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Abstract: Side-scan sonar (SSS) is an important underwater imaging method that has high resolu-
tions and is convenient to use. However, due to the restriction of conventional pulse compression
technology, the side-scan sonar beam sidelobe in the range direction is relatively high, which affects
the definition and contrast of images. When working in a shallow-water environment, image quality
is especially influenced by strong bottom reverberation or other targets on the seabed. To solve this
problem, a method for image-quality improvement based on deconvolution is proposed herein. In
this method, to increase the range resolution and lower the sidelobe, a deconvolution algorithm
is employed to improve the conventional pulse compression. In our simulation, the tolerance of
the algorithm to different signal-to-noise ratios (SNRs) and the resolution ability of multi-target
conditions were analyzed. Furthermore, the proposed method was applied to actual underwater
data. The experimental results showed that the quality of underwater acoustic imaging could be
effectively improved. The ratios of improvement for the SNR and contrast ratio (CR) were 32 and
12.5%, respectively. The target segmentation results based on this method are also shown. The
accuracy of segmentation was effectively improved.

Keywords: side-scan sonar; deconvolution; image quality; contrast ratio; object segmentation

1. Introduction

Side-scan sonar (SSS) is a method using a device that scans and generates sonar images
of the seabed, which emits an acoustic pulse signal toward the seabed perpendicular to
the path of the sensor and records the intensity of the acoustic pulses reflected from the
seabed [1–3]. These pings, recorded by the SSS, are constantly updated in real time and
stitched together into sonar waterfall images to provide a clear view of the seabed landform
and objects such as small targets, pipelines, and shipwrecks. When the SSS works, acoustic
pulse signals of different pulse widths and frequencies are transmitted by the transducers
on both sides of the tow body in the form of a fan-beam, and the acoustic signals propagate
in the form of spherical waves [4]. The transmitted signals are usually a Continuous Wave
(CW) signal and a Linear Frequency Modulated (LFM) signal. The time that passes, from
the moment of pulse emission to the moment the intensity sample is obtained, is translated
into a measure of distance (half the time that passes multiplied by the speed of sound in
water) that can be used to approximate the actual distance of the waterfall images in the
lateral direction [5].

A typical SSS system consists of a data display and recording unit, data transmission
and towing cable, and underwater towfish, including an electronics compartment, trans-
ducers, and a well-sealed shell. Due to its convenient operation, wide coverage, and clear
imaging, SSS is widely used in underwater search and rescue, underwater hazard removal,
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and so on. In practical applications, the higher imaging resolutions and clearer sonar
images of SSS are conducive to achieving ideal results. At the same time, horizontal beam
resolution and range resolution are important factors affecting imaging resolution [6–8].
The horizontal beam resolution (the angular resolution) is mainly affected by the array
form of the horizontal beam open angle. The horizontal beam resolution will increase as
the horizontal beam opening angle decreases, which is generally less than 0.5◦. In addition,
to obtain a high resolution in the horizontal direction, synthetic aperture sonar [9] has been
developed. At the same time, direction of arrival (DOA) estimation algorithms such as
Minimum Variance Distortionless Response (MVDR) [10,11] and Multiple Signal Classifica-
tion (MUSIC) [12,13] have also been developed. However, for common SSS, the increase in
horizontal beam resolution is limited by the operating frequency and array length.

Range resolution is mainly affected by the bandwidth of the sonar transmission
signal. In general, the range resolution of SSS is consistent with the variation trend of the
transmitted signal bandwidth, and the range resolution of the SSS will increase with the
increase in the transmitted signal bandwidth. But, in previous studies, range resolution
has not received much attention because it is generally thought to have little impact on
imaging performance. However, with the wide use of SSS, especially in the development of
autonomous detection algorithms in side-scan sonar image processing, the image quality
of side-scan sonar has become a vital foundational factor that affects the performance of
artificial intelligence algorithms in detecting and recognizing targets in SSS images [14–17].
This improvement in image quality has a positive effect on improving the performance of
autonomous detection. In the practical application of SSS, the sidelobe plays an important
role in the image quality of SSS. Namely, the contour boundary of the targets and seafloor
background are blurred in high sidelobe conditions. Normally, the bandwidth of the signal
transmitted by SSS is fixed, so the range resolution can be improved by decreasing the
sidelobe intensity and further increasing the main-to-side lobe ratio (MSLR). Especially
when there is strong interference in the seabed, the sidelobe of interference will suppress
the weak target signals nearby, which is worse in the case of very shallow water. This is
because in very shallow water, the seabed is complex, and there are more targets in the
seabed caused by human activities.

Methods that improve range resolution by suppressing sidelobe interference in the
range direction include weighted processing [18–20], signal coding [21], etc. Weighted
processing includes the weighted transmitted signal and weighted received signal, but
at the expense of the width of the main lobe. Signal coding is mainly used to transmit
pseudorandom code signals, which can improve range resolution while suppressing the
sidelobe, but at the cost of increasing system complexity. When using SSS or other sonar
imaging systems for underwater exploration, the receiving waveform and transmitting
template will greatly differ due to the uneven frequency response of the transducer and
insufficient power when transmitting long pulses. To obtain a higher range resolution, a
common signal processing method is to match the data collected by SSS, namely pulse
compression technology [22–24]. However, conventional pulse compression techniques
have limited range resolution and an increased sidelobe; in the case of strong interference,
the influence of the sidelobe is more obvious and even affects the accuracy of autonomous
detection. In recent years, deconvolution has been mainly used to improve angular resolu-
tion, being widely used in medical imaging, disturbance suppression, and other areas to
improve image quality [25–27]. In addition, it has been applied in the field of underwa-
ter acoustic signal processing, such as in three-dimensional imaging of synthetic aperture
sonar [28–30], location or separation of mixed sources of linear array [31–33], power spectral
estimation [34], linear array beamforming [35,36], imaging of forward-look sonar, or MIMO
sonar [37,38]. However, there is limited research on the application of the deconvolution
algorithm to improve the image quality of SSS.

To solve the abovementioned problems, we propose an improved pulse compression
technology based on deconvolution. The main contributions are as follows:
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(1) A high-quality imaging method suitable for a sonar system is proposed. To overcome
the limitations of conventional pulse compression techniques, in which the distance
resolution and “main lobe to side lobe ratio” are hard to improve, a deconvolution-
based method is adopted to improve the imaging quality of side-scan sonar. There
are two main benefits. Firstly, this method improves distance resolution under certain
bandwidth and array length conditions. Secondly, it improves the “main lobe to side
lobe ratio”, thereby improving imaging clarity.

(2) An improved deconvolution method is proposed based on the frequency response
function of the sonar system. Based on the characteristics of the operating frequency
response curve of actual sonar systems, an optimal reception response function suit-
able for sonar systems is proposed, which improves the practical adaptability of
the method.

(3) In order to verify the effectiveness of the proposed method, we used simulation and
sea trial datasets. Firstly, the performance of this method under different signal-
to-noise ratios and strong interference conditions was analyzed through numerical
simulation. Then, by processing the sea trial data, the impact of this method on the
imaging quality of large-scale imaging and small underwater targets, as well as on the
imaging and autonomous segmentation of small underwater targets, was analyzed.
Autonomous segmentation is an important component of autonomous detection.
Good image quality helps to achieve high-precision object segmentation, which has
positive significance for autonomous detection in downstream applications.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
imaging method, including the introduction of the range resolution of the SSS, proposed
pulse compression technology based on deconvolution, and calculation of deconvolution.
Section 3 presents the numerical simulation and sea trial datasets, where the analysis and
demonstration of this method are provided. Section 4 presents our final conclusions.

2. Methods
2.1. Range Resolution in Side-Scan Sonar Imaging

The image quality of SSS is mainly determined by the angular and range resolution.
In the case of a certain angular resolution, the range resolution is the main parameter that
determines the imaging resolution of the SSS system.

In consideration of the process of signal transition, as shown in Figure 1, the transmit-
ted signal is a frequency modulation signal, which can be expressed as

s(t) = u(t) exp(j(θ(t))) = rect(
t
T
)[exp(j2π( f0t +

1
2

kt2))], (1)

where f 0 is the center frequency, k is the frequency modulation coefficient, and T is
the period.

rect(
t
T
) =

 1,
∣∣∣∣t∣∣∣∣≤ T

2
0, others

, (2)

In the target detection model shown in Figure 1, the received signal can be denoted as

x(t) = s(t) ∗Q(t), (3)

where Q(t) is the objective function, which demonstrates the reflection characteristics of
the targets.

As the pulse length of the frequency modulation signal is long, the distance resolution
is not good for imaging. In a traditional sonar system, the distance resolution of the received
signal can be reached by pulse compression, which is expressed as follows:

y(t) = x(t) ∗ h(t), (4)
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where h(t) is the response of the best receiver and can be calculated by

h(t) = rect(
t
T
)[exp(j2π( f0t +

1
2

kt2))]. (5)

Then, the pulse compression output can be obtained as

y(t) =
√

kT2
sin

2π(ξ + kt)T
2

2π(ξ + kt)T
2

exp(−jπkt2) exp(
jπ
4
), (6)

The above equation clearly shows that the envelope shape of the time domain signal
y(t) after pulse compression is a sine function.

The width of the main lobe is about 1/B, and the width of the main lobe is the main
factor affecting the imaging resolution; that is, the range resolution d is

d =
1
2
·c· 1

B
. (7)

At the same time, the value of the main side ratio is about −14 dB. In the case of
strong interference, the sidelobe of a strong target will seriously affect the image quality
and influence target detection properties.

When the sonar works, the transmitter for the sonar needs to go through the drive
circuit and transducer electroacoustic conversion, and the receiving signal also needs to
go through electroacoustic conversion and filtering processes. Due to the frequency band
response of the transducer and the influence of the transmitter and receiver circuits, the
received signal waveform will be distorted, which leads to a risk of the main lobe widening
and the sidelobe increasing. Thus, in the actual world, the image quality may be worse.
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Figure 1. The geometry of target detection by sonar.

2.2. High-Resolution Pulse Compression Technology Based on Deconvolution

As previously mentioned, the pulse compression process can be written as

y(t) = x(t) ∗ h(t) = x(t) ∗ s(τ − t) =
∫ ∞

−∞
x(u) ∗ s(τ − t + u)du = Rxs(t− τ), (8)

where Rxs(t−τ) is the correlation function.
When the signal and noise are not correlated, and assuming that the echo of interest is

a simple delay model, the output of the matching filter can be written as an auto-correlation
function of the transmitted signal s(t).

y(t) = aRs(t− τ) = Rs(t) ∗ aδ(t− τ). (9)

When M targets are present, the output of pulse compression is

y(t) = ∑M
k=1 aRs(t− τk) = Rs(t) ∗∑M

k=1 aδ(t− τk), (10)
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where τk is the echo delay of the kth target.
Let the objective function be

Q(t) = ∑M
k=1 aδ(t− τk), (11)

Thus, the received signal of the imaging sonar can be rewritten as

y(t) = Rs(t) ∗Q(t), (12)

where Q(t) is an ideal pulse-compressed output with the characteristics of a unitary impulse
response function. It can reflect the acoustic reflection structure of the target well. For
the imaging sonar, Q(t) can reflect the shape of the target well. So, the method aims to
solve Q(t).

2.3. Calculation of Deconvolution

A deconvolution method is introduced to solve Q(t). The Richardson–Lucy (R–L)
algorithm [39–41], which is an optimal iterative algorithm based on Bayesian theory, is
applied to solve the deconvolution problem. It is widely used in image restoration and has
stable performance under low SNRs.

Firstly, denote L(·) as the convergence distance between the true value and the estimated

L(p(x), q(x)) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx, (13)

where p(x),q(x) is a non-negative probability density function, L(i) is a monotonically
decreasing and non-negative function, and L(p(x),q(x)) = 0 if and only if p(x) = q(x).

Then, we can obtain the following solution formula:

lim
n→∞

Qn(t) = argminL(y(t), Rs(t) ∗Q(t)), (14)

Qn+1(t) = Qn(t)[Rs(t)·
y(t)

Rs(t)·QK(t)
], (15)

where n represents the number of iterations.
As the iteration number increases, Qn(t) can converge to a unique solution by mini-

mizing the Csiszar discrimination.
Figure 2 represents the workflow of the proposed method. Firstly, the pulse compres-

sion is adapted for the receiving signal. Secondly, we need to estimate the Point Spread
Function (PSF), which is necessary for the R–L algorithm. To estimate the PSF, the model
is made to follow the transmit signal, and then modified by the response of the system.
Thirdly, the calculation of deconvolution is performed by the R–L algorithm. Finally, the
high-resolution data and image from the side-scan sonar are acquired.
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3. Results
3.1. Numerical Simulation

The performance under different SNRs was calculated by simulation. The simulation
conditions of this section were set as follows: the transmitted signal was a LFM signal, the
center frequency and signal bandwidth were 500 and 50 kHz, respectively, and the pulse
width length of the signal was 3.2 ms.

3.1.1. The Influence of Different SNRs

Firstly, we discuss the performance of pulse compressions with the deconvolution
technique under different noise conditions, and the results of the traditional pulse com-
pression technique are compared with the proposed method, as shown in Figure 3. The
statistical results of the main flap width and main side ratio for both methods at different
signal-to-noise ratios are shown in Table 1.
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different SNRs: (a) simulation results under 10 dB; (b) simulation results under 5 dB; (c) simulation
results under 3 dB; (d) simulation results under 0 dB; (e) simulation results under−3 dB; (f) simulation
results under −5 dB; and (g) simulation results under −10 dB.
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Table 1. Comparison of the main lobe width and MSLR between the two methods.

SNR Method Main Lobe Width MSLR

10 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

5 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

3 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

0 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −36 dB

−3 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −30 dB

−5 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −28 dB

−10 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −24 dB

Compared with the processing results in Figure 3 and Table 1, the main lobe width of
the deconvolution method is similar to the impact function, and it shows better range reso-
lution and can truly reflect the objective function. The MSLR of the deconvolution method
is lower and can reach more than 40 dB, which can effectively reduce the interference of
strong targets on the SSS sonogram. Moreover, the algorithm has a good tolerance-to-noise
ratio and maintains good performance at a SNR of −10 dB.

3.1.2. Considering the Influence of Sonar Parameters

In the actual sonar system, the signal transmission and reception process includes
transmission drive, transmission electroacoustic conversion, receiving electroacoustic con-
version, receiving circuit reception, etc., as shown in Figure 4.
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Among these, the frequency band response of the transducer is generally not very
flat. The transmission drive also leads to a distortion in the transmitted signal due to the
influence of charge and discharge, and the comprehensive sonar system response leads
to a mismatch in the conventional pulse compression signal model, increasing the main
lobe width of pulse compression and decreasing the MSLR. This decrease in the MSLR has
an adverse impact on image quality. To calculate and analyze the effect of the algorithm
on practical engineering applications through simulations, the band response of the sonar
system to the signal was comprehensively considered in the simulation experiment, and the
simulation values are shown in Figure 5. The output results of the deconvolution method
and comparison method under these conditions are also shown in Figure 5.

Through comparative analysis, we see that under the simulation conditions, due to
the frequency band response caused by the sonar system, the sidelobe of conventional
pulse compression technology is irregular, and the performance is significantly reduced
compared with the ideal pulse compression results; however, the deconvolution technology
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overcomes the influence of model mismatch due to its multiple iterations of optimization
and maintains a good main lobe width and MSLR.
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3.1.3. The Impact on Strong Interference

In practice, strong interference may lead to poor target resolution. To analyze the
impact of strong interference, a simulation was performed. In the simulation, there was a
target and an interference with the same intensity. The results are depicted in Figure 6.

Due to the good range resolution ability of the deconvolutional pulse compression algo-
rithm, the distinction between the targets and interference was clearer than that of conven-
tional pulse compression technology, and this method worked well under different SNRs.

3.1.4. The Impact on Imaging

To analyze the effect of the proposed algorithm on actual imaging results, side-scan
sonar imaging results were simulated, and a comparison graph of the imaging results of
the two methods is shown in Figure 7. Three targets are included in the simulation graph,
two of which are on the same time slice (Ping).
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Figure 7. The simulated images with targets were obtained by (a) the traditional method and (b) the
proposed method.

In comparison to Figure 7a, Figure 7b has a clearer target contour because of the
improved high-resolution algorithm, and the targets at different distances at the same
time can be clearly resolved. Figure 7a, with its conventional processing method, cannot
realize multi-target resolution due to the lower distance resolution and stronger sidelobe
interference.

3.2. Sea Experiment

For the image of SSS, there are two main types of applications. One is the large-scale
imaging of the seabed, which completes the exploration of seabed topography, including
the imaging detection of shipwrecks, seamounts, and trenches; the second is to search
and explore small underwater targets, such as pipelines and mines. To demonstrate the
performance of the algorithm, seabed and small target imaging were performed separately.

These data were obtained through the sea trials. The water depth in the trial was
below 20 m.
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3.2.1. The Influence of the Algorithm on Seabed Imaging
Evaluation Indicators

The imaging quality of our method was analyzed in the following via the imaging
effect of seabed wrecks. There are several commonly used image metrics to evaluate the
clarity and prominence of objects in the image background in the field of image processing,
including the SNR, contrast ratio (CR) [42], and contrast–shadow ratio (CSR) [43]. CSR is
a method used to evaluate the contrast between the target and shadow. The evaluation
results given are similar to those of visual evaluations, and are often used for quantitative
evaluation of image quality control, performance comparison, and defect detection. The
higher the value of CSR, the better the image quality. Moreover, the sharpness of the image
is improved with an increase in CR. This results in a clearer outline of the target in the
image and more details displayed.

The specific calculation is as follows:

SNR = (IM − IB)/IB, (16)

CR = (IH − IB)/IB, (17)

CSR = (IH − IS)/IS, (18)

where IM is the maximum intensity value of the highlighted areas; IH IB, and IS are the
average intensity of the highlighted areas, seabed background areas, and seabed shadow
areas, respectively.

To analyze the ability of the algorithm to maintain image sharpness, the algorithm’s
mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM)
performance were analyzed.

For two m × n images I and K, the mean square error (MSE) was defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]
2

, (19)

To locate the peak signal-to-noise ratio (PSNR), we used

PSNR = 10· log10(
MAX2

I
MSE

) = 20· log10(
MAXI√

MSE
), (20)

where MAXI is the maximum value that represents the color of the image; if each sample
point is represented by 8 bits, then this value is 255. Thus, the smaller the MSE, the larger
the PSNR; the larger the PSNR, the better the quality of the image is represented.

The structural similarity (SSIM) was calculated by

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ, (21)

where α > 0, β > 0, and γ > 0.

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, (22)

c(x, y) =
2σxy + c2

σ2
x + σ2

y + c2
, (23)

s(x, y) =
σxy + c3

σxσy + c3
(24)
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where I(x,y) is the luminance comparison, c(x,y) is the contrast comparison, and s(x,y) is
the structure comparison. µx and µy represent the mean of x and y, respectively, and σx and
σy represent the standard deviation of x and y, respectively. σxy represents the covariance
between x and y. The denominator is constant to avoid the systematic error caused by
zero. c1, c2, and c3 are constants to avoid the systematic error caused by the denominator
being zero.

Comparative Analysis of Imaging Quality

As shown in Figure 8, the SSS image processed by pulse compression technology had
a fuzzy boundary between the target and seabed background, and the target was almost
integrated with the background. However, in the SSS image processed by the algorithm
proposed in this paper, the sidelobe had less interference in the image, due to a reduction in
sidelobe intensity; the range resolution in the lateral direction of the image was improved so
that the boundary between the contour edge of the target and seabed background was more
obvious; and the shape of the target in SSS image was closer to that of the actual target.
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Figure 8. SSS image processing results: (a) SSS images processed by conventional pulse compression,
where the red oval represents the target area, the purple circle represents the shadow area, and the blue
rectangle represents the botttom area, respectively; (b) SSS images processed by the proposed method.

The area in the red oval in Figure 8 was taken as the area inside the target, the area
in the blue box was taken as the seabed area around the target, and the area in the purple
circle beside the red box was taken as the shadow of the target. The three indicators of the
image obtained by the two methods were calculated, and the results are shown in Table 2.

Table 2. Performance metrics of the images of SNR, CR and CSR.

Method SNR CR CSR

Conventional Pulse Compression 18.7 1.6 4.8
Proposed Method 24.7 1.88 25.8

Ratio of Improvement 32% 12.5% 437%

Table 2 shows that the SNR, CR, and CSR of the proposed algorithm were 24.7, 1.88,
and 25.8, respectively, which were improved compared with the results of the conventional
pulse compression method. The ratios of improvement for SNR, CR, and CSR were 32, 12.5,
and 437%, respectively.

The proposed method was compared with the conventional image mean square
sharpening method, and a comparison graph is shown in Figure 9, where Figure 9a shows
the results of conventional image sharpening and Figure 9b shows the results of the
proposed method.
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Figure 9. The SSS image processing results: (a) SSS images processed by the sharpening method and
(b) SSS images processed by the proposed method.

The calculated values were analyzed and are shown in Table 3.

Table 3. Performance metrics of the images of MSE, PSNR and SSIM.

Method MSE PSNR SSIM

Common Sharpening Method 3.34 12.83 0.59
Proposed Method 1.52 16.30 0.79

This comparison shows that the improved method proposed in this paper has a larger
PSNR and SSIM and smaller MSE for the image compared with the conventional method,
indicating that our proposed method is superior. This is because the deconvolution method
improves the resolution in the original echo domain during processing. Therefore, it
achieves a better signal-to-noise ratio and improved structural features than the original
image and introduces smaller errors.

3.2.2. The Influence of the Algorithm on Target Imaging

In recent years, with the continuous progress of unmanned technology, autonomous
detection technology based on SSS has developed higher requirements. Detection technol-
ogy usually includes segmentation, detection, identification, and other steps. The image
quality of SSS is the foundation of autonomous detection and identification algorithms.

In this section, real small targets on the seabed were imaged using the deconvolutional
pulse compression method and traditional pulse compression method. The difference in
image quality was assessed by independent segmentation of each acoustic image. The
segmentation algorithm adopted the region growth method [44–46], which is characterized
by ensuring the continuity of the target.

Figures 10 and 11 are the processing results of the two sets of data (Data I and Data
II), including the processing acoustic image of conventional pulse compression technology,
the processing acoustic image of deconvolutional pulse compression algorithm, and the
corresponding autonomous segmentation results. Figure 10 shows the results of Data I with
a single target and image segmentation, and Figure 11 shows the imaging and segmenting
results of Data II with a small target with strong interference nearby.
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Figure 10. A comparison of processing results between the conventional pulse compression technique
and proposed method: (a) imaging results of conventional pulse compression technology; (b) imaging
results of the proposed method; (c) image segmentation results after imaging by conventional pulse
compression technology; and (d) image segmentation results after imaging by the proposed method.
The red ovals represent the small target area.

By comparing the processing results shown in Figure 10, we see that deconvolutional
pulse compression has better resolution, and the shape of the target can be clearly described
using this method. The shape of the target after autonomous segmentation is more accu-
rate and closer to the real target, which is beneficial to the extraction of accurate target
information. The follow-up detection process can effectively avoid missing judgment and
misjudgment in the process of autonomous detection and processing.

Through the comparison in Figure 11, we see that in the original pulse compression
processing results, due to the influence of strong interference, the target shape is difficult
to clearly identify and the outline of the target is not obvious. The jamming target next
to it is more similar to the target to be detected in the SSS image than the real target.
Furthermore, the scale of the target after autonomous segmentation was severely distorted
and was unable to maintain the target’s true form, which interferes with subsequent
detection. Contrary to the results of pulse compression processing, the image obtained by
deconvolutional pulse compression had smaller sidelobe interference of the target and was
more clearly visible. Meanwhile, the contour was more distinct than what was obtained by
conventional pulse compression processing, which is a better representation of the original
shape of the target and is more conducive to subsequent segmenting. Compared with the
segmentation results of pulse-compressed images, images using our proposed method
were closer to the real target after segmentation.
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results after imaging by conventional pulse compression technology; and (d) image segmentation
results after imaging by the proposed method. The red ovals represent the small target area.

4. Conclusions

The performance of the range resolution in high-frequency image sonar systems
greatly affects image quality. As one of the important indicators for evaluating image
quality, range resolution is limited by sonar system parameters. The pulse compression
technology commonly used in conventional sonar signal processing is limited by the system
bandwidth in terms of range resolution, and the main-to-side lobe ratio is generally high.
When there is strong interference or a large quantity of debris on the seabed, it can affect
the quality of the observation image. In this paper, a pulse compression technique based
on deconvolution was proposed to achieve ideal objective functions. This method could be
used to overcome the limitations of inherent sonar system parameters and improve range
resolution without affecting system complexity.

In our simulation results, the proposed algorithm improved the main lobe width of
pulse compression, and the main-to-side lobe ratio also significantly increased. In the
processing results of data from actual sea trials, the proposed method effectively improved
image quality. In the results of the data processing, the ratios of improvement for SNR,
CR, and CSR were 32, 12.5, and 437%, respectively. Combined with object segmentation
methods, the object segmentation accuracy was effectively improved, and the segmented
target largely retained the morphological information of the actual target. This shows that
our proposed method has great potential in autonomous detection. In addition, some
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high-precision ocean surveys, exploration, and seabed sedimentological surveys may also
be potential applications of this method.
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