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Abstract: The acquisition of high-resolution (HR) digital bathymetric models (DBMs) is crucial
for oceanic research activities. However, obtaining HR DBM data is challenging, which has led
to the use of super-resolution (SR) methods to improve the DBM’s resolution, as, unfortunately,
existing interpolation methods for DBMs suffer from low precision, which limits their practicality. To
address this issue, we propose a seabed terrain feature extraction transform model that combines
the seabed terrain feature extraction module with the efficient transform module, focusing on the
terrain characteristics of DBMs. By taking advantage of these two modules, we improved the efficient
extraction of seabed terrain features both locally and globally, and as a result, we obtained a highly
accurate SR reconstruction of DBM data within the study area, including the Mariana Trench in
the Pacific Ocean and the adjacent sea. A comparative analysis with bicubic interpolation, SRCNN,
SRGAN, and SRResNet shows that the proposed method decreases the root mean square error (RMSE)
by 16%, 10%, 13%, and 12%, respectively. These experimental results confirm the high accuracy of the
proposed method in terms of reconstructing HR DBMs.

Keywords: digital bathymetry model; seabed terrain feature; deformable convolutional layers;
transformer; super-resolution

1. Introduction

Bathymetry provides fundamental information for all marine activities, and numerous
marine scientific research endeavors rely on digital bathymetry model (DBM) data. High-
resolution (HR) DBMs are commonly used for charting purposes [1]; at the same time,
they play a crucial role in establishing hydrodynamic fluid models [2], constructing marine
biological habitats and ecosystems [3], and other significant studies. In addition, HR DBMs
are valuable for maritime search and rescue operations. For example, the search and
rescue operations for Malaysia Airlines flight MH370 were severely hampered by the lack
of accurate bathymetric data in the corresponding area [4]. Therefore, the acquisition of
HR DBMs is of immense importance not only for scientific research but also for various
social activities. However, the scarcity of HR DBMs severely limits their application
and development.

HR DBMs are typically derived from ship-based acoustic surveys. On the one hand,
these surveys face challenges and inefficiencies, resulting in the limited coverage of HR
bathymetric data. According to statistics [5], ship-borne sonar-based HR data (≤800 m)
cover only approximately 6.2% of the global seafloor. Consequently, the availability of HR
bathymetric data to construct DBMs is severely limited for most of the global ocean. On
the other hand, many institutions have obtained global low-resolution (LR) DBM data,
including EPOTO and GEBCO. To address the shortage of HR DBMs, researchers have
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employed various super-resolution (SR) methods to improve the resolution of DBMs; DBM
SR aims to recover detailed topographic information from LR DBMs to generate HR DBMs.
Currently, SR methods for DBMs mainly rely on traditional interpolation techniques, such
as inverse distance-weighted interpolation [6], bilinear interpolation [7], bicubic spline
interpolation [8], continuous curvature tensor spline interpolation [9], natural neighborhood
interpolation [10], and kriging interpolation [11]. Although these interpolation methods
are widely used due to their simplicity and speed, they can present certain problems,
particularly when generating large-scale DBMs. One of their main drawbacks is the
potential to be over-smooth, as these methods do not adequately exploit local terrain
features during the interpolation process [12]. In addition to traditional interpolation
methods, many researchers have employed deep learning-based methods to enhance
the resolution of terrestrial digital elevation models (DEMs). These methods have the
advantage of not relying on additional multisource data and instead generate HR DEMs
solely through the reconstruction of LR DEMs [13]. Similarly, in situations in which data are
limited, the resolution of DBMs can theoretically be improved using deep learning-based
SR methods. This approach not only addresses the issue of insufficient data but also serves
as a valuable source of HR data for DBM data fusion.

Current deep learning-based SR models are mainly based on convolutional neural
networks (CNNs) and other networks based on CNNs, such as residual networks (ResNets),
generative adversarial networks (GANs), and transformers. The pioneering CNN model
for image SR is SRCNN, which consists of three convolutional layers that perform feature
extraction, non-linear mapping, and image reconstruction to enhance image resolution [14].
The advancement of neural networks has highlighted their crucial role in feature extraction;
however, the stacking of network layers can reduce the effectiveness of this network and
lead to degradation problems [15]. To address this problem, He et al. [16] employed ResNet
to extract shallow features and transmit mapping to the deep network. This identification
mapping does not require any additional parameters or calculations, ensuring that the
characteristics of this network do not deteriorate as the number of layers increases. In
the context of DEM SR, Chen et al. [17] were the first to apply SRCNN to DEM data for
SR reconstruction. Subsequently, other researchers have demonstrated the strong feature
extraction capabilities and applicability of ResNet to DEM SR [18,19]. Peak signal-to-noise
ratio (PSNR) evaluations of SR reconstruction accuracy are frequently performed in the
CV domain. However, studies have revealed a mixed relationship between PSNR and
visual quality, suggesting that a greater PSNR does not always translate into superior
visual perception [20]. In order to enhance perception, Ledig et al. [20] integrated a
perceptual loss function with a generative adversarial network for SR. Given the distinct
characteristics of DEM data compared to natural images, Zhang and Yu [21] applied
SRGAN, ESRGAN, and CEDGAN to DEM SR, and the experimental results showed that
SRGAN was the most effective in terms of extracting terrain features, outperforming
other GANs. This result suggests that neural networks with superior performance in the
CV domain might not be equally effective when extracting topographic features. The
current focus of DEM SR research is centered on fully and effectively extracting terrain
features. Zhou et al. [22] introduced dual filters into ResNet to accomplish this goal, while
Chen et al. [12] incorporated a spatial attention mechanism module into CNN to improve
its feature extraction efficiency. Zhang et al. [23] proposed the addition of slope loss to the
loss function, which significantly improved feature extraction effectiveness. Zhou et al. [24]
integrated vector terrain features before outputting HR DEM, which significantly improved
the accuracy of the model. To solve practical problems, researchers are now placing their
research objects in hard-to-access topographic data. Jiang et al. [25] used high mountain
data for the study data and constructed a new loss function in ResNet, which combined the
terrain parameters of slope and curvature.

However, the development of global high-precision HR DBMs has been slow due to
the challenges experienced when obtaining bathymetric data, particularly the lack of HR
data. The resolution of HR DBMs is significantly lower than that of terrestrial DEMs, and
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the application of SR research based on deep learning in DBMs is limited. Yutani et al. [26]
utilized sparse coding and dictionary learning techniques for SR in DBMs, resulting in
improved results compared to bicubic interpolation, and Hidaka et al. [27] employed deep
learning for SR in DBMs for the first time and compared the SR reconstruction effects
of various deep learning-based methods, including SRCNN, FSRCNN, ESPCN, SRGAN,
and ESRGAN. The results were superior to bicubic interpolation but did not contribute
to building a deep learning-based model for DBM terrain characteristics. Additionally,
Zhang et al. [28] enhanced the resolution of the global GEBCO_2021 dataset from 15 arc
seconds to 3 arc seconds using ResNet and migration learning. Although many deep
learning-based SR methods utilize ResNet for DEMs, there are some general issues with
this approach. First, the use of regular convolution kernels in ResNet might not be optimal
for recovering different topographic features due to the irregular terrain. Second, the
convolution operation does not adequately consider the influence of distant pixels. The
transformer, with its self-attention mechanism, possesses strong capabilities in terms of
capturing global information and long-range interactions among similar features, making
it successful in various visual tasks. Some researchers [29] have employed this transformer
in the computer vision domain to enhance SR accuracy. However, this transformer is
currently underutilized in SR for terrain models. Zheng et al. [30] designed a transformer
model for SR in DEMs via leveraging terrain self-similarity. The reconstruction effect
was superior to SRCNN and SRGAN, but improvements specific to local features were
not made. Additionally, SR is a low-level vision task, and using a complete transformer
structure can reduce computational efficiency. Therefore, modifications to the transformer
structure are necessary for its application in DBM SR.

In this paper, considering the complex and extensive nature of DBM seabed terrain fea-
tures, a seabed terrain feature extraction transformer (STFET) is proposed to achieve DBM
SR, combining ResNet with deformable convolutional layers and an efficient transformer.
The following are this paper’s key contributions:

1. This study is an early attempt to restore HR DBMs from LR DBMs using a transformer.
In addition, we utilize the proposed transformer-based model, combined with ResNet
and deformable convolutional layers, which ensures that STFET can capture both
local and global seafloor topographic features.

2. Given the characteristics of large changes and rapid fluctuations in the DBM terrain,
the traditional convolutional layers in ResNet are replaced by deformable convolu-
tional layers, which have the ability to flexibly modify the sampling position of the
convolution kernel to align with irregular features, improving the extraction of local
seabed terrain features.

3. The transformer’s self-attention mechanism allows long-term dependencies to be
established between similar regions in the DBM, improving global terrain feature
reconstruction. In addition, the matrix is broken down into smaller matrices for
parameter manipulation, increasing the speed of model operations.

2. Methodology

The StfeT method includes the following: (1) data-processing; (2) training in the
proposed model; and (3) testing and evaluation. The workflow is summarized in Figure 1.
More detail is provided in other sections.

2.1. Network Architecture

In view of the complex terrain characteristics of DBMs, in this paper, we propose
a seabed terrain feature extraction transformer model for DBM SR. This model mainly
consists of three parts: shallow terrain feature extraction, deep feature extraction, including
the seabed terrain feature extraction module and the efficient transformer, and sub-pixel
convolution reconstruction, as shown in Figure 2. The utilization of convolutional layers of-
fers a straightforward and efficient approach to incorporating feature maps, demonstrating
a consistent performance across various computer vision tasks.
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To extract the shallow features, we employed a regular convolutional layer fN
(channel = 64, kernel size = 9, stride = 1) as the first STFET module to extract the DBM
feature Fshallow:

Fshallow = fN(ILR) (1)

where ILR represents LR DBM. After extracting the shallow features to extract deep features,
we employed the seabed terrain feature extraction module and the effective transformer
module. Seabed terrain features were extracted adaptively using ResNet with deformable
convolutional layers, and the intermediate features are represented by A1, A2,. . ., An:

Ai = Res(Ai−1) + Ai−1, i = 1, 2, . . . , n (2)
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A1 = Res(Fshallow) + Fshallow (3)

Fdeep = ET(An) (4)

where Res represents a residual block with deformable convolutional layers. Through
residual learning, seabed terrain features could be effectively extracted, and the deformable
convolutional layer could focus on high-frequency information, thereby enhancing the
extraction of local features. ET represents the efficient transformer, and the feature maps
after residual learning were learned using ET. Through the self-attention mechanism, the
correlation between similar seabed terrain features was modeled, allowing the model to
focus on other positions with similar seabed terrain features to extract global seabed terrain
features. The deep feature Fdeep was obtained through these two modules.

After obtaining the deep seabed terrain features, the conventional convolutional layers
were used to extract and transform the high-frequency features in the residual information.
BN is batch normalization, which is then used to hasten model convergence and improve
the model’s robustness. Furthermore, a skip connection is used to connect the shallow
topographic features with deep topographic features to obtain all topographic features Fall .

Fall = BN
(

fN

(
Fdeep

)
+ Fshallow

)
(5)

Finally, the LR feature maps were transformed into HR feature maps using sub-pixel
convolution which were reconstructed to generate ISR, which is SR DBM. During sub-pixel
convolution, the HR feature maps were obtained using convolution and multichannel re-
combination, avoiding a large number of zero-filled areas in general deconvolution upsam-
pling. Moreover, we used the dropout to prevent model overfitting before reconstruction.

ISR = fP

(
Fdeep

)
(6)

where fP is a sub-pixel convolutional layer. STFET uses a large number of convolutional
layers to extract and transform features. The local seabed terrain features and global seabed
terrain features were extracted mainly through ResNet with deformable convolutional
layers and the efficient transformer. Finally, a sub-pixel convolutional layer was used to
reconstruct the SR DBM.

2.2. Seabed Terrain Feature Extraction Module

DBM often has clear topographic undulations in local areas, generating different to-
pographies, and the depth distribution of DBM is closely related to the topographic features
of local areas. The effective extraction of seafloor topographic features can provide more
accurate feature maps, thereby improving the quality of SR DBM. Very deep convolutional
networks (VDSRs) [31] were the first to use ResNet for the SR domain of images, as they
can utilize both deeper neural networks and mitigate the problems of disappearing or
exploding gradients and network degradation. Seabed terrain features have different
shapes, and the convolution kernel used in the traditional convolution layer is usually in
the shape of an n × n regular grid, which makes it difficult to extract complicated seabed
terrain features. To extract complex-shaped objects or terrain features, researchers have
replaced conventional convolutional layers with deformable convolutional layers [32,33].
Deformable convolution adds an offset to the regular convolutional layer, which is imple-
mented using an additional convolutional layer, as shown in Figure 3. In order to always be
able to cover complicated terrain features, the deformable convolution mechanism makes
sure that offsets can be learned during the learning process. Therefore, the deformable
convolution layer can improve its ability to extract terrain features. In this paper, we re-
placed regular convolutional layers in the residual network with deformable convolutional
layers, and the feature extraction process of the conventional convolutional layer and the
deformable convolutional layer in the DBM is shown in Figure 4. When the conventional
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convolutional layer extracts terrain features because the convolution kernel is regular, the
edge terrain features are easily overlooked, whereas the deformable convolutional layer
can adaptively extract seabed terrain features by learning during training.
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The seabed terrain feature extraction module consists of N residual blocks. In previous
studies, the higher the number of residual blocks, the higher the accuracy, but at the
same time, it increases the computation time. Therefore, it is necessary to balance the
reconstruction accuracy and computation time to choose an appropriate number of residual
blocks. Each residual block has five layers: a ReLU activation function, two deformable
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convolutional layers (channel = 64, kernel size = 3, stride = 1), and two batch normalization
layers. The deformable convolutional layer is used to extract high-frequency details of the
DBM to adaptively extract seabed terrain features. DBMs are different from natural images
because the difference between the maximum value and the minimum value is often on the
kilometer scale, and batch normalization can reduce the impact of extreme water depth.
Furthermore, the ReLU activation function can enhance the non-linear relationship between
layers of the neural network, which can improve the model’s fitting ability. Therefore, the
seabed terrain feature extraction module can effectively extract topographic features from
the seafloor.

2.3. Efficient Transformer Module

According to the first law of geography, the closer things are, the more related they are.
Therefore, in close regions, DBMs generally have a similar topography globally. The texture
details of the current image block can be recovered by referring to other image blocks in
single-image super-resolution (SISR), which allows similar image blocks in an image to be
used as references for one another. The transformer self-attention mechanism can realize
this function very well, so the transformer has a theoretical basis to recover the current area
by referring to other areas to extract similar terrain features.

The structure of the efficient transformer used in this paper is shown in Figure 5. Simi-
lar to the Vision Transformer (ViT) [34], only the encoding part in the standard transformer
is used, and it is composed of Multi-Layer Perceptron (MLP) and efficient multi-head
self-attention (EMSA). At the same time, we used layer normalization (LN) before each
module to accelerate the convergence speed of the model. Then, after each module, the
residual connection was achieved on an element-by-element basis. This process can be
represented using the following formula:

E = EMSA(LN(Un(An))) + Un(An) (7)

Fdeep = Fold(MLP(LN(E)) + E) (8)

where Un denotes the unfold function, whose purpose is to generate a local sliding block
from the feature map extracted by the seabed terrain feature extraction module. E represents
the feature extracted using EMSA, and Fold denotes the inverse operation of Un, which
converts the sliding block into a feature map.
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The EMSA structure is shown in Figure 5. First, features were embedded in query Q,
key K, and value V using a linear layer. As in the transformer, we projected Q, K, and V m
times, where m is the multi-head number, and the multi-head self-attention (MSA) directly
computes Q, K, and V. The computations typically use a large matrix, which consumes a
large amount of GPU memory and computation. Unlike MSA, the DBM matrix we used
for training to extract terrain features is relatively large due to the LR of DBM and the large
scale of the terrain features. Therefore, we used feature splitting to divide Q, K, and V into
s parts to obtain Qs, Ks, and Vs, where s is the splitting factor. Then, we use Scaled Dot
Product Attention (SDPA) to perform attention to generate multiple outputs O1...Os. This
process is shown on the right side of Figure 5. Finally, all outputs were concatenated to
produce the overall output feature O.

3. Experimental Setup
3.1. Network Hyperparameters

In the proposed STFET, to ensure accuracy and computational efficiency, the number
of residual blocks N was set to 16. The multi-head number in the efficient transformer
module was set to 8, and the hidden layer size of the MLP was mlpdim = 85, and was
obtained using the following formula:

mlpdim = (inchannel + outchannl)× 2/3 (9)

where inchannel and outchannel are the numbers of MLP input channels and output chan-
nels, respectively, which are both 64. To train the proposed STFET, we used adaptive
moment estimation (Adam) with a 0.0002 learning rate, a random seed of 42, and a dropout
rate of 0.2. The loss in STFET was the L2 loss MSE. For CNN-based algorithms, all the
models were coded using the PyTorch framework. In addition, we used 8 GB of RAM
and trained the models on a deep-learning server with an Nvidia RTX 2070S GPU. More-
over, the hyperparameters were adjusted to retrain the comparison models in the optimal
way possible.

3.2. Study Area and Data

Unlike natural images, DBM is a grayscale image with only one channel. DBMs tend
to have topographic features. In this study, the Mariana Trench in the Pacific Ocean and
the surrounding waters to the east were selected as the experimental area, constituting
a range of 0◦−45◦N, 135◦–180◦E. This area is large and rich in seafloor topography and
essentially includes most of the typical seafloor topographic features, such as ridges,
trenches, seamounts, sea basins, and other representative seafloor topographic features.
The values of natural images are pixel values, ranging from 0 to 255. However, the elevation
of our study area was between −10,923 and 3659 m. The study area is shown in Figure 6.

The DBM data used in this paper were gebco_2022_sub_ice, sourced from https:
//www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2022 (accessed
on 10 September 2023), which has a resolution of 15 arc seconds. Since original DBM
data are large, it was necessary to preprocess them to train the data. We cropped the
original DBM data into 128 × 128 patches and removed most of the land area, and a total of
6386 DBM images were obtained as HR DBMs. To obtain paired HR DBMs and LR DBMs
as datasets for training, many previous DEM SR studies were scaled 4 times for verification
experiments [12,22,24]. In this study, we also used bicubic interpolation to reduce the data
size 4-fold and obtain 128 × 128 patch DBM images with resolutions of 60 arc seconds as
LR DBMs. The ratio of the training set data, verification set data, and test set data was 8:1:1
through random allocation. Before training, due to the large difference in the DBM water
depth values DBMs needed to be standardized, and therefore, each DBM water depth value
was standardized to [−1,1]. The normalization formula is expressed as follows:

DBMi = 2× (DBM i − Hmin)/(Hmax − Hmin)− 1 (10)

https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2022
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2022
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where Hmin is the minimum value of DBM and Hmax is the maximum value of DBM.
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Since the format of DBMs is usually .tif, there was only one channel, while natural
images had three channels. Therefore, before inputting data into the model, we needed
to set the number of input channels in the convolutional layer to 1 for training. Similarly,
it was necessary to set the number of output channels of the convolutional layer to 1
before reconstruction.

3.3. Evaluation Methods

To test the effectiveness of STFET, we selected bicubic interpolation [35], SRCNN,
SRGAN, and SRResNet (SRGAN generator) as comparison methods. Bicubic interpolation
is one of the simplest and most effective interpolation methods and is often used as a
baseline method for SR [21]. The first deep learning-based SR method was SRCNN. This
network is simple and effective, and some scholars have proven its practicality in DEM SR.
SRGAN is the first model to employ the generation confrontation network for the SR task,
and it emphasizes that high accuracy does not always equate to superior visual quality
using the perceptual loss function to enhance the picture. This finding has been supported
by later research [36,37], and the focus of several studies has shifted from improving image
accuracy to improving image data quality. Therefore, in this paper, we chose SRGAN to
verify whether the perceptual loss function could acquire better visual quality in DBMs.
SRResNet is the generator component of SRGAN, and it improves SRGAN’s accuracy
while using only the mean squared error (MSE) loss function to avoid imbalance during
the training process.

DBM water depth values generally vary widely, reaching several thousand meters
underwater or even tens of thousands of meters underwater. Therefore, to quantitatively
compare the performance of various DBM SR methods, we used common DBM evaluation
indices, the root mean squared error (RMSE) and mean absolute error (MAE), as evaluation
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indices and used the maximum bathymetric error (Emax) as an evaluation index to reflect
the stability of the SR methods. These evaluation indices can be calculated as follows:

RMSE =

√
1
N ∑N

i=1 (hi − ĥi)2 (11)

MAE =
1
N ∑N

i |hi − ĥi| (12)

Emax = max(abs(hi − ĥi)) (13)

where N is the total number of pixels in a DBM image. hi and ĥi represent the elevation
values of the HR DBM and the corresponding SR DBM, respectively.

4. Results and Discussions
4.1. Results on DBMs

Table 1 shows the quantitative results of 638 DBMs in the test set in terms of the RMSE,
MAE, and Emax indices. Among these results, those in bold highlight the best performance
of each indicator, and the underlined values are the second-best results. From Table 1,
we can see that, compared to other methods, STFET had the best effect on all evaluation
indices. Moreover, the accuracy of all deep learning-based methods was better than bicubic
interpolation, which shows that deep learning methods have an application value in DBM
SR. Similar to the results for natural images [20], SRGAN achieves a lower accuracy than
SRResNet based on the RMSE accuracy index.

Table 1. Quantitative results on the test set. Results in bold are best, and those underlined are
second best.

Method RMSE (m) MAE (m) Emax (m)

Bicubic 15.85 8.08 295.80
SRCNN 14.78 7.26 293.48
SRGAN 15.27 7.87 306.98

SRResNet 15.13 7.89 300.07
STFET 13.30 6.88 262.05

From Table 1, it can also be seen that SRCNN performs better than SRGAN and
SRResNet; these results are different from those obtained in the CV domain. STFET uses
the seabed terrain feature extraction module and effective transformer module, and SR’s
accuracy is significantly improved. Compared with bicubic interpolation, SRCNN, SRGAN,
and SRResNet, the performance results in terms of RMSE decreased by 16%, 10%, 13%, and
12%, respectively. The test set includes complex-area and flat-area DBMs, and the STFET
results are optimal, proving that this method is universal and reliable.

4.2. Quantitative Evaluation Results on Complex Regions

To evaluate the performance of DBM in different terrain regions, we selected five
regions with more significant topographic features from the test set to conduct an accuracy
comparison. These five regions contained highly undulating and complex terrain, including
trenches and seamounts. The locations are shown in Figure 6. Among them, the extremum
between area 2 and area 5 was small, and the terrain undulation was relatively moderate,
while the topographic features of areas 1, 3, and 4 were more obvious. The original DBM for
the five regions and the SR DBM reconstructed using different SR methods were combined
for comparison, and the quantitative results are shown in Table 2.
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Table 2. Quantitative results for complex regions. Results in bold are the best, and those underlined
are the second best.

Area Method RMSE (m) MAE (m) Emax (m)

1

Bicubic 32.26 24.90 157.34
SRCNN 31.69 24.72 201.30
SRGAN 15.11 11.03 175.39

SRResNet 21.40 16.25 140.28
STFET 11.98 8.41 198.65

2

Bicubic 17.58 9.78 494.95
SRCNN 17.26 9.73 483.92
SRGAN 14.49 7.44 484.46

SRResNet 14.69 7.87 492.02
STFET 12.57 6.12 491.90

3

Bicubic 30.08 17.66 189.57
SRCNN 29.77 18.04 196.98
SRGAN 12.44 9.27 136.85

SRResNet 15.22 10.97 126.56
STFET 10.92 8.18 125.52

4

Bicubic 27.10 14.30 314.91
SRCNN 26.42 14.63 295.98
SRGAN 13.99 7.94 357.04

SRResNet 16.69 9.50 310.11
STFET 12.84 6.99 360.42

5

Bicubic 16.63 6.42 268.70
SRCNN 15.63 5.05 279.80
SRGAN 14.16 5.45 259.50

SRResNet 12.93 5.27 207.15
STFET 11.29 4.58 194.97

From Table 2, it can be seen that the STFET results were still optimal for complex
terrain. In area 2 and area 5, all methods obtained quite accurate results, and STFET
exhibited the greatest improvement. However, in area 1, area 3, and area 4, the terrain
features were complex. For example, area 1 comprised a large area containing trenches with
topographic features. The reconstruction effect of bicubic interpolation and SRCNN was
poor, while the reconstruction effect of SRGAN and SRResNet was much better in area 1.
This observation illustrates the ability of residual networks to extract features significantly.
STFET has a seabed terrain feature extraction module and an efficient transformer module
and, therefore, it can enhance the extraction of local terrain features and similar global
terrain features so that the reconstruction results are significantly improved. Compared
with bicubic interpolation, SRCNN, SRGAN and SRResNet, the accuracy in terms of
the RMSE decreased by 63%, 62%, 21%, and 44%, respectively, in area 1. These results
demonstrate the effectiveness of STFET in terms of extracting seafloor topographic features.

4.3. Visual Evaluation of Different Methods

To compare the visual quality of reconstructions using different methods, we combined
HR DBMs with SR DBMs generated using different methods for the corresponding regions,
and these results are shown in Figure 7. We can see that, on the whole, the SR DBM
reconstructed by all methods was relatively close to the HR DBM. However, in some areas
with large terrain fluctuations and obvious topographic features, subtle differences in
terrain could still be observed. As shown in Figure 8, we zoomed in on the area with
obvious seabed terrain features in Figure 7; the reconstruction effect of bicubic interpolation
and SRCNN in areas with large terrain fluctuations was too smooth, and the visual quality
was poor, which is consistent with the quantitative results in Table 2. At the same time, the
proposed method had a better reconstruction effect compared to other methods, and the
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result is closer to an HR DBM. Therefore, the results confirm the effectiveness of STFET in
terms of both visual quality and reconstruction accuracy.
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4.4. Residual Evaluation of Different Methods

To visually compare the differences between the DBM and HR DBM generated using
each SR method, we plotted the water depth difference between the SR DBM and HR
DBM in the five districts as an error map, and the results are shown in Figure 9. The main
difference in the reconstructed DBM lies in special terrain areas, such as the trench in area 1
and the seamount in area 4 in the figure, where the error is relatively large. From the error
map results, we can clearly see that the error area generated using STFET was much smaller
overall. The error in the local area was also greatly reduced closer to the HR DBM, which
indicates that the effectiveness of the seabed terrain extraction module and the efficient
transformer module was further validated. Meanwhile, similar to natural images, SRGAN
outperformed SRResNet visually. However, the performance of bicubic interpolation and
SRCNN was poor, and their error range was large; therefore, they were not suitable for
DBM SR in complex terrain areas. As a result, the main challenge of DBM SR was to restore
these areas. At the same time, it was necessary to ensure the reconstruction effect of the
overall terrain.

To quantitatively analyze the error accuracy of various methods, we took 0–25 m,
25–100 m, 100–200 m, and more than 200 m as the statistical conditions and counted the
number of error points generated using different methods of DBMs in Figure 9. The results
are shown in Table 3. From the results, we can clearly see that the DBM reconstruction errors
generated by StfeT were more concentrated at 0–25 m, and this reconstruction accuracy
was better than other methods.
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Table 3. The number of errors generated using different methods.

Method Number (Error < 25 m) Number (25 m < Error < 100 m) Number (100 m < Error < 200 m Number (Error > 200 m

Bicubic 61,711 19,390 793 26
SRCNN 61,378 19,876 642 24
SRGAN 77,494 4344 60 22

SRResNet 71,029 10,704 163 24
StfeT 78,893 2949 56 22

4.5. Ablation Study

In this section, we verify the effectiveness of the seabed terrain feature extraction mod-
ule and the efficient transformer module in DBM SR. We added the seabed terrain feature
extraction module and the efficient transformer module into other models, with SRResNet
as the baseline. SRResNet-dconv represents SRResNet with the seabed terrain feature
extraction module, and SRResNet-ET represents SRResNet with the efficient transformer
module. The comparison results are shown in Table 4.

Table 4. Ablation study results for the proposed STFET. Results in bold are best.

Method RMSE (m) MAE (m) Emax (m)

SRResNet 15.13 7.89 300.07
SRResNet-dconv 15.10 7.70 322.98

SRResNet-ET 15.01 7.70 319.30
STFET 13.30 6.88 262.05

Common convolutional layers were used in conventional residual networks, and their
convolution kernels were usually regular; however, the DBM seabed terrain features were
irregular. By using deformable convolutional layers, features that more closely resembled
the actual terrain could be obtained to some extent, thereby improving the accuracy of
super-resolution. In addition, the efficient transformer could use a self-attention mechanism
that allowed each pixel to interact with all pixels in the entire image, and this nonlocal
operation could better capture long-range correlations in images, helping to recover missing
details more accurately. The results in Table 3 show that the seabed terrain feature extraction
module and the efficient transformer module have the potential to improve the accuracy of
different deep learning-based SR methods. The effectiveness of the seabed terrain extraction
module and the efficient transformer is demonstrated. However, when the seabed terrain
feature extraction module and the efficient transformer module were used alone, this
improvement effect was not very satisfactory. This observation shows that when using
deep learning-based SR methods to extract features from DBMs, it is necessary to both
extract local features and strengthen the extraction of similar global features. Only in this
way can high-accuracy HR DBM be obtained more effectively.

5. Conclusions

In most previous studies, scholars have often used interpolation methods to improve
DBM resolution, but the accuracy of generating HR DBM was poor. In this paper, we
propose a seabed terrain feature extraction transformer for DBM SR, which mainly consists
of the seabed terrain feature extraction module and the efficient transformer module. First,
the seabed terrain feature extraction module has an important function, and it is able to
adaptively extract DBM seabed terrain features. This adaptive ability enables the model to
perceive DBM seabed terrain features at different scales and strengthen the extraction of
local DBM seabed terrain features. Second, the efficient transformer module finds similar
seabed terrain features through the self-attention mechanism, which enhances the extraction
effect of similar global seabed terrain features. The effectiveness of these two modules
was verified through ablation experiments, which demonstrated that, compared with
bicubic interpolation and SRCNN, SRGAN, and SRResNet, STFET decreased the RMSE
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by 16%, 10%, 13%, and 12%, respectively. Furthermore, especially in areas with complex
seabed terrain features, the accuracy of SR DBM generated using STFET reconstruction was
significantly improved.

The method proposed in this paper considers global and local seabed terrain features
for DBM SR but is not limited to DBM SR. While making up for the lack of interpolation
accuracy, it can also be combined with the interpolation method for data fusion. Our next
step considers that the proposed STFET can be used to transfer the trained model to the sea
domain with only LR DBM, and we plan to rebuild and generate HR DBMs to compensate
for the deficiency of LR DBMs and meet the needs of practical applications.
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