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Abstract: Weeds are a crucial threat to agriculture, and in order to preserve crop productivity,
spreading agrochemicals is a common practice with a potential negative impact on the environment.
Methods that can support intelligent application are needed. Therefore, identification and mapping
is a critical step in performing site-specific weed management. Unmanned aerial vehicle (UAV)
data streams are considered the best for weed detection due to the high resolution and flexibility
of data acquisition and the spatial explicit dimensions of imagery. However, with the existence
of unstructured crop conditions and the high biological variation of weeds, it remains a difficult
challenge to generate accurate weed recognition and detection models. Two critical barriers to
tackling this challenge are related to (1) a lack of case-specific, large, and comprehensive weed UAV
image datasets for the crop of interest, (2) defining the most appropriate computer vision (CV) weed
detection models to assess the operationality of detection approaches in real case conditions. Deep
Learning (DL) algorithms, appropriately trained to deal with the real case complexity of UAV data in
agriculture, can provide valid alternative solutions with respect to standard CV approaches for an
accurate weed recognition model. In this framework, this paper first introduces a new weed and crop
dataset named Chicory Plant (CP) and then tests state-of-the-art DL algorithms for object detection. A
total of 12,113 bounding box annotations were generated to identify weed targets (Mercurialis annua)
from more than 3000 RGB images of chicory plantations, collected using a UAV system at various
stages of crop and weed growth. Deep weed object detection was conducted by testing the most recent
You Only Look Once version 7 (YOLOv7) on both the CP and publicly available datasets (Lincoln beet
(LB)), for which a previous version of YOLO was used to map weeds and crops. The YOLOv7 results
obtained for the CP dataset were encouraging, outperforming the other YOLO variants by producing
value metrics of 56.6%, 62.1%, and 61.3% for the mAP@0.5 scores, recall, and precision, respectively.
Furthermore, the YOLOv7 model applied to the LB dataset surpassed the existing published results
by increasing the mAP@0.5 scores from 51% to 61%, 67.5% to 74.1%, and 34.6% to 48% for the total
mAP, mAP for weeds, and mAP for sugar beets, respectively. This study illustrates the potential of the
YOLOv7 model for weed detection but remarks on the fundamental needs of large-scale, annotated
weed datasets to develop and evaluate models in real-case field circumstances.

Keywords: Deep Learning; Convolutional Neural Network; UAV imagery; object detection; YOLOv7

1. Introduction

A weed is an undesirable plant that affects growth, reduces quality, and is harmful to
crop products. To reduce this threat, spraying of herbicides across the field and according
to scheduled treatments is a traditional weed control process adopted for successful crop
growth, but this approach is labor- and energy-intensive, time-consuming, and can produce
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unavoidable environmental pollution. Recently proposed alternative approaches, such
as more sustainable and efficient agropractices, are framed in site-specific weed manage-
ment that deals with the spatial variability and temporal dynamics of weed populations in
agricultural fields. In this framework, a starting point to perform efficient weed control is
the capacity of weed detection from sensor imaging and computer vision (CV) based on
machine learning (ML), which has become a very popular tool to perform this task [1]. In
fact, ML can be used to efficiently extract information from videos, images, and other visual
data and hence perform classification, segmentation, and object detection. These systems
can detect and identify species of weeds from crops and provide information for precise
and targeted weed control. Development of CV-based robotic machines is growing to
control weeds in crops [2,3]. Once weeds are located and identified, the proper treatments
can be used to eradicate them, such as thermal techniques [4], mechanical cultivators [5,6],
or the spraying of herbicides on the spot [7,8]. Recently it was reported that thanks to the
capacity of weed mapping and localized herbicide-spraying smart applications, a signif-
icant reduction in agrochemicals can be achieved, varying from 23 to 89% according to
different considered cropping systems [9].

Among the ML methods, Deep Learning (DL) is considered one of the most advanced
approach for CV applications that can fit well with weed detection problems. Well-trained
DL-CV approaches can be adaptable to different imaging circumstances while attaining ac-
ceptable detection accuracies with a large dataset [10–12]. DL is most commonly applied to
train the models for weed classification using datasets with image-level annotations [10–14].
Compared with traditional weed classification, object detection that needs the location of
the desired object in an image [15] can also predict and locate weeds in an image, which is
more favorable for the accurate and precise removal of weeds in the crops.

There are primarily two kinds of object detectors [16]: (1) two-stage object detectors
that use a preprocessing step to create an object region proposal in the first stage and
then object classification for each region proposal and bounding box regression in the
second stage, and (2) single-stage detectors that perform detection without generating
region proposals in advance. Single-stage detectors are highly scalable, provide faster
inference, and thus are better for real-world applications than two-stage detectors such
as region-based Convolutional Neural Networks (R-CNNs), the Faster-RCNN, and the
Mask-RCNN [15,17,18].

The state-of-the-art (SOTA) best-known example of a one-stage detector is the You
Only Look Once (YOLO) family, which consists of different versions such as YOLOv1,
YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, and YOLOv7 [19–25]. Many researchers
applied the YOLO family for weed detection and other agricultural object identification
tasks. The authors of [26] used the YOLOv3-tiny model to detect hedge bindweed using
the sugar beet dataset and achieved an 82.9% mean average precision (mAP) accuracy.
Ahmed et al [27] applied YOLOv3 and identified four weed species using the soybean
dataset with 54.3% mAP. Furthermore, using tomato and strawberry datasets, the authors
of [28] focused on goosegrass detection using YOLOv3-tiny and gained 65.0% and 85.0%
F-measures, respectively.

The quality and size of the image data used to train the model are the two key elements
that have a significant impact on the performance of weed recognition algorithms. The effec-
tiveness of CV algorithms depends on a huge amount of labeled image datasets. According
to reports, the amount of training datasets boosts the performance of advanced DL systems
in CV tasks [29]. For weed identification, well-labeled datasets should adequately reflect
pertinent environmental factors (cultivated crop, climate, illumination, and soil types) and
weed species. Preparation of such databases is expensive, time-consuming, and requires
domain skills in weed detection. Recent research has been carried out to create image
datasets for weed control [30], such as the Eden Library, Early Crop Weed, CottonWeedID15,
DeepWeeds, Lincoln Beet, and Belgium Beet datasets [11,13,26,31–33].
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To identify weeds in RGB UAV images, we cannot use models trained on other datasets
developed for weed detection, because the available datasets (and therefore the models
trained on these data as well) were acquired with different sensors at different distances or
resolutions and may contain different types of weeds. Preliminary tests were conducted by
applying a model trained on the Lincoln Beet (LB) dataset [33], which was developed on
super resolution images acquired at ground level (see Section 4.1), to our specific case study
data that were recorded by UAVs (see Section 4.2). Such a test failed to detect weeds, and
this motivated us to generate a specific UAV-based image dataset whose trained model is
devoted to detecting weeds from any relevant UAV images. To the best of our knowledge,
there has not been any research study that uses the YOLOv7 network for weed detection
using UAV-based RGB imagery. Furthermore, this is the only study that introduces and
uses images of chicory plants (CPs) as a dataset for the identification of weeds (details are
given in Section 4.2).

The goal of this study is to conduct the first detailed performance evaluation of
advanced YOLOv7 object detectors for locating weeds in chicory plant (CP) production
from UAV data. The main contributions of this study are as follows:

• Construct a comprehensive dataset of chicory plants (CPs) and make it public [34],
consisting of 3373 UAV-based RGB images acquired from multi-flight and different
field conditions labeled to provide essential training data for weed detection with a
DL object-oriented approach;

• Investigate and evaluate the performance of a YOLOv7 object detector model for weed
identification and detection and then compare it with previous versions;

• Analyze the impact of data augmentation techniques on the evaluation of YOLO
family models.

This paper is structured as follows. The most recent developments of CV-based
techniques in agricultural fields are briefly discussed in Section 2. Section 3 reports the
methodological approach adopted, and Section 4 presents the exploited dataset, including
the new generated one for UAV data. Section 5 examines the findings, and the conclusions
are presented in Section 6.

2. Related Work

Weed detection in crops is a challenging task of ML. Different automated weed
monitoring and detection methods are being developed based on ground platforms or
UAVs [35–37].

Early weed detection methods used ML algorithms with manually created features
based on variations in the color, shape, or texture of a weed. The authors of [38] used
support vector machines (SVMs) to generate local binary features for plant classification
in crops. For model development, an SVM typically needs a smaller dataset. However, it
might not be generalized under various field circumstances. In CV, DL models are gaining
importance as they provide a complete solution for weed detection that addresses the
generalization problems for a huge amount of datasets [39].

Sa et al. [40] presented a CNN-based Weednet framework for aerial multi-spectral
images of sugar beet fields and performed weed detection using semantic classification.
The authors used a cascaded CNN with SegNet applied to infer the semantic classes and
achieved satisfactory results with six experiments. The authors of [26] used a YOLOv3-tiny
model for bindweed detection in the sugar beet field dataset. They generated synthetic
images and combined them with real images for training the model. The YOLOv3 model
achieved high detection accuracy using the combined images. Furthermore, their trained
model can be deployed in UAVs and mobile devices for weed detection. The authors of [41]
used a different approach for weed detection in vegetable fields. Instead of detecting crops,
the authors first detected vegetables from the field using the CenterNet model and then
considered the remaining green portion of the image as weeds. Thus, the suggested method
ignores the particular weed species present in fields in favor of concentrating simply on
vegetable recognition in crops. A precise weed identification study using a one-stage and
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two-stage detector was provided by the authors of [33]. Instead of spraying the herbicide
on all crops, the detector models first identify weeds in plants and apply the herbicide
accordingly. Additionally, the authors also suggested a new metric for assessing the results
of herbicide sprayers, and that metric performed better than the existing evaluation metrics.
A fully convolutional network is presented in [37] for weed-crop classification based on
spatial information and an encoder-decoder structure while using a sequence of images.
The experimental results demonstrate that a proposed approach can generalize the unseen
field images perfectly compared with the existing approaches in [42,43].

Agricultural datasets with real field images are scarce in the literature compared
with other domains for object detection. The creation and annotation of crop datasets is a
very time-consuming task. To solve the dataset issues, many researchers published weed
datasets. Aaron et al. [44] published a multi-class soybean weed dataset that contains
25,560 labeled boxes. To verify the dataset’s correctness, the authors split the dataset into
four different training sets. The YOLOv3 detector showed excellent performance using
training set 4. A weed dataset of maize, sunflower, and potatoes was presented in [45].
The authors generated manually labeled datasets with a high number of images (up to
93,000). A CNN detector with VGG16, Xception, and ResNet–50 performed very well
on the test set. To avoid manual labeling of images, the authors of [46] used the CNN
model with an unsupervised approach for spinach weed dataset generation from UAV
images. The authors detected the crop rows and recognized the inter-row weeds. These
inter-row weeds were used to constitute the weed dataset for training. The CNN-based
experimental study on that dataset revealed a comparable result to the existing supervised
approaches. The authors of [47] presented a strategy to develop annotated weed and crop
data synthetically to reduce the human work required to annotate the dataset for training.
The performance of the trained model using synthetic data was similar to the model trained
using actual human annotations on real-world images. The authors of [48] presented an
approach that incorporates transfer learning in agriculture and synthetic image production
with generative adversarial networks (GANs). Various frameworks and settings have been
assessed on a dataset that includes images of black nightshade and tomatoes. The training
model showed the best performance using GANs and Xception networks on synthetic
images. For weed detection, similar research relying on the cut-and-paste method for
creating synthetic images can be seen in [26].

To contribute to the real-world agricultural dataset, this work proposes a new CP weed
dataset, and to verify the correctness of the proposed dataset, we assess the most recent SOTA
object detector, YOLOv7, based on DL by exploiting the LB and CP datasets. The YOLOv7
model is determined with a focus on the detection accuracy of weed identification.

3. Methodology

The working pipeline of this study for weed detection using the CP and LB datasets
is described in Figure 1. The figure depicts the process of weed detection from raw weed
images to final prediction. The Roboflow [49] tool labels the raw images of the dataset
and changes the image format for the YOLOv7 detector. The YOLOv7 detector uses these
labeled images for the training process. Finally, the trained model is applied to images
never seen in training and identifies weeds as a final result through bounding boxes. In this
work, the YOLOv7 model is used as is with no modification to the original implementation.
Anyone can download the exploited version from the GIT repository to use it as we
have [50]. The following subsections provide a detailed explanation of all modules of the
YOLOv7 model and their use to solve the problem of weed detection.
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Figure 1. The general process of training and generalization for weed detection. The weed detection
process consists of three steps: (1) the acquired images are labeled using the Roboflow tool and then
cropped to match the format for the YOLOv7 model; (2) the YOLOv7 detector uses these labeled
images for the training process; and (3) the trained model detects weeds in the input images, and a
final output map of weeds can be composed.

3.1. You Only Look Once v7

YOLOv7 [25] is a recently released model after its predecessor, YOLOv6 [24]. YOLOv7
delivers highly enhanced and accurate object detection performance without increasing
the computational and inference costs. It effectively outperforms other well-known object
detectors by reducing about 40% of the parameters and 50% of the computation required
for SOTA real-time object detection. This allows it to perform inferences more quickly with
higher detection accuracy.

YOLOv7 delivers a faster and more robust network architecture that offers a more
efficient feature integration approach, more precise object recognition performance, a more
stable loss function, and an optimized assignment of label and model training efficiency.
Consequently, in comparison with other DL models, YOLOv7 uses far less expensive
computational hardware. On small datasets, it can be trained significantly more quickly
without the use of pretrained weights.

In general, YOLO models perform object classification and detection simultaneously
just by looking once at the given input image or video. Thus, the algorithm is called
You Look Only Once. As shown in Figure 2, YOLO is a single-stage object detector with
three important parts in its architecture: the backbone, neck, and head. The backbone is
responsible for the extraction of features from the given input images, the neck mainly
generates the feature pyramids, and the head performs the final detection as an output.

In the case of YOLOv7, the authors introduced many architectural changes, such as
compound scaling, the extended efficient layer aggregation network (EELAN), a bag of
freebies with planned and reparameterized convolution, coarseness for auxiliary loss, and
fineness for lead loss.

3.1.1. Extended Efficient Layer Aggregation Network (EELAN)

The EELAN is the backbone of YOLOv7. By employing the technique of “expand,
shuffle, and merge cardinality”, the EELAN architecture of YOLOv7 allows the model to
learn more effectively while maintaining the original gradient route.
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Figure 2. The generic YOLO model architecture, where the backbone extracts features from an image,
the neck enhances feature maps by combining different scales, and the head provides bounding boxes
for detection.

3.1.2. Compound Model Scaling for Concatenation-Based Models

The basic goal of model scaling is to modify important model characteristics to pro-
duce models that are suitable for various application requirements. For instance, model
scaling can improve the model’s resolution, depth, and width. Different scaling parameters
cannot be examined independently and must be taken into account together in conventional
techniques using concatenation-based architectures (such as PlainNet or ResNet). For ex-
ample, increasing the model depth will affect the ratio between a transition layer’s input
and output channels, which may result in less usage of hardware by the model. Therefore,
for a concatenation-based model, YOLOv7 presents compound scaling. The compound
scaling approach allows the model to keep the properties that it had at the initial level and
consequently keep the optimal design.

3.1.3. Planned Reparameterized Convolution

Reparameterization is a method for enhancing the model after training. It extends
the training process but yields better inference outcomes. Model-level and module-level
ensembles are the two types of reparametrization that are used to conclude the models.
There is another kind of convolutional block called RepConv. RepConv is similar to Resnet
except that it has two identity connections with a 1 × 1 filter in between. However, YOLOv7
uses RepConv (RepConvN) without an identity connection in its planned reparameterized
architecture. The authors’ proposed idea was to prevent an identity connection when a
convolutional layer with concatenation or a residual is used to replace the reparameter-
ized convolution.

3.1.4. Coarseness for Auxiliary Loss and Fineness for Lead Loss

A head is one of the modules in the YOLO architecture which presents the predicted
output of the model. As in Deep Supervision, YOLOv7 also consists of more than one head.
The final output in the YOLOv7 model is generated by a lead head, and the auxiliary head
is responsible for helping the training process in the middle layer.

A two-label assigner process is introduced, where the first is the lead head-guided
label assigner. This is primarily calculated using the predicted outcomes of the lead head
and the ground truth, which produce a soft label through an optimization process. Both the
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lead and auxiliary heads use these soft labels as the target training model. The soft labels
produced by the lead head have a greater learning capacity, which is why they represent
the distribution and correlation between the source and the target data. The second part is
the coarse-to-fine lead head-guided label assigner. It also produces a soft label by using the
predicted outcomes of the ground truth with the lead head. However, during the process,
it produces two distinct collections of soft labels, referred to as the coarse and fine labels.
The coarse label is produced by letting more grids be dealt with as positive targets, whereas
the fine label is identical to the soft label produced by the lead head-guided label assigner.
The significance of coarse and fine labels can be dynamically changed during training,
owing to this approach.

3.2. Models and Parameters

To identify weeds using the LB and CP datasets, we used one of the SOTA YOLOv7
one-stage detectors and compared its performance with other one-stage detectors, such
as YOLOv5 [23], YOLOv4 [22], and YOLOv3 [21], and two-stage detectors such as the
Faster-RCNN [17]. To assist the training, all the YOLOv7 models were trained using
transfer learning with the MS COCO dataset’s pretrained weights. The one-stage models
used Darknet-53, R-50-C5, and VGG16 [21] as a backbone, and the two-stage models
used different backbones, such as R-50 FPN, Rx-101 FPN, and R-101- FPN. Tables 1 and 2
describe the different parameters used during training for the one-stage models and the
models which were used for comparison. In all the experiments reporting the results of
the YOLOv7 model, we used Pytorch’s implementation of YOLOv7 as is, which anyone
can download from the GIT [50] repository.

Table 1. Parameters used for training one-stage detector models such as YOLOv7, YOLOv5, YOLOv4,
and YOLOv3.

Parameters Values

Optimizers Adam

Learning rate Adam = 1× 10−3

Momentum 0.98

Learning decay 1× 10−2

Pretrained MS COCO dataset

Number of epochs 300

Table 2. Parameters used for training the YOLOvF and SSD models.

Parameters YOLOvF SSD

Optimizers SGD SGD

Learning rate 0.12 0.002

Momentum 0.9 0.9

Learning decay 0.0001 0.0005

Pretrained resnet50-caffe COCO

Number of epochs 300 300

During experiments, training and testing were run on a Quadro RTX5000 GPU with
16 GB VRAM. For all the models, the batch size, which is the number of samples of images
that are passed to the detector simultaneously, was equal to 16. During the training process,
the model weights with the highest mAP on the validation set were used for testing each
model. The intersection over union (IOU) threshold for validation and testing was 0.65. In
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this study, we performed different experiments: (1) the YOLOv7 detectors were applied
to the LB dataset to locate and identify the weeds; (2) we used the YOLOv7 pretrained
weight of the LB dataset obtained after the first experiment and applied it over the CP
dataset to identify weeds; (3) the YOLOv7 detector with all variants was used to locate and
identify the weeds using the normal CP dataset; (4) for comparison purposes, we applied
the Single-Shot Detector (SSD) [51], YOLOv3 [21], and YOLOvF [52] detectors using the CP
dataset; and (5) we used an augmented CP dataset for the identification of weeds using
YOLOv7 detectors. The results of the above-mentioned experiments are given in Section 5.

4. Dataset

To examine the behavior of the YOLO model family, when used to solve the problem
of the detection of weeds, we used two datasets: (1) the Lincoln Beet (LB) crop dataset [33]
available in the literature, which we used to compare our results with those already published,
and (2) the Chicory Plant (CP) crop dataset, a very complex dataset generated from UAV
acquisition in real case field conditions, which was built in this work specifically to study the
behavior of YOLOv7 as a solution to the weed detection problem for UAV data.

4.1. Lincoln Beet (LB) Dataset

The images in the LB dataset came from the fields where sugar beets were produced
for commercial purposes, and all the images included beets and harmful weeds along with
their respective bounding boxes. The LB dataset contains 4405 images of 1902 × 1080 pixels.
The LB dataset images were taken from recorded videos of sugar beet fields at various
times. These images were collected from May to June 2021, when each sugar beet field
was scanned at least four times a week to record weeds at various development stages.
During video recording, the camera was roughly 50 cm away from the ground during
each scanning session. There were two cameras utilized: one with a 12-megapixel sensor,
an f1.6 aperture, and a 26 mm focal length and the other with a 64 megapixel sensor,
an f2.0 aperture, and a 29 mm focal length. The images from both cameras were originally
2160 × 3840 pixels in size. The fields utilized for the LB dataset are located in Lincoln, UK
at various sites with different soil types, plant distributions, and weed species. Table 3
shows the characteristics of the LB dataset.

Table 3. Characteristics of the Lincoln Beet (LB) and Chicory Plant (CP) datasets.

LB Dataset CP Dataset

Number of images 4402 3373

Number of bounding boxes 39,246 12,113

Average weeds per picture 5.190 3.561

Total number of weeds 22,847 12,113

Number of sugar beets 16,399 N/A

4.2. Chicory Plant (CP) Dataset

The experimental site (50°30′ N–50°31′ N; 4°44′ E–4°45′ E) was an agricultural field of
about 5 ha in central Belgium with a temperate climate. The soil type was luvisol cultivated
with chicory (Cichorium intybus subsp. intybus convar. Sativum). We conducted the UAV
campaigns from April to August throughout the 2018 cropping season. A DJI phantom4 pro
(DJI, Nanshan, Shenzhen, China) was used to capture images over the CP fields. The flying
altitude of the UAV was 65 m above ground level, with an airspeed of 5 m/s and 75%
sideways and 85% forward image overlap. The UAV flights were executed at the nadir
with an 84° field of view and 5472 × 3648 pixel size RGB images, resulting in very high-
resolution UAV images with a ground sampling distance of 1.8 cm. One main advantage
of RGB imagery is its ease of operation and image processing chains. Furthermore, RGB
images offer a sharper representation of the surface details, which is an important constraint
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in research focusing on object-based image analysis such as in the present study. The UAV
images of the CP dataset contain highly detailed spatial surface characteristics about either
green or senescent chicory plants alongside weeds, crop residues, and bare soil. Mercurialis
annua (French mercury) is the weed species of the Euphorbiaceae spurge family present
in the field in the present study. This is a rather common wheat species within the cereal
fields of European countries such as Belgium [53].

After capturing the images, appropriate data handling was requested to create the CP
dataset to be exploited in YOLO model training and to test the detection performances. A
detailed explanation on how the images were preprocessed and labeled is provided in the
Supplementary Materials (S1). To properly annotate (physically drawing bounding boxes)
and label (defining the target category) the UAV-acquired images, the Roboflow application
was used [49,54]. It is worth stating that during the green-up phase of chicory plants, most
of the weed objects were still rather small to be properly identified in the acquired images.
As such, in this paper, we focused solely on the UAV images for August, in which the
weeds are well-developed. However, it was still challenging to purely discriminate weeds
from senescent plants. To address the aforementioned difficulties, we proposed the three
following rules to classify an object as a weed: (1) the color of the object to differentiate
diseased and senescent leaves from weeds, (2) the shape of the object to differentiate
crop residues from weeds, and (3) the height of the object to differentiate bare soil (e.g.,
inter-rows) from weeds.

Figure 3 provides an example of one image used to create the CP dataset. Weeds
(yellow boxes) were identified according the previously mentioned criteria and using
Roboflow’s online tools. Each original image was then cut using a custom-written Python
script into smaller patches (i.e., blue boxes) to be processed by the neural network. Only
the patches containing weeds were extracted and used to generate the CP dataset. We
generated two versions of the CP dataset: the normal CP dataset and an augmented CP
dataset (see Supplementary Materials (S1) for details).

Figure 3. An example of an RGB image with dimensions of 5472 × 3648 pixels belonging to the
Chicory Plants dataset proposed in this work. The yellow boxes identify weeds tagged by an expert.
The 13 × 8 cells in blue represent the mosaic used to extract patches 416 × 416 in size to be fed into
the neural model. Only patches containing at least one bounding box are used by the neural model.

The LB dataset contains two classes named “sugar beet” and “weed”, while the
CP dataset contains only one class for detection, named “weeds”. Both datasets were
randomly split into test, validation, and training sets with 20%, 10%, and 70% of all
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the images, respectively. The images and annotations were cropped into two distinct
sizes—416 × 416 pixels and 640 × 640 pixels—while maintaining the width/height ratio
in order to test the techniques under various image resolutions.

5. Results

We assessed the trained models in various ways across the LB and CP datasets. Overall,
the YOLOv7 models showed significant training results in terms of conventional metrics
such as mAP, recall, and precision.

Table 4 shows the performance of the proposed YOLOv7 model for the LB dataset,
and the best results are highlighted in bold. After 200 epochs during the training of the LB
dataset, the results revealed that the performance leveled off with the existing LB dataset
results. Therefore, 300 epochs were sufficient for the LB dataset training process. It can be
observed from Table 4 that YOLOv7 outperformed the existing one-stage and two-stage
models [33], and it achieved the highest mAP values for weed and sugar beet detection. It
improved the accuracy from 51.0% to 61.0% compared with YOLOv5. It also enhanced the
results from 67.5% to 74.1% and from 34.6% to 48.0% in the case of mAP for sugar beets
and weeds, respectively.

Table 4. Performance of the proposed YOLOv7 model, trained for 300 epochs on the LB dataset and
compared to other models. The best results are highlighted in bold.

Model Backbone mAP Score mAP Suger mAP Weed

YOLOv7 DN-53 61.0 74.1 48.0

YOLOv5m DN-53 51.0 67.5 34.6

YOLOv4 DN-53 41.2 59.5 23.0

YOLOv3 DN-53 50.4 66.3 34.6

F-RCNN R-50
FPN

42.4 62.2 22.6

F-RCNN R-101
FPN

42.2 62.2 22.3

F-RCNN Rx-101
FPN

43.2 62.8 23.6

SSD VGG-16
Bi-Real

37.4 54 20.8

For the weed extraction, we performed testing over the CP test set using a YOLOv7
model pretrained on the LB dataset. Table 5 illustrates the testing outputs obtained on the
CP test set. During this testing, as we can see in Figure 4, the YOLOv7 model pretrained
on LB was not able to predict the weeds’ bounding boxes from the CP test set images. In
many images of the CP dataset, the pretrained model predicted some very large bounding
boxes compared with the size of the plants present in the images. This situation was due to
the significant difference between the two datasets. The model was trained to recognize
weeds from the LB dataset, in which the plants are all seen at close range as well as spaced
apart, and the underlying ground is almost always visible between the plants. In the CP
dataset, on the other hand, the plants are always seen from a greater distance and are all
close together. This difference explains the very large bounding boxes, where the content
was a continuous but uninterrupted expanse of chicory plants and weeds wherever the
underlying ground was not visible.
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Figure 4. Three images from the CP test set with bounding boxes predicted by a model pretrained on
the LB data set.

It is also clear from Table 5 that the YOLOv7 model trained on the LB dataset failed to
detect weeds from the CP dataset and showed inappropriate precision, recall, and mAP
results in this regard.

Table 5. Test results on the CP test set using the YOLOv7 model pretrained on the LB dataset.

Class Images Labels P R mAP@.5 mAP@.5:.95

All 501 1180 7.83 × 10−5 0.000847 5.31 × 10−7 5.31 × 10−8

Weeds 501 1180 7.83 × 10−5 0.000847 5.31 × 10−7 5.31 × 10−8

For the CP dataset, the experimental results of all the YOLOv7 variants are given in
Table 6, where the batch size and the number of epochs were 16 and 300, respectively. We
can see from Table 6 that YOLOv7-d6 achieved the highest precision score compared with
the other YOLOv7 variants.

Table 6. Performance of all the YOLOv7 variants for the CP dataset. Best results are in bold.

Model Precision Recall mAP@ 0.5
Score

mAP@0.5:0.95
Score

YOLOv7-tiny 57.6 58.3 55.8 17.9

YOLOv7m 55.2 60.9 56.3 18.5

YOLOv7-x 59.3 58.1 56.6 18.5

YOLOv7-w6 55.3 62.1 56.5 18.5

YOLOv7-e6 59.2 57.0 56.0 17.9

YOLOv7-e6e 57.1 58.8 55.3 18.1

YOLOv7-d6 61.3 54.8 55.0 18.1

Furthermore, YOLOv7-w6 also outperformed the other YOLOv7 variants by obtaining
62.1% recall and a 65.6% mAP score. However, the YOLOv7m, YOLOv7-X, and YOLOv7-w6
variants achieved the same 18.5% scores in the case of mAP@0.5:0.95. For a fair comparison
of the YOLOv7 model, it can be seen in Table 7 that YOLOv7 obtained a 56.6% mAP score
and successfully outperformed the existing detectors, such as SSD, YOLOv3, and YOLOvF,
using the CP dataset. However, the SSD detector showed 75.3% higher results than YOLOv7,
YOLOv3, and YOLOvF in terms of the recall evaluation metric. Furthermore, for the results
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of the augmented CP dataset, all the YOLOv7 variants showed lower results than the
normal CP dataset. YOLOv7m and YOLOv7-e6 achieved only 50.0% and 49.0% mAP
scores, respectively. However, only the YOLOv7-e6 variants achieved the highest 66.0%
precision score over the augmented CP dataset. Some examples of weed detection are
shown in Figure 5 for the CP dataset and Figure 6 for the LB dataset. In these examples
of detections obtained with YOLOv7 on the test images, it was possible to analyze the
behavior of the model for all the classes of the two datasets. Further analysis and discussion
of the experimental results are given in Section 5.

Table 7. Performance comparison for object detectors with CP dataset.

Models Backbone Recall mAP Weed

YOLOv7 DarkNet-53 58.1 56.6

YOLOv3 DarkNet-53 31.3 22.18

YOLOvF R-50-C5 54.6 24.97

SSD VGG16 75.3 23.74
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Figure 5. Some examples of YOLOv7 detections on CP test images. The top row contains some test
images of the CP dataset with ground truth bounding boxes labeled as “weeds”. In the bottom row,
the same images are shown but with the bounding boxes predicted by the YOLOv7 model.

Discussion

Deep Learning is increasingly gaining popularity in the research community for ap-
plications in precision agriculture, such as weed control. Farmers can use more effective
weed management techniques by identifying the weeds in a field. Researchers are getting
more concerned about image classification, using CNNs to identify weeds. However, it can
be difficult to reliably detect multiple weeds in images when using image classification,
as it can only detect individual objects using UAV images taken at high altitudes. How-
ever, the detection of weeds is of significant importance, as weed location within fields
is required to ensure fruitful weed management. Therefore, in this work, we performed
object detection for the identification and location of multiple weeds using UAV-captured
images. Farmers can target the areas of the crops where weeds are prevalent for the appli-
cation of herbicides, reducing expenses, minimizing adverse effects on the environment,
and improving crop quality.
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ground truth predictions

Figure 6. Some examples of YOLOv7 detections on LB test images. The left column contains some
test images of the LB dataset with ground truth bounding boxes labeled as “weed” or “sugar beet”.
In the right column, the same images are shown but with the bounding boxes predicted by the
YOLOv7 model.

Research for weed identification has been scarce in the literature. This is mainly due to
the scarcity of the required annotated datasets for weed detection. The dataset is the core of
a DL model, as without a dataset, we are unable to train the models, and all the automation
and modern research will be in vain. A large, efficient, and suitable weed dataset is always
a key factor for the success of DL models in weed management. All the existing agricultural
datasets contain various crop images for different purposes. We cannot use a pretrained
model of any specific weed dataset to recognize weeds from our proposed CP dataset.
To verify this, we used a model pretrained on the LB weed dataset to detect weeds from a
test set of the CP dataset. This yielded poor results, as we can see in Table 5 and Figure 4,
and this became the motivation to propose a new weed dataset whose trained model can
detect relevant weeds in UAV-based RGB images. Construction of a weed dataset is a
tedious task, as annotations and labeling the images takes human effort, is time-consuming,
and requires weed experts to double-check and visualize the dataset to assure its quality.
For that purpose, we used chicory plant fields at research locations in Belgium to capture
the images. A DGI phantom4 UAV was used to acquire RGB images. Furthermore, these
RGB images were annotated and labeled by the Roboflow application to generate a suitable
format for training of the YOLOv7 model. This study makes a distinctive contribution to
the scientific community in weed recognition and control by introducing and publishing a
novel weed dataset with almost 12,113 bounding boxes.

In this work, weeds were identified and located using a SOTA Deep Learning-based
object detector. Although many different CNN-based algorithms may be used to achieve
object detection, the YOLOv7 detector was adopted because of the few parameters required
for rapid training, inference speed, and detection accuracy scores for quick and precise weed
identification and localization. This detector was highly useful for identifying multiple
weed objects, especially when the nearby emerging crops were of a similar size and color.

All the YOLOv7 models delivered visually appealing predictions with a diverse
background and with heavily populated weeds. Overall, these findings demonstrate
that the chosen YOLO object detectors were effective for the LB dataset and the newly
introduced CP dataset for weed detection. The YOLOv7 model efficiently performed weed
detection using the LB dataset, and its results outperformed the existing outcomes of the LB
dataset [33]. In a comparison of the outputs of YOLOv7 using the CP dataset with the other
detectors, YOLOv7 ranked first among the SSD, YOLOv3, and YOLOvF models. It achieved
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a higher mAP score and outperformed the other detectors by a high margin. However, the
SSD model obtained higher recall in comparison with YOLOv7, YOLOv3 and YOLOvF.
In the case of the augmented CP dataset, all the variants of YOLOv7 showed slightly lower
results using the augmented CP dataset than the normal CP dataset. This was due to the
already implemented data augmentation techniques of the YOLOv7 detector, as YOLOv7
is heavily used in built augmentation techniques during experiments, such as flip, mosaic,
PasteIn, and cutout. In addition, YOLOv7-e6 showed improved results and achieved
66% accuracy using the augmented CP dataset and outperformed all YOLOv7 variants’
performances over the normal CP dataset. Therefore, there is no need to add augmentation
techniques to the CP dataset. Additionally, a favourable comparison was made between
the detection accuracy of YOLOv7 and the earlier weed identification studies. We know
that the CP dataset can be extended to other weed types, different crops, and different
growth stages for weeds and crops, but in conclusion, we believe that the proposed CP
dataset can be considered a good starting benchmark for all models trained for weed
detection from UAV images. This is because the RGB images acquired by UAVs have
similar characteristics for acquisition height with respect to the ground. Moreover, many
other crops have characteristics similar to those of the chicory plants proposed in this work.
For this reason, we believe that the CP dataset can be used to pretrain detection models
that can be used in other regions and on other crop types.

6. Conclusions

Weed detection is a necessary step for CV systems to accurately locate weeds. Deep
neural networks, when trained on a huge, carefully annotated weed dataset, are the founda-
tion for an efficient weed detection system. We address the most detailed dataset for weed
detection relevant to chicory plant crops. This work demonstrated that training an object
detector such as YOLOv7, trained on an image dataset such as the CP dataset proposed
in this work, can achieve efficient results for automatic weed detection. Additionally, this
study has demonstrated that it is possible to train an object detection model with an accept-
able level of detection accuracy using high-resolution RGB data from UAVs. The proposed
CP dataset consists of 3373 images with a total of 12,113 annotation boxes acquired under
various field conditions, which is freely downloadable from the web [34]. In the case of
the CP dataset, the YOLOv7-m, YOLOv7-x, and YOLOv7-w6 models achieved the same
18.5% mAP@0.5:0.95 scores, while YOLOv7-x outperformed the other YOLOv7 variants and
showed a 56.6% mAP@0.5 score. Furthermore, the YOLOv7-w6 and YOLOv7-d6 models
surpassed the other variants and obtained the best 62.1% and 61.3% recall and precision
scores, respectively. The YOLOv7 model also outperformed the existing results of the LB
dataset by margins of 13.4%, 6.6%, and 10% in terms of the mAP for weeds, mAP for sugar
beets, and total mAP, respectively. Overall, the YOLOv7-based detection models performed
well against the existing single-stage and two-stage detectors, such as YOLOv5, YOLOv4,
the RCNN, and the FRCNN, in terms of detection accuracy, and YOLOv7 showed better
results than YOLOv5 in the LB dataset in terms of the mAP score. In the future, we will
consider weed detection outcomes on UAV-acquired images at different heights above
ground level.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15020539/s1. Figure S1: Roboflow manual labeling process
overview with a 5472 × 3648 image example and information about annotated bounding boxes.;
Figure S2: An example of a 5472 × 3648 image belonging to the proposed Chicory Plants dataset and
the 13 × 8 patches of 416 × 416 size to be fed into the neural model.
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