIR − R)/(1 + NIR − 2.4 × R) [58]
EVI2 2.5 × (NIR − R)/(NIR + 2.4 × R + 1) [59]

OSAVI (NIR − R)/(NIR − R + L) (L = 0.16) [60]
MCARI [(RE − R) − 0.2 × (RE − G)] × (RE/R) [61]

TCARI/OSAVI TCARI/OSAVI [38]
MCARI/OSAVI MCARI/OSAVI [61]

WDRVI (a × NIR − R)/(a × NIR + R) (a = 0.12) [62]

TIs GLCM
mean, variance, homogeneity, correlation,

dissimilarity, entropy,
secondmoment, contrast

[49]

2.4. Correlation Analysis and Feature Selection

This study utilized Python 3.8 to calculate the Pearson correlation coefficients between
the VIs, TIs, and the measured SPAD values. These coefficients helped determine the
degree of correlation between remote sensing variables and SPAD values.

For feature engineering, this study employed the Recursive Feature Elimination (RFE)
method to select the most representative subset of features for predicting the target variable.
RFE iteratively trains models and eliminates the least important features until a predefined
number of features or other termination criteria are met [63]. Cross-validated RFE was
used in this study with the random forest (RF) estimator. This approach helps optimize
model performance and reduce feature dimensions to prevent overfitting.

The number of parameters is an essential factor influencing the performance of ma-
chine learning models [64]. It often needs to be clarified which features are practical for a
given learning algorithm. To heighten the efficacy of the regression prediction model, the
learning curve of RFE is employed to ascertain the ideal count of remote sensing variables.
Subsequently, the optimal remote sensing variables are cherry-picked using the hierarchy
determined by RFE feature importance rankings.
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2.5. Machine Learning Regression Algorithms

Machine learning algorithms have significant potential in estimating winter wheat
SPAD values [65]. This study employed six machine learning algorithms: LinearSVR
(Linear Support Vector Regression), RF, BPNN, GBDT, CNN, and LSTM (Long Short-Term
Memory). These algorithms were used to establish prediction models for winter wheat
SPAD values. Figure 2 illustrates the workflow of model development.
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LinearSVR [66] is the linear incarnation of Support Vector Regression (SVR), a super-
vised learning algorithm tailored for regression challenges. Its principal goal is to forecast
continuous target values based on input features. LinearSVR constructs a linear model
that strives to identify a hyperplane minimizing the discrepancy between predicted and
observed values. It finds frequent application in regression scenarios centered on numerical
data. In the present study, LinearSVR can be harnessed to delineate linear associations
between SPAD values and remote sensing variables.

RF [67], Random Forest, is an ensemble learning algorithm commonly used for classifi-
cation and regression tasks. It combines multiple decision trees for making predictions. In a
random forest, each decision tree is constructed using randomly sampled data and features,
which reduces the risk of overfitting and enhances model robustness and accuracy. RF is
often applied to structured data, image recognition, and feature importance assessment. It
might perform well in estimating SPAD values for different wheat varieties and nitrogen
management methods due to its capability to handle complex feature relationships and
control overfitting.

BPNN [68], a Backpropagation Neural Network, is one of the most common types of
neural networks, also known as Multi-Layer Perceptrons (MLP). It is a feedforward neural
network with one or more hidden layers, trained using the backpropagation algorithm.
BPNN gradually adjusts weights during training to minimize the error between predicted
and actual values.

Gradient Boosting Decision Trees (GBDT) [69], also known as Gradient Boosting
Machines (GBM), are a popular machine learning ensemble technique used for both classi-
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fication and regression tasks. GBDT is a supervised learning algorithm that combines the
predictions from multiple decision trees to create a stronger predictive model. Its ability to
handle complex relationships in data, provide feature-importance insights, and perform
well on various types of datasets makes it a valuable tool in the machine learning toolkit.

Convolutional Neural Networks (CNN) [70] are hierarchical models that progressively
build higher-level feature representations through multiple convolutional and pooling
layers. This enables the network to learn multi-level abstract representations of the data,
aiding in a better understanding and prediction of complex relationships.

LSTM [71] demonstrates significant advantages in predicting winter wheat SPAD
values due to its ability to handle long-term dependencies, adapt to sequential data, perform
nonlinear modeling, avoid gradient vanishing issues, and easily accommodate multi-
dimensional inputs while being adaptable to changing data. This makes LSTM an effective
tool for capturing the complex relationships between winter wheat SPAD values and
various factors, especially in the context of time series data and nonlinear pattern modeling.

2.6. Data Set Splitting and Model Evaluation

The dataset was partitioned into training and testing sets using a random split in a
ratio of 7:3. To optimize the models, K-fold cross-validation (with K = 5) was employed. In
this technique, the initial training set is divided into K subsets, and each subset takes a turn
as the validation set, while the remaining four are used for training. The outcomes from K
folds are aggregated and averaged, serving to decrease training set errors and enhance the
model’s generalization capabilities by avoiding the inclusion of test data during training.

The assessment of model accuracy rested on four key metrics: R-squared (R2), Root
Mean Square Error (RMSE), Relative RMSE (RRMSE), and the Ratio of Performance to
Deviation (RPD). Generally, higher R2 values (explicated in Equation (1)) along with lower
RMSE (explicated in Equation (2)) and RRMSE (explicated in Equation (3)) values are
indicative of superior model performance [72]. Additionally, the Relative Performance
Deviation (RPD) was computed to gauge the model’s predictive prowess. RPD is the ratio
of the standard deviation of the measured values to the cross-validated RMSE (explicated
in Equation (4)) [73]. According to Rossel et al. [74], RPD values can be interpreted as
follows: RPD < 1.4 signifies very poor estimation, 1.4 ≤ RPD < 1.8 indicates fair estimation,
1.8 ≤ RPD < 2.0 suggests good estimation, 2.0 ≤ RPD < 2.5 signifies very good estimation,
and RPD ≥ 2.5 corresponds to excellent estimation.

R2 =
∑(ŷi − ȳ)2

∑(yi − ȳ)2 (1)

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
(2)

RRMSE =
RMSE

ȳ
(3)

RPD =
SD

RMSE
(4)

The complete workflow, spanning variable selection, modeling, cross-validation, and
performance assessment, was executed in Python 3.8. Parameter tuning was pivotal
in achieving optimal performance for the machine learning models. To achieve this, a
combination of grid search and cross-validation was employed to identify the most suitable
parameter and hyperparameter combinations for the machine learning models in this study.
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3. Results
3.1. Statistical Analysis of In-Situ SPAD Measurements Value

Significant differences were observed in canopy SPAD values of winter wheat during
the four key growth stages before heading (tillering, green-up, jointing, and booting)
(Figure 3, Table 2). During the tillering stage, canopy SPAD values of winter wheat ranged
from 25.10 to 34.50, with a mean level of 29.43. In the green-up stage, canopy SPAD values
ranged from 39.05 to 51.15, with a mean level of 45.50. In the jointing stage, canopy SPAD
values ranged from 34.60 to 58.90, with a mean level of 49.76. In the booting stage, canopy
SPAD values ranged from 42.45 to 55.70, with a mean level of 49.77. Canopy SPAD values
of wheat increased gradually from the tillering stage to the heading stage as the growth
period extended.
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Figure 3. Distribution of canopy SPAD values during the four key growth stages (tillering, green-up,
jointing, and booting) of winter wheat before heading.

Table 2. Descriptive statistics of canopy SPAD measurements for winter wheat (unit: dimensionless).

Period N Max Min Mean SD CV (%)

Tillering stage 36 34.50 25.10 29.43 2.37 8.04
Green-up stage 72 51.15 39.05 45.50 2.06 4.53
Jointing stage 72 58.90 34.60 49.76 4.67 9.38
Booting stage 72 55.70 42.45 49.77 3.22 6.47

All 252 58.90 25.10 45.64 7.66 16.78

Before heading, the canopy SPAD values of winter wheat ranged from 25.10 to 58.90,
with an average of 45.64. These values were accompanied by a standard deviation (SD)
of 7.66 and a coefficient of variation (CV) measuring 16.78%. The coefficient of variation
offers insight into the distribution of SPAD values throughout the pre-heading growth
stages across diverse wheat varieties and nitrogen fertilizer treatments. A greater coefficient
of variation is advantageous for the subsequent establishment of models, as it indicates
enhanced applicability and robustness.
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3.2. Correlation Analysis

As shown in the correlation heatmap (Figure 4), among the VIs, single-band R ex-
hibited the strongest correlation with SPAD values, with a coefficient of −0.77, indicating
a strong negative correlation between the red band and canopy SPAD values of winter
wheat before heading. Additionally, the vegetation indices NDVI and GRVI showed good
correlations with SPAD values, both having coefficients of 0.81, suggesting a strong positive
relationship between these indices and SPAD values. However, NDRE demonstrated a poor
correlation with SPAD values, with a coefficient of only −0.07, indicating a weak correlation
between NDRE and chlorophyll content within this dataset. The specific numerical values
of the correlation coefficient can be found in Tables A1 and A2 in Appendix A.
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Among the TIs extracted based on GLMC, B-mean exhibited the highest correlation,
with a coefficient of −0.82. Similarly, R-mean, G-mean, and NIR-mean all had correlation
coefficients with SPAD values exceeding 0.70. Thus, among the eight texture variables
extracted from single-band remote sensing images using GLMC, the mean texture index
demonstrated the strongest correlation with SPAD values to some extent. However, Re-
variance displayed the weakest correlation with SPAD values, with a coefficient of only
0.24. This suggests a relatively weak correlation between Re-variance and SPAD values in
this dataset.

Overall, most remote sensing variables (VIs and TIs) exhibited good correlations with
SPAD values, making them suitable for subsequent modeling and analysis. These results
provide valuable insights for the subsequent construction of models and estimation of
canopy SPAD values in winter wheat prior to heading.

3.3. Remote Sensing Variable Selection

In the process of VIs selection, according to the RFE feature selection learning curve
(Figure 5), the optimal number of selected remote sensing variables is determined to be
10. Through feature importance ranking (Figure 6), the optimal VIs selected are R, G, NIR,
RE, NDVI, GNDVI, GRVI, NDREI, MCARI, and MCARI/OSAVI. For TIs selection, the
learning curve indicates that the optimal number of selected remote sensing variables is
32. The specific selected remote sensing variables in this study are visible in Figure 6. The
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22 VIs extracted and computed during the initial processing were merged with the 40 TIs
(fusion of VIs and TIs). After undergoing RFE feature selection, a total of 48 optimal feature
variables were selected to participate in the subsequent modeling. Notably, the majority
of the selected remote sensing variables continue to be from the original set, indicating a
certain level of heterogeneity between VIs and TIs. Indeed, an increase in the number of
features can significantly impact the complexity of subsequent models. It is evident that
combining VIs and TIs will naturally increase the complexity of the model.

3.4. Model Construction and Validation

The optimal remote sensing variables selected based on VIs, TIs, and the fusion of
VIs and TIs were employed in the subsequent modeling, and the model performances
were evaluated on the test set. This study employed six distinct machine learning algo-
rithms, namely LinearSVR, RF, BPNN, GBDT, CNN, and LSTM, to establish regression
prediction models.

In the modeling based on VIs, RF outperformed the other five machine learning
algorithms in terms of predictive performance (Table 3). On the test set, the R2 reached
0.8185, the RMSE was 3.3145, the RRMSE was 0.0727, and the RPD was 2.3624. Compared
to the less favorable inversion performance of the deep learning algorithm LSTM, RF
showed an improvement of 13.24% in R2 and a reduction of 19.07% in RMSE.
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larger-is-better convention, the negative of MSE is taken.



Remote Sens. 2023, 15, 4935 13 of 25
Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 6. Feature Importance Ranking from RFE Feature Selection, displaying only the selected op-
timal feature variables: (a) VIs; (b) TIs; (c) VIs+TIs. 

3.4. Model Construction and Validation 
The optimal remote sensing variables selected based on VIs, TIs, and the fusion of 

VIs and TIs were employed in the subsequent modeling, and the model performances 
were evaluated on the test set. This study employed six distinct machine learning algo-
rithms, namely LinearSVR, RF, BPNN, GBDT, CNN, and LSTM, to establish regression 
prediction models. 

In the modeling based on VIs, RF outperformed the other five machine learning al-
gorithms in terms of predictive performance (Table 3). On the test set, the R2 reached 
0.8185, the RMSE was 3.3145, the RRMSE was 0.0727, and the RPD was 2.3624. Compared 
to the less favorable inversion performance of the deep learning algorithm LSTM, RF 
showed an improvement of 13.24% in R2 and a reduction of 19.07% in RMSE. 

Table 3. Estimation Accuracy of Models Based on VIs. 

VIs—Model 
Train (CV) Test 

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD 
LinearSVR 0.6838 4.3007 0.0945 1.7835 0.5427 5.2606 0.1154 1.4884 

RF 0.8808 2.6409 0.0580 2.9044 0.8185 3.3145 0.0727 2.3624 
BPNN 0.7763 3.4386 0.0753 2.3684 0.6748 4.4364 0.0973 1.7650 
GBDT 0.8562 2.9001 0.0637 2.6448 0.8080 3.4090 0.0748 2.2969 
CNN 0.6618 4.3675 0.0959 1.7720 0.6320 4.7189 0.1035 1.6485 
LSTM 0.7310 3.8268 0.0839 2.0656 0.7228 4.0957 0.0899 1.9118 

Note: the best result is in bold. 

In the modeling based on TIs, the winter wheat canopy SPAD value estimation model 
established using the LSTM deep learning algorithm achieved the best estimation accu-
racy (Table 4). Specifically, the model exhibited a training set R2 value of 0.8756, RMSE of 
2.5947, RRMSE of 0.0570, and RPD of 3.0162. On the test set, the R2 value was 0.8498, RMSE 
was 3.0146, RRMSE was 0.0661, and RPD was 2.5974. The RF model emerged as the sec-
ond-best inversion model, achieving an R2 of 0.7793, RMSE of 3.6546, RRMSE of 0.0802, 
and RPD of 2.1425 on the test set. 

Figure 6. Feature Importance Ranking from RFE Feature Selection, displaying only the selected
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Table 3. Estimation Accuracy of Models Based on VIs.

VIs—Model
Train (CV) Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

LinearSVR 0.6838 4.3007 0.0945 1.7835 0.5427 5.2606 0.1154 1.4884
RF 0.8808 2.6409 0.0580 2.9044 0.8185 3.3145 0.0727 2.3624

BPNN 0.7763 3.4386 0.0753 2.3684 0.6748 4.4364 0.0973 1.7650
GBDT 0.8562 2.9001 0.0637 2.6448 0.8080 3.4090 0.0748 2.2969
CNN 0.6618 4.3675 0.0959 1.7720 0.6320 4.7189 0.1035 1.6485
LSTM 0.7310 3.8268 0.0839 2.0656 0.7228 4.0957 0.0899 1.9118

Note: the best result is in bold.

In the modeling based on TIs, the winter wheat canopy SPAD value estimation model
established using the LSTM deep learning algorithm achieved the best estimation accuracy
(Table 4). Specifically, the model exhibited a training set R2 value of 0.8756, RMSE of 2.5947,
RRMSE of 0.0570, and RPD of 3.0162. On the test set, the R2 value was 0.8498, RMSE was
3.0146, RRMSE was 0.0661, and RPD was 2.5974. The RF model emerged as the second-best
inversion model, achieving an R2 of 0.7793, RMSE of 3.6546, RRMSE of 0.0802, and RPD of
2.1425 on the test set.

Table 4. Estimation Accuracy of Models Based on TIs.

TIs—Model
Train (CV) Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

LinearSVR 0.8619 2.8418 0.0624 2.6990 0.7727 3.7090 0.0814 2.1111
RF 0.8629 2.8323 0.0622 2.7082 0.7793 3.6546 0.0802 2.1425

BPNN 0.8980 2.3768 0.0522 3.2497 0.7494 3.8938 0.0854 2.0109
GBDT 0.8346 3.1109 0.0683 2.4656 0.7277 4.0590 0.0890 1.9291
CNN 0.8003 3.3107 0.0727 2.3618 0.7624 3.7920 0.0832 2.0515

LSTM 0.8756 2.5947 0.0570 3.0162 0.8498 3.0146 0.0661 2.5974

Note: the best result is in bold.
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In the modeling using the fusion of VIs and TIs, the LSTM algorithm again achieved
the best precision in estimating winter wheat canopy SPAD values (Table 5). The model
demonstrated a training set R2 value of 0.8888, RMSE of 2.4804, RRMSE of 0.0545, and RPD
of 3.1227. On the test set, the R2 value was 0.8576, RMSE was 2.9352, RRMSE was 0.0644,
and RPD was 2.6677.

Table 5. Estimation Accuracy of Models Based on Fusion of VIs and TIs.

(VIs +
TIs)—Model

Train (CV) Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

LinearSVR 0.8655 2.8051 0.0616 2.7343 0.7982 3.4947 0.0767 2.2406
RF 0.8833 2.6123 0.0574 2.9362 0.7920 3.5476 0.0778 2.2072

BPNN 0.8853 2.5227 0.0554 3.0661 0.8157 3.3396 0.0733 2.3447
GBDT 0.8619 2.8420 0.0624 2.6989 0.7638 3.7808 0.0829 2.0710
CNN 0.8551 2.8240 0.0620 2.7691 0.8276 3.2301 0.0709 2.4083

LSTM 0.8888 2.4804 0.0545 3.1227 0.8576 2.9352 0.0644 2.6677

Note: the best result is in bold.

For a deeper analysis of modeling accuracy, Figure 7 presents scatter plots contrasting
measured SPAD values with predicted SPAD values derived from the optimal models
utilizing VIs, TIs, and the combined fusion of VIs and TIs. The scatter plots distinctly
reveal a clustering of data points around the 1:1 diagonal line, which signifies a robust
concurrence between the values that were measured and those that were predicted. This
striking alignment serves as a testament to the outstanding predictive prowess of the
models in estimating SPAD values for the winter wheat canopy.
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3.5. Validation of the Optimal Inversion Model

The LSTM estimation model, which integrates both VIs and TIs, exhibits the highest
validation set R2 and RPD among all regression models, as well as the lowest RMSE and
RRMSE, making it the optimal estimation model for winter wheat canopy SPAD values
before heading. As shown in Tables 6 and 7, we tested the selected best model, LSTM
(fusion of VIs and TIs), on the test dataset categorized by different wheat varieties and
nitrogen application levels to assess the accuracy of estimating winter wheat canopy SPAD
values before heading. Across different wheat varieties, the R2 ranges from 0.4591 (NM 26)
to 0.9481 (YM 39), RMSE ranges from 2.1191 (YM 39) to 3.4566 (YM 22), and RRMSE ranges
from 0.0509 (YM 39) to 0.0713 (YM 22). For different nitrogen application methods, the R2

ranges from 0.4876 (N 0) to 0.8903 (N 16), RMSE ranges from 2.5194 (N 22) to 3.4014 (N 0),
and RRMSE ranges from 0.0527 (N 22) to 0.0796 (N 0).
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Table 6. Accuracy of LSTM Model Estimation for Different Wheat Varieties Validation.

Varietal Validation R2 RMSE RRMSE RPD

YM 22 0.6762 3.4566 0.0713 1.7895
YM 25 0.7210 3.0632 0.0647 1.9707
YM 39 0.9481 2.1191 0.0509 4.4743
NM 26 0.4591 3.0844 0.0675 1.4422

Table 7. Accuracy of LSTM Model Estimation for Different Nitrogen Fertilizer Treatments Validation.

Different Nitrogen
Fertilizer Treatments R2 RMSE RRMSE RPD

N 0 0.4876 3.4014 0.0796 1.4401
N 10 0.8606 2.8167 0.0637 2.7665
N 16 0.8903 2.8807 0.0614 3.0697
N 22 0.8875 2.5194 0.0527 3.1036

As apparent from the scatter plot depicted in Figure 8, a significant number of data
points are concentrated closely around the diagonal line representing a 1:1 ratio. This
clustering signifies a high degree of concordance between the values that were measured
and those that were predicted. Thus, the LSTM-based estimation model designed for
winter wheat canopy SPAD values prior to heading demonstrates a strong alignment across
diverse winter wheat cultivars and various strategies for nitrogen fertilizer management.
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4. Discussion

This study involves wheat nitrogen management experiments with four winter wheat
varieties and four nitrogen application rates. Consequently, establishing the relationship
between winter wheat canopy SPAD values and remote sensing variables became a com-
plex task, posing substantial challenges in model development. The objective was to
formulate a dynamic estimation model for winter wheat canopy SPAD values, customized
for various cultivars and nitrogen application strategies. This model aimed to address
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challenges during vulnerable growth stages exposed to low-temperature stress, namely
tillering, green-up, jointing, and booting. Leveraging UAV-based multispectral imagery,
this research encompassed the extraction and construction of both VIs and TIs. Pearson
correlation analysis was conducted between these variables and the measured SPAD values
of winter wheat. Subsequently, Recursive Feature Elimination (RFE) was employed to
select optimal subsets of VIs, TIs, and their fused combinations. These selected remote
sensing variables were integrated into six machine learning algorithms, namely LinearSVR,
RF, BPNN, GBDT, CNN, and LSTM. The goal was to establish winter wheat SPAD value
estimation models. The models were then evaluated based on various performance metrics,
culminating in identifying the optimal inversion model, which was further subjected to
validation. The comprehensive methodology employed in this study addresses the complex
and multifaceted nature of winter wheat SPAD value estimation. By integrating various
approaches, from remote sensing to machine learning, the study demonstrates a systematic
process for building reliable SPAD value estimation models capable of accommodating
diverse cultivars and nitrogen application strategies. The findings provide valuable insights
into optimizing agricultural management practices and enhancing winter wheat growth
and yield outcomes.

4.1. Contribution of Different Remote Sensing Variables to Winter Wheat SPAD Value Prediction
4.1.1. Performance of Models Based on VIs

In the models established based on VIs, the performance of SPAD value estimation was
assessed by comparing the estimated SPAD values obtained from each regression model
with the corresponding measured values through scatter plots (Figure 9). As indicated
by the data points covered by red circles, it is noteworthy that most regression methods
underestimated the SPAD values during the jointing and booting stages of winter wheat.
These underestimated data points often represent areas where winter wheat had higher
density and canopy height. This phenomenon could be attributed to common saturation
issues in optical remote sensing, particularly in moderate to high vegetation cover and
yield [75–77].

Furthermore, as evident from the data points covered by green circles, LinearSVR,
BPNN, CNN, and LSTM underestimated the SPAD values during the green-up stage of
winter wheat for most cases. This might be because the green-up stage marks the beginning
of winter wheat growth in the subsequent year, following an extended dormancy period
during the winter. The wheat plants deplete their nutrient reserves over this dormant period
and require nutrient replenishment for subsequent growth and energy accumulation [75].
Consequently, there is significant variability in chlorophyll content across different varieties
and nitrogen management strategies, rendering the relationship between winter wheat
canopy SPAD values and VIs complex. Due to these intricate dynamics, machine learning
models struggle to achieve perfect SPAD value estimation.

In the scatter plots, data points corresponding to the tillering stage of winter wheat,
covered by blue circles, were often overestimated by most regression models. This could
potentially be attributed to the fact that during the tillering stage, the vegetation cover of
winter wheat is relatively low, with a significant amount of exposed soil, which can lead to
an overestimation of SPAD values [78].

Compared to LinearSVR, CNN, and BPNN, the underestimation of SPAD values dur-
ing the green-up stage is somewhat alleviated in LSTM and GBDT, and RF achieves the best
estimation performance for this stage. Additionally, the underestimation of SPAD values
during the jointing and booting stages, as well as the overestimation of SPAD values during
the tillering stage, is also best captured by RF and GBDT. RF is relatively less influenced
by light saturation compared to the other machine learning models. This observation
somewhat implies its capability to manage peak information effectively [79]. Therefore,
RF achieves the best winter wheat SPAD value estimation based on VIs, consistent with
previous research findings [65,80].
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4.1.2. Performance of Regression Models Based on TIs

Through Pearson correlation analysis, we found that the texture index “Mean” ex-
tracted using GLCM exhibited good correlations with SPAD values across different bands.
This aligns with the conclusions of Zheng et al. [81], who concluded that “mean” was the
best TI for estimating rice biomass using various TIs. By integrating the “mean” texture
index as an input, the accuracy and stability of the estimation model can be elevated, offer-
ing valuable insights for refining future methodologies and advancing wheat chlorophyll
content estimation models.

In the construction of SPAD value estimation models, models based on TIs outper-
formed those based on VIs, indicating the substantial potential of TIs in predicting SPAD
values. This finding aligns with Guo et al.’s research [44], which used multispectral images
from UAVs to predict corn SPAD values by combining VIs and TIs. In comparison to VIs,
TIs exhibited a stronger correlation with SPAD values.

However, in a study by Maitiniyazi et al. [77] involving the prediction of soybean yield
through the fusion of multimodal data and deep learning from UAVs, it was shown that
spectral information performed better in predicting soybean yield during the early growth
stage of a single growth period, using images captured by UAVs. This study extracted
various remote sensing variables, including TIs and Vis, for yield estimation. The results
suggested that spectral information was superior to texture features in predicting soybean
yield, indicating that texture features could be a potential alternative to VIs with reasonably
good predictive accuracy. In contrast, texture information seemed to estimate physiological
parameters during various growth stages of crops more effectively. This difference in
findings could be attributed to several factors. On the one hand, there exists a strong
correlation between chlorophyll content and plant photosynthesis. Plants with higher
chlorophyll content exhibit elevated photosynthetic capacity and tend to accumulate a
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greater amount of photosynthetic products. Winter wheat with higher chlorophyll content
often has larger leaves during the early growth stages [27]. As a result, remote sensing
images display noticeable variations in texture among winter wheat samples with distinct
SPAD values. Furthermore, our study involved different growth stages, various nitrogen
management strategies, and four different winter wheat varieties, which contributed to
more pronounced texture differences.

On the other hand, after RFE feature selection, all extracted TIs retained a significant
number of features for subsequent modeling, whereas VIs retained only a small subset of
features. This suggests that the unscreened VIs might have severe linear correlations and
data redundancy between them [80]. The combination of these factors led to the better
performance of models based on TIs in constructing SPAD value estimation models for
winter wheat pre-heading stages.

4.1.3. Performance of Regression Models Based on Fusion of VIs and TIs

Consistent with our hypothesis, the overall trend of estimation accuracy among the
six algorithms using different parameter combinations for modeling is as follows: fusion of
VIs and TIs model > TIs model > VIs model. VIs provide the spectral information of winter
wheat canopy, while TIs contribute spatial structural information. By fusing VIs and TIs,
relevant information regarding winter wheat canopy SPAD values can be extracted from
varying perspectives to enhance the accuracy of the model. This finding is congruent with
the research by Zheng et al. [81], who improved the estimation of above-ground biomass
in rice using a combination of UAV images, TIs, and VIs, as well as the results of Guo
et al. [82], who integrated spectral and texture information for monitoring pear tree growth
status using UAV remote sensing. Regardless of the modeling method used, multimodal
data fusion consistently provides superior performance for the estimation model of winter
wheat pre-heading stage SPAD values.

In establishing the SPAD value estimation model using the fusion of VIs and TIs, scatter
plots were used to compare the estimated SPAD values obtained by each regression method
with the corresponding measured values (Figure 10). It is worth noting that all regression
methods considerably corrected the issues of underestimation and overestimation of winter
wheat SPAD values observed in the model based solely on VIs. Fusing VIs and TIs could
alleviate the saturation problem when using spectral information to estimate crop growth
parameters. This can be attributed to the heterogeneity in VIs and TIs, which aligns with
previous research findings [33,40].

Discrete data points during the tillering and green-up stages also showed significant
improvement and the fitting effect between predicted and measured values was enhanced.
By fusing multiple features, the model becomes adept at extracting pertinent information
from diverse sources, which in turn diminishes the impact of noise and enhances the overall
accuracy of chlorophyll content estimation [83].

4.2. Performance of the Optimal Estimation Model

The deep-learning-based estimation model LSTM fuses VIs and TIs and demonstrates
remarkable performance in predicting winter wheat pre-heading stage SPAD values. Ac-
cording to Rossel et al. [74], LSTM achieved an RPD greater than 2.5 on the validation set
in this study, indicating excellent estimation of winter wheat SPAD values. Furthermore,
LSTM achieved the highest R2 among all regression models and the lowest RMSE and
RRMSE values. This implies that the model can effectively explain the variability of the
target variable with minimal differences between predicted and actual winter wheat SPAD
values. Hence, it stands as the optimal model for estimating SPAD values during the
pre-heading stage of winter wheat. This observation aligns with the conclusions drawn by
Liu et al. [78], who used UAV imagery and shallow and deep machine learning algorithms
to estimate leaf area index. Their research indicated that deep machine learning models
combined with multimodal data fusion could provide more accurate and reliable crop
parameter estimation.
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As shown in the inversion results (Figure 8), we tested the selected optimal model
LSTM (fusing VIs and TIs) on the test dataset by different wheat varieties and nitrogen
application levels. Among different wheat varieties (Table 6), NM 26 and YM 22 showed
slightly poorer inversion results. Similarly, among different nitrogen levels (Table 7),
N 0 exhibited slightly lower inversion results. However, most other varieties and nitrogen
levels exhibited good inversion results. Both NM 26 and YM 22 are nitrogen-inefficient va-
rieties. The considerable variation in chlorophyll content for these nitrogen-inefficient
varieties, especially under lower nitrogen levels [84], presents a challenging task for
the model due to the complexity of the relationship between canopy information and
SPAD values.

In summary, as depicted in Figure 8 and Tables 6 and 7, the newly constructed
optimal regression model based on VIs and TIs, selected through RFE feature selection
and established using LSTM, demonstrates good applicability and generalization across
various winter wheat varieties and nitrogen management strategies. LSTM’s weight
adjustments through backpropagation mitigate overfitting issues and enhance the model’s
generalization ability [85]. This is particularly advantageous when dealing with datasets
like winter wheat growth, where there may be noise or fluctuations in the data. The
LSTM’s capacity to learn from errors and fine-tune its parameters ensures that it can
effectively capture the underlying patterns without being overly influenced by noise.
Additionally, LSTM excels in capturing long-term dependencies in the data, which is a
critical factor in modeling winter wheat growth [86,87]. During the various growth stages
of winter wheat, the condition of the crop may be influenced by multiple preceding periods.
Furthermore, the complex nonlinear mapping relationships between the input features
(such as VIs and TIs) and the target variable (SPAD values) are effectively handled by LSTM.
This is essential because plant growth is a multifaceted process influenced by numerous
interrelated variables.
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The LSTM’s capacity to learn and model these intricate relationships aids in inter-
preting the nuanced and often nonlinear connections between the various factors and the
growth of winter wheat. This makes it a powerful tool for accurately estimating SPAD
values and, by extension, assessing the crop’s health and resilience during the pre-heading
growth stage.

4.3. Limitations and Future Directions

While our research has achieved encouraging results in estimating winter wheat SPAD
values, there are certain limitations that need to be addressed. Our models primarily focus
on the pre-heading stages of winter wheat growth, leaving gaps in modeling the entire
growth cycle, including the heading stage. This could impact the accuracy of our models
when predicting crop parameters throughout the complete growth period.

To overcome these limitations and achieve greater advancements, our future efforts
will be directed toward establishing models applicable to the entire growth cycle of winter
wheat, encompassing not only the pre-heading but also the post-heading stages. This
endeavor would necessitate considering the influence of different growth phases on SPAD
values. It may require incorporating additional features and data sources, such as ground-
level observations and meteorological data. Such enhancements would contribute to
the overall comprehensiveness and precision of the models, providing a more holistic
understanding of winter wheat growth dynamics and enabling more accurate parameter
estimation throughout the entire growth cycle.

5. Conclusions

The findings of this study demonstrate that integrating VIs and TIs from UAV-based
multispectral imagery allows for more accurate monitoring of winter wheat SPAD values
in the middle and lower reaches of the Yangtze River region. This approach enables the
construction of SPAD value estimation models that apply to various crucial growth stages
before heading (tillering, green-up, jointing, and booting), multiple cultivars, and different
nitrogen management strategies. Overall, the estimation accuracy follows the order of the
fused VIs and TIs model, TIs model, and VIs model.

The model established based on VIs for predicting winter wheat pre-heading canopy
SPAD values exhibits both overestimation and underestimation issues. Underestimation
occurs under high vegetation cover conditions due to spectral saturation, while periods
with more exposed soil tend to overestimate SPAD values. Additionally, accurate SPAD
value estimation during the regrowth phase of the second-year winter wheat, known as the
“green-up” stage, proves challenging.

Models based on TIs outperform those based on VIs, showcasing substantial potential
in SPAD value prediction. The texture index “Mean”, extracted using the GLCM method,
exhibits a good correlation with SPAD values across various wavelength bands. Compared
to VIs, TIs exhibit a closer association with SPAD values, offering a potential alternative to
spectral variables with considerable predictive accuracy.

The newly constructed optimal regression model integrates fused spectral and TIs
through RFE feature selection and utilizes LSTM, demonstrating good applicability and
generalization across different winter wheat cultivars and nitrogen management strategies.
This model accurately estimates pre-heading canopy SPAD values. Feature fusion leads
to the model’s capability to extract pertinent information from diverse sources, effectively
mitigating the influence of noise and thereby augmenting the overall accuracy of chloro-
phyll content estimation. Moreover, it significantly corrects the issues of underestimation
and overestimation seen in models based solely on VIs.

This research provides valuable insights for farmers to adjust agricultural management
practices promptly, thereby mitigating the hazards posed by pre-heading cold damage
and improving the growth and yield of winter wheat. Future endeavors will focus on
optimizing and enhancing the multi-feature fusion model, introducing the post-heading
growth stages of winter wheat, and incorporating additional features to improve further
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the accuracy and applicability of the SPAD value estimation model. This will facilitate more
comprehensive and precise monitoring and assessment of winter wheat growth status.
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Appendix A

Table A1. Correlation coefficient (VIs).

VIs Correlation Coefficient

R −0.77
G −0.61
B −0.72

NIR 0.48
RE 0.44
RVI 0.58
GCI 0.53

RECI 0.14
TCARI 0.81
NDVI 0.69

GNDVI 0.81
GRVI −0.07
NDRE 0.78
NDREI −0.25
SCCCI 0.70

EVI 0.59
EVI2 0.63

OSAVI 0.44
MCARI −0.41

TCARI/OSAVI 0.42
MCARI/OSAVI −0.41

WDRVI 0.74

Table A2. Correlation coefficient (TIs).

TIs Mean Variance Homogeneity Contrast Dissimilarity Entropy Secondmoment Correlation

R −0.71 −0.62 0.56 −0.63 −0.59 −0.57 0.51 −0.50
G −0.75 −0.73 0.63 −0.71 −0.73 −0.64 0.52 −0.78
B −0.82 −0.76 0.73 −0.75 −0.78 −0.72 0.55 −0.63

NIR 0.70 0.46 −0.73 0.51 0.61 0.76 −0.77 −0.38
RE 0.28 0.24 −0.49 0.31 0.38 0.54 −0.62 −0.61
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