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Abstract: Knowledge of tree size is of great importance for the precision management of a hazelnut
orchard. In fact, it has been shown that site-specific crop management allows for the best possible
management and efficiency of the use of inputs. Generally, measurements of tree parameters are
carried out using manual techniques that are time-consuming, labor-intensive and not very precise.
The aim of this study was to propose, evaluate and validate a simple and innovative procedure using
images acquired by an unmanned aerial vehicle (UAV) for canopy characterization in an intensive
hazelnut orchard. The parameters considered were the radius (Rc), the height of the canopy (hc), the
height of the tree (htree) and of the trunk (htrunk). Two different methods were used for the assessment
of the canopy volume using the UAV images. The performance of the method was evaluated by
comparing manual and UAV data using the Pearson correlation coefficient and root mean square
error (RMSE). High correlation values were obtained for Rc, hc and htree while a very low correlation
was obtained for htrunk. The method proposed for the volume calculation was promising.

Keywords: precision agriculture; crop management; Tonda Francescana®; high-density orchard

1. Introduction

The European hazelnut tree (Corylus avellana L.) is distributed in the temperate zone of
the northern hemisphere but is spreading rapidly in new areas such as Chile, South Africa,
and Australia. Its total cultivated area in the world is about 660,000 ha, with an average
world annual production of about 865,000 t (in-shell hazelnuts), showing an increasing trend
of geographical expansion caused by strong demand from the confectionery industry [1,2].
Hazelnut traditionally grows as a multi-stemmed bush with a planting density of between
250 and 550 trees/ha [3,4]. On the contrary, new hazelnut orchards are designed with higher
planting densities of up to 1700 trees/ha; drip or sub-irrigation; a free vase training system;
and a single trunk, allowing for mechanical cultivation. Traditional orchard management
methods have a low degree of informatization, leading to various problems, including
low production efficiency, excessive water/fertilizer/pesticide use and severe pollution
problems. In addition, modern orchard management will be empowered by informatization,
which will provide opportunities for growers to make decisions based on facts, and help
them to reproduce good practices [5,6].

It is known that the development of the tree canopy affects both the quality and
yield of fruits [7–9]; therefore, to achieve high hazelnut production, manipulation and
management of the tree canopy are essential. Due to the increasing price of agrochemicals,
agricultural diesel, water and labor, there is a need for efficient precision farming that
applies the appropriate timing and amount of fertilizer, pesticides, and irrigation water for
hazelnut orchard management [7].
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Precision agriculture, especially for fruit tree crops, is an environmental and economic
management strategy that uses information and communication technology to acquire data
supporting decisions in climate change [10–12]. The preliminary step of precision farming
is receiving as much growth data on the crop as possible, which depends on accurately
describing the crop’s morphological and structural characteristics, including canopy width,
height, area and volume [7,13]. Among these, canopy width is essential for precision spray-
ing and machine harvesting, while the canopy projection area is important for determining
tree growth and water requirements during the growing season [7]. Moreover, geometrical
canopy characteristics and tree vigor are crucial traits in phenotyping studies to assess the
cultivar’s suitability to be cultivated in specific growing systems, as well as for evaluating
pruning practices, irrigation and fertilization, and spraying [5,14].

With the development of sensor technology, nondestructive large-area orchard canopy
measurement can be realized using unmanned aerial vehicles (UAVs) and visual imaging
technology [5,8]. A UAV is a powered, aerial vehicle, without any human operator, that
can fly autonomously or be controlled remotely with various payloads. Furthermore, due
to their advantages in terms of flexible data acquisition and high spatial resolution, UAVs
are quickly evolving and provide a powerful technical approach that is rapid and nonde-
structive, for many applications in precision agriculture, including crop-state mapping,
crop-yield prediction, disease detection, and weed management [15].

A UAV with low-altitude remote sensing has advantages such as good mobility, easy
construction, and high resolution for obtaining images. These UAVs are easily accessible
and provide accurate data. Furthermore, they are cost-effective, easy to deploy anywhere
and can produce real-time spatial images compared with other traditional remote sensing
(RS) platforms. However, the use of UAVs in precision agriculture faces critical challenges
such as payload, the sensors used in the UAV, the cost of the UAV, flight duration, data
analytics, environmental conditions, and other requirements. Cost is the main challenge
to UAV use due to the various sensors, mounting parts, technology-based applications
and software needed for data analytics. Weather conditions, such as rain, snowfall, clouds,
and fog, are another factor that limits UAV activities and the sensing process. A recent
study showed how [14] the quality of services provided by UAVs in comparison to other
types of remote sensing platforms, such as satellites, manned aircrafts and ground-based
platforms, resulted in higher flexibility, adaptability and accuracy, with easy deployment
and operability [16]. One other limitation of multi rotor UAVs is battery duration, although
this enables UAVs to be small- to medium-sized [6]. Several studies have been conducted on
the use of UAV sensing technology in various types of orchards [17], including olive [14,18],
peach [7], almond [19], apple [20], mango [21], grape [22,23], cherry [24] and pine [25]
orchards, with promising results. In the last decade, research on hazelnuts has focused on
the improvement of field management and the quality of products; however, techniques
are lagging behind advanced agronomic practices [1,6,26].

From the first studies before the new century [27] up to the very recent H2020 Panteon
project, various authors have tried their hand at modern data collection techniques [28–30].
These studies mainly focused on using satellite remote sensing images for the investigation
of the land characteristics of hazelnut orchards. Moreover, the resolution of satellite images
is not often sufficient to highlight spatial variability because of different types of soil tillage
and canopy management practices that can invalidate the canopy vigor data, as has already
been reported for other tree crops [19].

Despite this, research works involving the use of environmental remote sensing
systems are very few: the review of Zhang et al. [17] reports no published paper on the
use of UAVs in Corylus avellana L. Altieri et al. [6] recently defined a rapid procedure to
calculate the canopy area and leaf area index (LAI) of young hazelnut trees using NDVI
(normal difference vegetation index) and CHM (canopy height model) values derived from
UAV images. However, they did not report geometric information such as canopy width.

Hazelnut has particular characteristics both for the canopies, which have irregular
and complex shapes, and for the high leaf area index (LAI) [6] that challenge their 3D
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characterization. Therefore, it is important to improve the characterization of this tree crop. In
addition, in recent years this species has shown an increasing trend of geographical expansion
caused by strong demand from the confectionery industry, with the plantation of modern, big,
mechanically manageable, irrigated, and high-density orchards. This led to the necessity to
adapt the principles of precision farming also to Corylus avellana L. Overall, there is still a lack
of methodological information on how to use the UAV’s data to make accurate measurements
of the geometrical characteristics and the volume of hazelnut canopy. Meanwhile, there is a
lack of assessment on time and labor consumption associated with efforts to enhance accuracy
with the UAV photogrammetry method. Accordingly, the general aim of this paper was
to give to researchers and growers an innovative and simple method for the punctual and
complete characterization of the hazelnut canopy by UAV photogrammetry.

2. Materials and Methods
2.1. Study Site Description and Tree Sampling

The research was carried out during the growing season of 2022 in the experimental
orchard of the Department of Agricultural, Food, and Environmental Sciences of the
University of Perugia, located in central Italy (42◦58′22.82′ ′N, 12◦24′13.02′ ′E) on an orchard
planted in 2017 with three densities:

(A) 625 trees ha−1, spaced 4 m between rows and 4 m on the row, used as a control
treatment—the common density used by farmers;

(B) 1250 trees ha−1, spaced 4 m × 2 m;
(C) 2500 trees ha−1, spaced 4 m × 1 m.

All trees, grafted on no-suckering rootstock, were trained as single trunks with four
main branches each.

The orchard is composed of six rows, each containing 43 trees divided into the three
densities of the plantation; on the same row, the first 25 plants are spaced 1 m from each
other, the next 12 are spaced 2 m and the last 6 are placed 4 m apart. Specifically, the
orchard is made up of trees belonging to two of the main Italian hazelnut varieties: Tonda
di Giffoni in the first three rows and Tonda Francescana® in the next three rows. In this
paper, the trees studied belonged only to the hazelnut variety Tonda Francescana®.

A previous study showed that hazelnut canopy characterization by UAV was unsuit-
able for the third plant density reported above, namely 2500 trees ha−1 [31]. For this reason,
later research was carried out only on the first two plant densities of the hazelnut orchard.

2.2. Manual Measurements

Manual measurements have been carried out on 36 trees, 12 per each row, of which
6 had a 1250 trees ha−1 density and the other 6 a 625 trees ha−1 density. Since the studied
trees are replicated in three rows, 18 trees were measured for each of the two tree densities.

Manual measurements were used to characterize tree hazelnut canopy parameters
such as plant height and canopy volume. Specifically, the instrument used to obtain the
parameters was a meter measure, which was used to measure the plant height, canopy
height, width, and thickness. The tree height, trunk and canopy height and canopy width
and thickness were measured by a trained operator standing in front of the plant, collecting
a single measurement per parameter. The canopy size parameters, measured manually,
represent the mean value of the canopy, derived from a single measure per size parameter.
In detail, the canopy’s height was calculated as the difference between the plant’s height
and the trunk’s height, while the width and thickness of the canopy were measured as the
average distance between the sides. The width is considered the average distance between
the north and south sides of the canopy; on the contrary, the thickness is measured between
the west and the east sides. The width and thickness of the canopy were used to calculate
the average radius of the canopy area, assimilated to a regular circle and, with the height of
the canopy, was used to calculate its volume, which was assimilated to a simple cylinder,
according to what the report by [32], as if the plant shape was a regular geometric solid.
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2.3. Acquisition of UAV Images

The acquisition was made using a DJI (Shenzhen, China) Phantom 4 (P4) Multispectral
UAV [33]. The P4 multispectral is a high-precision drone capable of multispectral imaging
functions. The imaging system contains six cameras with 1⁄2.9-inch CMOS (complementary
metal–oxide semiconductor) sensors, including a Red–Green Blue (RGB) camera and a
multispectral camera array containing five cameras for multispectral imaging, covering
the following bands: blue (B): 450 nm ± 16 nm; green (G): 560 nm ± 16 nm; red (R):
650 nm ± 16 nm; red edge (RE): 730 nm± 16 nm and near-infrared (NIR): 840 nm ± 26 nm.
The spectral sunlight sensor on the top of the aircraft detects solar irradiance in real time for
image compensation, maximizing the accuracy of the collected multispectral data. The P4
Multispectral uses a global shutter to avoid distortions that might be present when using a
rolling shutter.

The P4 multispectral aircraft has a built-in DJI Onboard D-RTK, providing high-
precision data for centimeter-level positioning when used with a Network RTK service.
The P4 multispectral has a maximum take-off weight of 1487 g, and a maximum speed of
31 mph or 36 mph (based on the flight mode). The controllable range of the pitch angle
is −90◦ to +30◦. The app DJI GSPro, installed on an Apple iPad, was used for the design
and execution of the UAV flight. The flight plan was designed as a polygon grid with a
flight altitude of 10 m, an overlap of the flight path of 75% in both the side and heading
directions, a velocity of 1.5–2 m/s and the capture mode “Hover & Capture at Point”. The
ground resolution (GSD—ground sample distance) was set to 0.5 cm/pixels.

Ground control points (GCPs) were used to ensure the accuracy of the subsequent
point cloud information. The coordinates of the GCPs were measured using network
real time kinematic (NRTK) Positioning, so the position of the receiver points on global
navigation satellite system (GNSS) is obtained in real time with centimeter precision. On
the field were also positioned check points (CPs), i.e., known coordinate points, not used
for the point cloud model but only for position control. The position of the GCPs and CPs
is reported in Figure 1a.
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The relative and absolute orientation of the frames was determined by aerial triangulation
with a bundle adjustment algorithm. The tie points of the frames were automatically identified
using an image-matching algorithm. The GCPs, whose coordinates were known from the
GNSS survey, were manually identified on the frames, and collimated one by one [34].

2.4. Point Cloud Reconstruction

Agisoft (St. Petersburg, Russia) Metashape software [35] was used to process the UAV
images. The software easily and automatically converts hundreds of images into a point
cloud. It is widely used for ground and aerial photogrammetry and remote sensing [36–39].
The red-green-blue (RGB) images collected by the UAV were used to create the 3D point
cloud (Figure 1b). The detailed procedure used to obtain the point cloud is described in [36].
Briefly, the calibration procedure was first applied to calculate the calibration camera
parameters and the obtained parameters were imported to Agisoft Metashape before
processing. Metashape was used to find matching points between overlapping images,
estimate the camera position, and build a sparse and dense point cloud model [36]. As
described above, 10 GCPs (Figure 1a,b) were used for orienting the images during the
optimisation and for georeferencing the photogrammetric model and point cloud in the
global datum WGS 84. An ortophoto of the study area was extracted (Figure 1a).

2.5. Recognition of Hazelnut Trees

For the identification of every single tree, two procedures were tested:

1. The 3D point cloud was divided into two point clouds: a “canopy” point cloud and a
“ground” point cloud, using the classification procedure of Agisoft Metashape. Each
point cloud was exported separately to the open-source software Cloud Compare
(Paris, France). In Figure 2a, the “canopy” point cloud exported on Cloud Compare
was reported. The obtained 3D point cloud is affected by noise, especially in the lower
part of the canopy. Thus, filters available on Cloud Compare software for automatic
noise removal have been used. Rasterisation of the “canopy” and ”ground” point
clouds was done, resulting in Digital Surface Model (DSM) DSMcanopy and DSMground,
respectively, with a resolution of 0.01 m × 0.01 m. To the DSMcanopy no interpolation
to fill empty areas was performed because the holes could represent essential data
for the evaluation of the penetration of the light through the canopy; instead, to the
DSMground a weighted average interpolation was applied to fill some holes in the
original cloud. Finally, the two DSMs were imported into QGis (Figure 2b) to operate
the analysis described below.
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The DSMcanopy in the GIS environment was elaborated to obtain the canopy radius
and height.

The radius Rc was calculated as the mean of the width of the canopy evaluated on
eight different directions with an inclination of 22◦30′ (Figure 3a).
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(b) evaluation of the height of the canopy; and (c) evaluation of the height of the trunk and of the tree.

The height of the canopy hc was obtained from the difference between the maximum
and the minimum elevation of the file raster of the canopy (Figure 3b):

hc = hmax − hmin (1)

The height of the tree was evaluated from a DSM∆H in which each pixel value is the
elevation difference ∆H between the DSMcanopy and the DSMground (Figure 3c). Thus, the
height of the tree, htree is:

htree = ∆Hmax, (2)

while the height of the trunk, htrunk is:

htrunk = ∆Hmin. (3)
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For the evaluation of the surface of the canopy on the ground, DSMcanopy was vec-
torised in QGis using the command “from raster to vector”. In this way, the polygon of the
canopy was obtained, as well as, automatically, geometrical attributes, such as the surface.

2. The ortophoto obtained from the elaboration of the multispectral images was used, in
a GIS environment, to obtain the NDVI map using the formula:

NDVI =
NIR− R
NIR + R

(4)

where NIR and R are the Near-Infrared and Red images, respectively. The obtained
greyscale NDVI map (Figure 4a) was recoloured to identify the vegetation. Calculations of
NDVI always result in a number that ranges from −1 to +1; however, the absence of green
leaves gives a value close to zero. In fact, a value of zero implies a lack of vegetation, and
a value close to +1 (0.8–0.9) indicates the highest possible density of vegetation. Then a
threshold was chosen to accurately assign the objects to the vegetation class for the specific
characteristics of the images [40,41]. A high NDVI value means a low reflectance (or low
values) in the red channel and high reflectance in the NIR channel.
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The NDVI map was evaluated fully automatically, classifying the pixels into five
vegetation classes (Figure 4b): presence of water, no vegetation, sparse vegetation, moderate
vegetation, and dense vegetation. (NDVI < 0: presence of water; 0 < NDVI < 0.2: bare soil;
0.2 < NDVI < 0.4: sparse vegetation; 0.4 < NDVI < 0.7: moderate vegetation; NDVI > 0.7:
dense vegetation).

2.6. Assessment of the Canopy Volume

The assessment of the canopy volume was made by simulating the manual method
(method 1) to test the UAV technology compared to the manual measurements and in
automatic mode in GIS environment (method 2). In particular:

• Method 1: the canopy was assimilated to a cylinder (Figure 5a), and the volume was
assessed as follows:

V1 = π·R2
c ·hc (5)

where Rc is the radius of the canopy and hc is the height of the canopy evaluated as
described above.
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• Method 2: the volume was evaluated considering the shape of the canopy obtained
from the 3D point cloud (Figure 5b). From the raster file of the canopy, DSMcanopy, the
volume was obtained in a GIS environment by evaluating the volume between the
DSM and a horizontal plane passing through the lowest point of the same.

2.7. Evaluation of Model Accuracy

Two indicators evaluate the accuracy of the model in this study: the Pearson correlation
coefficient (R) and the root mean square error (RMSE). R represents a measure of linear
correlation between two sets of data and has a value between −1 (a perfect negative
correlation) and 1 (a perfect positive correlation), where 0 indicates no correlation. The
RMSE represents the deviation of the predicted value from the actual value, i.e., the
closer the calculated value of the volumetric algorithm is to the true value of the manual
measurement, the higher the prediction accuracy of the model. The calculation equation is
as follows:

RMSE =

√√√√ 1
N
·

N

∑
i=1

(Yi − Xi)
2 (6)

where Yi is the sample predicted value (in this case corresponding to UAV data), Xi is the sample
actual value (corresponding to manual measurements) and N is the number of samples.

3. Results
3.1. Assessing Errors of the Point Cloud Reconstruction

For the UAV survey 23 points of known location, including 10 GCPs and 13 CPs, were
used. The total error was evaluated by both GCPs and CPs and was lower than 0.02 m
(Total Error Control Points: 0.0173 m; Check Points: 0.0193 m).

Table 1 shows the GCPs/CPs location, Root Mean Square Error for X, Y, and Z coordi-
nates (Error-m) and Root Mean Square Error for X, Y coordinates (Error-pixel) for GCPs
and CP averaged over all the images. The total error implies averaging over all the GCP
locations/check points.

3.2. Recognition of Hazelnut Trees

Figure 6a gives the NDVI map obtained using a threshold NDVI = 0.3. The black
pixels corresponding to NDVI > 0.3 represent vegetation; the white pixels corresponding
to NDVI < 0.3 represent no vegetation. From this map (Figure 6a), it is not possible to
extract the single tree canopy due to the presence of sparse vegetation on the ground. To
exclude the sparse vegetation from the analysis, the threshold was increased to NDVI = 0.7
(Figure 6b).
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Table 1. GCPs and CPs locations and error estimates.

Marker

Optimization Results

Coordinates—UTM WGS84
(East, North, Elevation) Error (m) Error (pix) X_Error (m) Y_Error (m) Z_Error (m)

1G * 288164.725, 4760938.522, 209.729 0.0277 0.581 −0.007 −0.005 0.026
1Q * 288153.160, 4760935.254, 209.606 0.0090 0.356 0.002 −0.007 −0.005
2G * 288137.825, 4760917.443, 209.311 0.0139 0.377 0.005 0.000 −0.013
2Q * 288116.441, 4760906.698, 209.130 0.0062 0.467 −0.004 −0.002 −0.004
5G * 288124.670, 4760922.909, 209.294 0.0190 0.420 0.005 −0.005 −0.018
5Q 288123.709, 4760917.385, 209.210 0.0103 0.496 0.004 −0.003 −0.009

6G * 288156.715, 4760947.916, 209.616 0.0168 0.778 0.002 0.002 0.017
6Q 288111.239, 4760912.695, 209.183 0.0364 0.564 0.001 0.006 0.036

7G * 288149.338, 4760956.827, 209.692 0.0114 0.673 −0.010 −0.004 −0.001
7Q 288141.161, 4760936.219, 209.476 0.0109 0.398 0.005 0.002 0.009

8G * 288117.658, 4760932.856, 209.445 0.0290 0.368 −0.017 0.004 −0.023
8Q * 288102.296, 4760910.906, 209.173 0.0151 0.308 0.004 0.002 0.014
9Q 288148.778, 4760947.375, 209.627 0.0177 0.614 0.003 −0.001 0.018

10G 288117.309, 4760927.744, 209.340 0.0187 0.417 0.010 0.016 −0.002
10Q 288106.538, 4760919.344, 209.259 0.0138 0.561 0.002 0.001 0.014
11G 288111.331, 4760917.929, 209.245 0.0153 0.265 −0.004 −0.006 −0.013

11Q * 288094.596, 4760915.234, 209.174 0.0138 0.238 −0.007 −0.006 0.010
12G * 288135.050, 4760936.353, 209.437 0.0079 0.264 0.006 0.005 0.001
12Q 288109.050, 4760926.411, 209.326 0.0044 0.571 0.003 −0.001 0.003
13G 288146.303, 4760934.779, 209.484 0.0052 0.402 0.002 0.004 −0.002

13Q * 288134.027, 4760945.735, 209.564 0.0233 0.475 −0.010 −0.006 −0.020
14G 288143.029, 4760927.062, 209.471 0.0326 0.443 0.000 −0.004 −0.032

14Q * 288133.127, 4760939.804, 209.507 0.0128 0.609 0.007 0.010 −0.003

Average
Error

Control Points (*) 0.0173 M
Check Points 0.0193

* Control points.
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Figure 6. (a) NDVI map classified using the threshold NDVI = 0.3; and (b) NDVI map classified using
the threshold NDVI = 0.7.

The overlap between the DSM of the canopy and the NDVI map has been noted
(Figure 7a,b), but there are some problems related to the vegetation present on the ground
between the trees that do not allow unique identification of the single canopy. For this
reason, the NDVI map was filtered with values higher of 0.7 highlighted in blue (Figure 7c).
The further overlap between the NDVI map (>0.7) and the DSMcanopy showed in Figure 7d
that some pixels with vegetation do not belong to the canopy. The same analysis was
repeated for NDVI values of 0.75 (Figure 7e) and 0.8 (Figure 7f). Therefore, by filtering by
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increasing values, there was an important reduction in the number of pixels relative to the
vegetation on the ground. Still, inside the canopy, there was a significant increase in empty
areas. To solve this problem, in a GIS environment, a combination “pixel to pixel” between
the altimetric information derived from point cloud and the NDVI map (with threshold
NDVI = 0.3) was possible (Figure 8a,b).
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and DSMcanopy (red) and detail of one tree; and (f) overlap NDVI map (blue) with values > 0.8 and
DSMcanopy (red) and detail of one tree.
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Figure 8. (a) Overlap between the NDVI map (NDVI = 0.3) and DSMcanopy (red); and (b) intersection
between NDVI map and DSMcanopy.

From the intersection between the NDVI map and the DSMcanopy, the pixels that
represent vegetation but have an elevation less than the DSMcanopy were excluded. In this
way, only the tree canopy was identified.
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3.3. Comparison between Geometrical Characteristics Obtained from Manual and UAV Methods in
the Two Tree Densities

Table S1 reports the parameters (Rc, hc, htree and htrunk) obtained from the UAV survey
and manual measurements. In the second column, the number of trees surveyed is indicated.
Each tree was identified by a code X_YY, where X is the row and YY is the plant number.

From the UAV surveys, as shown in Table S1, for Rc the minimum value obtained was
0.34 m (tree 6_43) and the maximum value was 1.15 m (tree 5_26); for hc the minimum
value obtained was 0.78 m (tree 6_43) and the maximum value was 2.42 m (tree 5_29); for
htree the minimum value obtained was 1.54 m (tree 6_43) and the maximum value was
2.95 m (tree 5_29); for htrunk the minimum value obtained was 0.41 m (tree 4_41) and the
maximum value was 0.89 m (tree 4_38).

From manual surveys, as shown in Table S1, for Rc the minimum value obtained was
0.63 m (tree 6_43) and the maximum value was 1.19 m (tree 5_39); for hc the minimum
value obtained was 0.90 m (tree 6_43) and the maximum value was 2.20 m (tree 4_37); for
htree the minimum value obtained was 1.60 m (tree 6_43) and the maximum value was
2.70 m (tree 4_37); for htrunk the minimum value obtained was 0.20 m (tree 6_38) and the
maximum value was 0.85 m (tree 5_33).

The Pearson correlation coefficient was used for the evaluation of the correlation
between the two methods (Table 2). A low Pearson correlation coefficient shows no
correlation for htrunk (and R = 0.07), while good results were obtained for hc, Rc and htree
(R = 0.544, R = 0.694 and R = 0.728).

Table 2. Values of Pearson correlation coefficient (R) and root mean square error (RMSE) for the
geometric characteristics.

Rc hc htree htrunk

R 0.694 0.544 0.728 0.071
RMSE (m) 0.115 0.282 0.230 0.184

The data obtained from two methods are shown in Figure 9a–c. The black dotted line
represents the ratio 1:1. All the Rc data obtained by the UAV survey were lower than the
manual measurements for hc and htree. For htrunk it is not possible to define a clear trend.
The characteristics that showed more variation were hc and htrunk.

The htrunk data, reported in Table S1, showed that, for manual measurements, the
measured values are the same for many trees. Against this, the htrunk data derived from
the UAV survey for the same trees varied from 0.41 m (4_41) to 0.69 m (6_28).

To complete the analysis, the root mean square error (RMSE) for all the geometrical
characteristics was also evaluated (Table 2). Lower RMSE values were obtained for Rc, htrunk,
htree (0.115 m, 0.184 m and 0.230 m), while for hc a higher value was obtained (0.282 m).

3.4. Comparison between the Volume Obtained by UAV and Manual Surveys

To validate the UAV method, a comparison between the canopy volume was evaluated
by applying the Equation (5) (V1,UAV) using the UAV and manual measurements. A good
Pearson correlation coefficient (R = 0.752) and a lower RMSE (RMSE = 1.130 m) were obtained.
As showed in Figure 10a, the UAV data were lower than the manually acquired data.

In Figure 10b, the canopy volume values obtained from UAV using Equation (5) (V1,UAV)
and from DSMcanopy (V2,UAV) were compared. As expected, the data calculated using method
2 were systematically lower than those obtained with the automatic method 1.
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from UAV using the method 1 V1,UAV and the manual measurements V1,manual; and (b) comparison
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3.5. Comparison between Geometrical Characteristics and Canopy Volumes between the
Tree Densities

The comparison between UAV and manual measurements for geometrical characteristics
allows an analysis of the data for different tree densities, showing that for 625 trees/ha, the
Pearson correlation coefficient was very high for htree (R = 0.841) and high for Rc (R = 0.765)
and hc (R = 0.508), but low and negative for htrunk (R = −0.117); low values were obtained
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for RMSE, i.e., RMSE = 0.130 m, RMSE = 0.281 m, RMSE = 0.186 m, RMSE = 0.208 m for
Rc, hc, htree, and htrunk respectively. For 1250 trees/ha, the Pearson correlation coefficient
was lower for all the characteristics Rc, hc, htree, and htrunk (R = 0.545, R = 0.348, R = 0.340,
R = 0.245); the RMSE was low for Rc (RMSE = 0.099 m) and not high for the other parameters,
i.e., RMSE = 0.283 m, RMSE = 0.267 m, RMSE = 0.155 m for hc, htree, and htrunk, respectively.

The canopy volumes calculated by UAV and manual measurements could be analysed
for the density of the plantation. In this case, a high Pearson correlation coefficient was
found (R = 0.805) for a density of 625 trees/ha and a not-high Pearson correlation coeffi-
cient (R = 0.610) for a density of 1250 trees/ha. The RMSE was 1.630 m for a density of
625 trees/ha and 1.836 m for a density of 1250 trees/ha.

4. Discussion

This study has presented a UAV image analysis method for accurate and efficient
determination of canopy size and volume of hazelnut trees and evaluated its accuracy
against field measurements. The correlation values were always positive, indicating a fair
general agreement among the geometric characteristics in the description of the structure
of the canopy. The geometrical parameter most correlated with the manual one was htree
(R = 0.841) followed by Rc (R = 0.765) and hc (R = 0.508), in agreement with what was
measured by [5]. These results are better than those obtained for blueberry bushes, where
the canopy size derived from imagery only achieved a moderate correlation with manual
measurements, mainly due to the occlusion of the canopy by the bush canopy [42]. The
UAV method allows for reaching a high level of detail for every hazelnut tree reconstruction,
in agreement with what was obtained for almond trees [20].

According to the results reported by [42] for Citrus reticulata, trees were easily obscured
by the branches and leaves of adjacent trees during UAV tilt photogrammetry, resulting in
the occlusion of the lower part of the trees. This situation can explain the lack of correlation
for the parameter htrunk reported between UAV and manual measurements in this study.
This problem could be overcome by using, e.g., a multiparameter sensor mounted on an
agricultural tractor, as already performed in intensive olive orchards by [43].

The reconstruction of the experimental site in a 3D model confirmed the suitability of
using UAVs for monitoring the canopy characteristics of hazelnut orchards. The elevation
information obtained from the point cloud allowed for better recognition of the canopy
characteristics, excluding pixels representing the ground and incorrectly classified as
belonging to the canopy from the NDVI map. These results agree with those of [18], who
reported that the use of the NDVI index for tree canopy delineation in olives was not
effective. Although adult olive trees could be classified, tree canopy delineation was not
possible because of the differing shape of the canopy, the mix with other types of vegetation
and/or even the trees’ shadows. In this paper, contrary to [6], the altimetric information
of the canopy (DSMcanopy) was available because the point cloud was filtered into two
point clouds, one for the canopy and one for the ground. In cases where it is not possible
to know the difference between the canopy and the ground (for example, for extensive or
heterogeneous slope areas), the intersections between the complete DSM (canopy + ground)
and the NDVI map must be filtered using an elevation threshold (for example, the mean or
minimum height of the trunk).

According to [44], UAV photogrammetry resulted in obtaining, quickly and conveniently,
suitable images of a tree (in this case, hazelnuts). This research is evidence that, to successfully
determine the canopy from a NDVI map, the soil below adult hazelnut trees should be
completely free of grass to avoid interference. Regarding the determination of the canopy
volume of trees with high plantation densities, the UAV method was affected by the planting
density, with less accuracy as the number of trees increased, and the distance between trees
decreased. These results agree with those obtained for other species, such as olive trees [8],
where the vegetation’s high density negatively affected the canopy volume estimation.

Volume mapping also creates the opportunity to design site-specific treatments adapted
to the needs of the trees according to their size; the application of these treatments with
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variable-rate sprayers has allowed a pesticide savings of up to 58% of the application
volume [45] in vineyards.

Photogrammetric reconstruction of crop canopies could be used to estimate the canopy
characteristics accurately. For example, DSMcanopy could represent the base maps, where the
evident heterogeneity in the canopy vigor was effectively quantified with the proposed algorithm.

Numerous studies, such as [46], have highlighted the importance of monitoring crop
variability by applying precision agriculture principles. However, if much progress has
been made on crops such as vines and olives, in terms of hazelnut cultivation, research
must still investigate numerous aspects. This work, together with [6,31], could represent a
first step towards improved knowledge of hazelnut cultivation.

In this paper, the determination of geometric characteristics was made in two types
of planting situations. To save on agricultural inputs, including water and fertilizers, the
choice of intensive trees has found numerous applications in recent years. Determining the
relationship between light, temperature, water, and vegetative development is a challenge
for the future. Different planting densities can affect the light, temperature, heat, and
enzyme activity of assimilated metabolism at different positions in the canopy [47,48]. In
addition, dense trees seem to increase the size of the trees. Studies on others crops (such
as olives, cotton, and maize) have also reported that higher planting densities can reduce
water evaporation and increase water consumption in the field [48,49]. In addition, a
reasonably high planting density could affect the fruit quality [9]. Thus, in the future, the
irrigation rate could be investigated in relation to higher planting density and the growth
of the canopy.

5. Conclusions

This study revealed that the hazelnut canopy size and volume derived by the UAV
method were close to those obtained via manual delineation and field measurement. The
UAV method could replace field measurement to achieve significant labour savings. More-
over, using the UAV method, a large amount of information can be extracted (tree height;
volume, thickness, and width of the canopy), whereas traditional on-ground observation of
the same field would require much more time and effort.

In addition, this study showed high correlations between the measurements of the main
plant characteristics, such as canopy volume, between the UAV and manual measurements.

Finally, the present study has developed two methods for calculating the volume
of a hazelnut canopy. In one method, the canopy is assimilated into a cylinder, and
the measurements are well correlated with the manual ones. In the other, however, the
canopy is well defined in its shape. It, therefore, provides more precise information on the
management of the tree, e.g., the intensity of annual pruning or vegetative growth.

The results presented here could benefit growers and the scientific community working
on management practices in hazelnut orchards. For example, such methods can be crucial
when deciding on the variable rate of chemical or irrigation applications.
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//www.mdpi.com/article/10.3390/rs15020541/s1, Table S1: Values of geometric characteristics
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Canopy volume obtained from UAV survey and manual measurements.
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