
Citation: Stoimchev, M.; Kocev, D.;

Džeroski, S. Deep Network

Architectures as Feature Extractors

for Multi-Label Classification of

Remote Sensing Images. Remote Sens.

2023, 15, 538. https://doi.org/

10.3390/rs15020538

Academic Editor: Michael K. Ng

Received: 17 October 2022

Revised: 16 December 2022

Accepted: 5 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Deep Network Architectures as Feature Extractors for Multi-Label
Classification of Remote Sensing Images
Marjan Stoimchev 1,2,* , Dragi Kocev 1,2,3 and Sašo Džeroski 1,2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
dragi.kocev@ijs.si (D.K.); saso.dzeroski@ijs.si (S.D.)

2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
3 Bias Variance Labs, 1000 Ljubljana, Slovenia
* Correspondence: marjan.stoimchev@ijs.si

Abstract: Data in the form of images are now generated at an unprecedented rate. A case in point
is remote sensing images (RSI), now available in large-scale RSI archives, which have attracted a
considerable amount of research on image classification within the remote sensing community. The
basic task of single-target multi-class image classification considers the case where each image is
assigned exactly one label from a predefined finite set of class labels. Recently, however, image
annotations have become increasingly complex, with images labeled with several labels (instead of
just one). In other words, the goal is to assign multiple semantic categories to an image, based on
its high-level context. The corresponding machine learning tasks is called multi-label classification
(MLC). The classification of RSI is currently predominantly addressed by deep neural network (DNN)
approaches, especially convolutional neural networks (CNNs), which can be utilized as feature
extractors as well as end-to-end methods. After only considering single-target classification for a long
period, DNNs have recently emerged that address the task of MLC. On the other hand, trees and tree
ensembles for MLC have a long tradition and are the best-performing class of MLC methods, but
need predefined feature representations to operate on. In this work, we explore different strategies
for model training based on the transfer learning paradigm, where we utilize different families
of (pre-trained) CNN architectures, such as VGG, EfficientNet, and ResNet. The architectures are
trained in an end-to-end manner and used in two different modes of operation, namely, as standalone
models that directly perform the MLC task, and as feature extractors. In the latter case, the learned
representations are used with tree ensemble methods for MLC, such as random forests and extremely
randomized trees. We conduct an extensive experimental analysis of methods over several publicly
available RSI datasets and evaluate their effectiveness in terms of standard MLC measures. Of these,
ranking-based evaluation measures are most relevant, especially ranking loss. The results show that,
for addressing the RSI-MLC task, it is favorable to use lightweight network architectures, such as
EfficientNet-B2, which is the best performing end-to-end approach, as well as a feature extractor.
Furthermore, in the datasets with a limited number of images, using traditional tree ensembles for
MLC can yield better performance compared to end-to-end deep approaches.

Keywords: remote sensing; convolutional neural networks; tree ensemble methods; multi-label
classification

1. Introduction

Remote sensing is the process of detecting and monitoring the physical characteristics
of an area by measuring its reflected and emitted radiation at a distance. In the past few
years, advances in satellite technology have resulted in large-scale remote sensing image
(RSI) archives, which have attracted a considerable amount of research in various appli-
cation areas. RSI can be used to monitor and predict various environmental phenomena,
such as weather and climate change [1], land use and land cover changes at macro scale [2],
deforestation [3], wildfires [4,5], and many others.

Remote Sens. 2023, 15, 538. https://doi.org/10.3390/rs15020538 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020538
https://doi.org/10.3390/rs15020538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4444-3877
https://orcid.org/0000-0003-0687-0878
https://orcid.org/0000-0003-2363-712X
https://doi.org/10.3390/rs15020538
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020538?type=check_update&version=3

Remote Sens. 2023, 15, 538 2 of 23

In machine learning terms, a wide range of applications stemming from RSI are ap-
proached using single-label classification, where the goal is to assign a single label/semantic
category to an image [6]. However, real-world RSIs are typically complex and present
more than a single semantic category within a single image. Hence, single-label classifica-
tion is often insufficient to fully describe the presence of complex areas, which can carry
semantically complex content [7].

To facilitate more realistic representation of the content of RSI, the analysis of RSI
should be addressed through the task of multi-label classification (MLC), where a given
image can be associated with multiple semantic concepts/labels taken from a predefined
set of labels. In this way, the classification problem becomes more challenging as com-
pared to single-label classification, as discussed in a recent large-scale comparative study
and analysis of a wide range of MLC methods [8]. This study highlights the two major
challenges that can limit the performance of MLC methods: the presence of complex label
correlations and high-dimensional label spaces.

These challenges are attracting increasing amounts of attention from researchers fo-
cusing on deep learning (DL) methods, specifically on methods capable of automatically
learning long-range dependencies (e.g., with the use of self-attention mechanisms in the vi-
sion transformer (ViT) base network architectures [9]), and handling the high-dimensional
label spaces. Their internal mechanisms and structure, such as the hierarchical design
and characteristics in convolutional neural networks (CNNs), with local connectivity and
non-linearity, are capable of encoding information exceptionally well. Moreover, their
flexible design offers knowledge to be extracted and discriminative representations to be
learned from noisy data in an end-to-end manner, and achieves more accurate recogni-
tion performance in less-constrained environments as compared with traditional MLC
approaches. Furthermore, the recent success of these methods can be associated with their
ability to leverage large amounts of labeled data in order to learn meaningful knowledge.

Many of the existing approaches in computer vision try to address the challenges
encountered by exploiting proven DL network architectures pre-trained on large-scale
and diverse datasets such as ImageNet [10]. This is usually achieved by using the transfer
learning paradigm [11], where specific parts of the model are fine-tuned in order to learn
new features that generalize better to the new downstream task [12–14]. For example,
Wang et al. [15] propose a framework based on a VGG-16 CNN model initialized with
weights learned on ImageNet, which is used to extract semantic representations from im-
ages and is coupled with a recurrent neural network (RNN) network architecture with long
short-term memory (LSTM) units to capture image/label relations and label dependency.
Chen et al. [16] propose an end-to-end learning method based on Graph Convolutional
Networks (GCN) to capture the label correlations, and a novel re-weighting scheme for
creating the label correlation matrix that is used to guide the information propagation
among the nodes in the GCN.

In addition, with the increased availability of RSI and the increased research interest
in remote sensing applications, many interesting approaches have been proposed at the
crossroads of remote sensing and computer vision [7,17–19]. For example, Hua et al. [20]
propose a novel approach for MLC from aerial imagery—an attention aware label relational
network, comprising a label-wise feature parcel module, an attention region extraction
module, and a label relational inference module. Sumbul et al. [21] present a K-Branch CNN
that uses a multi-attention strategy for bidirectional LSTM networks, which is specially
developed to capture spatial and spectral contents from RS images of local image areas.
Wang et al. [22], despite using local attention [21], are also able to maintain global context
through global attention pooling, where the combination of both helps in modeling long-
range dependencies among multiple objects and captures underlying relationships among
multiple labels.

In this work, our main focus is on investigating the potential of several prominent deep
learning architectures (variants of VGG [23], ResNet [24] and EfficientNet [25]) as feature
extractors for the MLC of RSI as well as end-to-end approaches to MLC of RSI. To this

Remote Sens. 2023, 15, 538 3 of 23

end, we evaluate the performance of the architectures across seven MLC RSI datasets with
different properties in terms of number of images, number of labels, and average number
of labels per image (label cardinality). More specifically, we use pre-trained network
architectures with weights learned on ImageNet as an initialization procedure. We further
perform calibration of the pre-trained models by fine-tuning them on a small set of RSIs
and compare the fine-tuned and pre-trained MLC performance. Finally, we use the learned
models as feature extractors to describe the RSI, and use the resulting feature vectors to
learn tree ensembles such as random forests and extra trees for MLC.

The main contributions of this paper can be summarized as follows:

• We present an experimental analysis of different approaches for MLC of RSI. More pre-
cisely, we investigate the performance of several deep learning network architectures
by using pre-training and fine-tuning as the main learning strategies for the MLC task.

• We evaluate the effectiveness of the deep models used as end-to-end approaches to
MLC, and used as feature extractors that provide feature representations of RSI, as
inputs to tree ensemble methods for MLC. Moreover, we investigate which of the
network architectures is the most suitable choice in terms of performance.

• We also investigate the performance of the considered methods in terms of the in-
fluence of the number of labeled training examples by providing the methods with
different fractions of the data.

The remainder of this paper is organized as follows. Section 2 describes the MLC
RSI data (Section 2.1) and the machine learning methods (Section 2.2) used to analyze
them (deep learning architectures in Section 2.2.1 and tree ensembles in Section 2.2.2).
Next, Section 3 gives the experimental questions and the specific experimental setup, in-
cluding parameter instantiations for the methods (Section 3.1), the evaluation strategy
(Section 3.2), and the different evaluation measures used to assess the performance of
the models (Section 3.3). Furthermore, Section 4 discusses the results of our experiments,
focusing on the outcomes of the different representation learning strategies (Section 4.1),
deep architectures (Section 4.2), MLC approaches (Section 4.3), and number of images
(Section 4.4). Finally, Section 5 concludes the paper by providing a summary of the pre-
sented work and directions for further work.

2. Materials and Methods
2.1. Datasets

We use seven publicly available MLC RSI datasets to assess the performance of the
MLC methods, namely UC Merced (UCM) Land Use, AID Multilabel, Ankara HIS archive,
DFC-15 Multilabel, MLRSNet, and two variants of the BigEarthNet dataset based on two
Corine Land Cover (CLC) nomenclatures (Available at https://land.copernicus.eu/user-
corner/technical-library/corine-land-cover-nomenclature-guidelines/html (accessed on 4
January 2023)), CLC with 43 labels (BigEarthNet-43), and CLC with 19 labels (BigEarthNet-
19). When analysing the datasets that have hyperspectral RSI (meaning that they have
several spectral bands), such as Ankara and BigEarthNet, we only use the RGB spectral
band to train the models.

A summary of the properties of the seven datasets is given in Table 1. We can see that
the selected datasets are diverse along several lines: number of images, locations, number
of labels, image resolution, and number of labels per example image (label cardinality).
This means that the trained predictive models are trained and evaluated in a challeng-
ing environments. The selection of typical images from the different datasets with their
corresponding class labels is given in Figure 1.

https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html

Remote Sens. 2023, 15, 538 4 of 23

Table 1. Description of the used RSI multi-label datasets. |L| denotes the number of possible labels;
Card denotes label cardinality (i.e., average number of labels per image); Dens denotes label density
(average proportion of images labeled with a given label); N is the number of images in the dataset,
of which Ntrain are in the train and Ntest in the test datasets; and w× h is the dimension of the images
(in pixels).

Dataset Image Type |L| Card Dens N Ntrain Ntest w× h

Ankara Hyperspectral/Aerial RGB 29 9.120 0.536 216 171 45 64× 64
UC Merced Land Use Aerial RGB 17 3.334 0.476 2100 1667 433 256× 256
AID Multilabel Aerial RGB 17 5.152 0.468 3000 2400 600 600× 600
DFC-15 Multilabel Aerial RGB 8 2.795 0.465 3341 2672 669 600× 600
MLRSNet Aerial RGB 60 5.770 0.144 109,151 87,325 21,826 256× 256
BigEarthNet Hyperspectral/Aerial RGB 19 2.900 0.263 590,326 472,245 118,081 256× 256
BigEarthNet Hyperspectral/Aerial RGB 43 2.965 0.247 590,326 472,245 118,081 256× 256

Ankara UCM DFC-15 AID MLRSNet BigEarthNet-19 BigEarthNet-43

Bare Soil, Crop
(Type-A), Crop

(Type-B),
Unpaved Road,
Grass (Type-A)

bare-soil,
buildings,

cars,
pavement,

tanks

impervious,
vegetation,

building, tree

bare-soil,
buildings,
cars, court,
pavement,

trees

bare soil,
buildings,
grass, trail,

wind turbine

Urban fabric,
Industrial or
commercial

units,
Inland waters

Discontinuous
urban fabric,
Industrial or
commercial

units,
Water courses

Grass Covered Soil,
Bare Soil, Crop

(Type-D),
Asphalt Pavement,

Grass (Type-A)

buildings,
pavement,

sand,
tanks, trees

impervious,
vegetation,

building

bare-soil,
buildings, cars,

grass, pavement,
tanks, trees

buildings,
field, terrace,

trail, trees

Arable land,
Agro-forestry

areas

Non-irrigated
arable land,

Agro-forestry
areas

Figure 1. An illustration of the diversity of images from the different RSI datasets with the corre-
sponding class labels.

2.1.1. UC Merced Land Use

The UC Merced data set contains 2100 images grouped into 21 broad categories at
the scene level. There are a total of 100 images per category, with the size of 256× 256
and a spatial resolution of 0.3 m. The initial version of this dataset was for single-label
classification purposes [26]. Later, Chaudhuri et al. [27] relabeled the images with multiple
labels. The total number of distinct object-level labels is 17: airplane, bare soil, buildings,
chaparral, court, dock, field, grass, mobile home, pavement, sand, sea, ship, tanks, trees,
and water. Each image is annotated with one or more (maximum 7) labels at the object
level, containing 3.3 object-level labels per image on average.

2.1.2. AID Multilabel

The initial single-label AID dataset [28] was relabeled with multiple labels per image
and became the AID multi-label dataset [20]. It is also a more challenging dataset than the
U Merced dataset. It contains 3000 aerial images from 30 categories with manually assigned
multiple-object labels. The resolution of the images is 600× 600 pixels, where each image
has 5.5 object-level labels on average (maximum 11). The spatial resolution varies from 0.3
to 8 m.

2.1.3. Ankara HIS Archive

This is a small hyperspectral dataset containing 216 image tiles with a size of
63× 63 pixels [29]. The image patches are obtained by fragmenting large hyperspectral

Remote Sens. 2023, 15, 538 5 of 23

images, acquired by the NASA EO-1 satellite’s Hyperion sensor from the area surrounding
the city of Ankara in Turkey. Each image is associated with multiple object-level labels
(land-cover-classes) and a single land-use scene-level label where the ground resolution
is 30 m. There are 9 object-level labels per image on average, and a maximum of 17. It
contains 119 channels of hyperspectral images and corresponding three-channel (RGB)
images. We only use the RGB channels.

2.1.4. DFC-15 Multilabel

The DFC-15 Multilabel dataset [30] is built from a semantic segmentation dataset
(DFC15), first used in the 2015 IEEE GRSS data fusion contest. This dataset is acquired over
Zeebrugge with an airborne sensor (300 m off the ground). There are a total of 7 tiles, where
each of the tiles is 10,000 × 10,000 pixels with a spatial resolution of 5 cm. The images are
assigned pixel-level labels, where each pixel is categorized into 8 object classes: impervious,
water, clutter, vegetation, building, tree, boat, and car. The final dataset contains 3342 image
patches with 600× 600 image resolution, where each image is associated with image-level
multi-labels.

2.1.5. MLRSNet

The MLRSNet dataset is an RSI dataset containing optical satellite images with high
spatial resolution [31]. It contains 109,161 RSI annotated with 60 predefined class labels,
where the number of labels per image varies from 1 to 13. The images have a fixed resolution
of 256× 256 pixels, where the pixel resolution varies from ∼10 m to 0.1 m. This dataset can
be used for a wide range of learning tasks, such as multi-label classification, multi-class
classification, multi-label image retrieval, and image segmentation. There are 10 images
that do not have labels assigned, as shown in Figure 2; therefore, we exclude these images
from the experiments. The final dataset contains 109,151 images.

eroded_farmland_01038 eroded_farmland_01039 eroded_farmland_01042 eroded_farmland_01043 eroded_farmland_01046

eroded_farmland_01077 eroded_farmland_01093 eroded_farmland_01167 eroded_farmland_01196 island_01975

Figure 2. Images from the MLRSNet dataset that do not have labels assigned.

2.1.6. The BigEarthNet Archive

BigEarthNet [17] was constructed by the Remote Sensing image Analysis (RSiM)
Group and the Database Systems and Information Management (DIMA) Group at the
Technische Universität Berlin (TU Berlin). It is the largest dataset of image patches an-
notated with multiple labels available to date. There are 590,326 such patches for which
Sentinel-2/S2 (and later also Sentinel-1/S1) images are available. For S2, twelve channels
are available, and for S1, two channels are available. We only use three of the S2 chan-
nels (RGB images). Each image patch is annotated by multiple land-cover classes (i.e.,
multi-labels) taken from the CORINE Land Cover database of the year 2018 (CLC 2018).
Originally, 43 labels were used. These were later merged into 19 labels [32].

2.2. Overview of the Learning Methods for Multi-Label Classification

We address the MLC task by applying a Convolutional Neural Network (CNN) as
a deep learning approach and exploiting the the transfer learning paradigm. We use the

Remote Sens. 2023, 15, 538 6 of 23

weights learned on the ImageNet as the initialization procedure, and we further perform
calibration by fine-tuning the models on the training sets of of RSI. The deep models are
used in two different scenarios, namely as end-to-end approaches to directly perform the
MLC task (Figure 3a,b), and as CNN-based feature extractors (Figure 3a) to generate feature
representations, which are used as inputs to the tree-ensemble methods such as Random
Forests and Extremely Randomized Trees for MLC (Figure 3c).

A
v

g
P

o
o

l

F
C

A
v

g
P

o
o

l

(a) (b)

(c)(a)

End-to-end learning

Feature extraction and Tree Ensembles

f

f

Figure 3. Overview of the proposed strategy for MLC of RSI. Part (a) of the strategy is the fully
convolutional CNN backbone feature extractor. This part is same for both end-to-end learning, and
feature extraction. The next part of the strategy, marked (b), is only used during end-to-end learning.
The last part, marked with (c), is used for training tree ensemble methods from the extracted features,
as a separate task and not a part of the end-to-end learning process. For this separate task the CNN
feature extractor (a) is used in offline mode to generate the required feature representations, which
serve as inputs to learn tree ensembles.

We make the following modifications to the used network architecture for the MLC
task. To make it applicable to differently sized input images, we make sure the backbone
CNN is fully convolutional. Next, to reduce the spatial dimension, the feature maps are
aggregated through the average pooling layer, where d-dimensional feature representations
f are extracted. The classification part is replaced with a single fully connected (FC) layer
with the number of output units equal to the number of classes. This can also be seen as a
layer providing non-normalized log probabilities zi, i.e., scores (or also called logits), that a
classification model generates. This logit vector is then converted to a vector of probabilities
by using the sigmoid activation function σ(zi,c) = 1/(1 + e−zi,c), where zi,c is the logit of
the predicted class. The sigmoid function is suggested for MLC, instead of the so f tmax
function, as the activation of the last layer of the model, since the probabilities produced by
sigmoid are independent and are not constrained to sum up to one. It follows a Bernoulli
distribution and thus allows multiple label predictions [18]. It is important to mention that
this part of the model (Figure 3b) is only used during training in the end-to-end mode to
directly perform the MLC task.

The training process uses the standard binary cross-entropy learning objective, which
takes the following form:

Lbce = −
1
n

n

∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (1)

where n is the number or samples in a given mini-batch, yi = [yi,1, yi,2, . . . , yi,c] is a binary
vector representing the multi-labels of a given image, and ŷi is the predicted output vector

Remote Sens. 2023, 15, 538 7 of 23

of probabilities from the sigmoid layer. This learning objective is most commonly used in
MLC tasks [18].

2.2.1. Deep Learning Methods

To investigate the impact of the network architecture on the learning process, we
consider several popular CNN configurations pre-trained on ImageNet. We use VGG
(VGG-16, VGG-19) [23] , ResNet (ResNet-34, ResNet-50, ResNet-152) [24] and EfficientNet
(EfficientNet-B0, EfficientNet-B1, EfficientNet-B2) [25] as backbone CNN models for the
MLC task. Throughout the experiments, these methods are used either in an end-to-end
manner or as CNN-based feature extractors.

• VGGs: VGG is a deep CNN network architecture developed by the Visual Geometry
Group (VGG) team [23]. It is also the basis of ground-breaking object recognition
models that surpass baselines on many tasks and datasets beyond ImageNet and is still
one of the most popular image recognition architectures. Two variants of this family
of architectures are intensively studied for their performance—VGG-16 and VGG-19.
The VGG-16 model can be seen as an upgrade of AlexNet, while VGG-19 is similar to
VGG-16 but contains more layers. They are modeled in such a way that convolutions
would actually look simpler by replacing large AlexNet convolution filters with a
3× 3 filter, while padding to maintain the same size before a 2× 2 MaxPool layer
down-samples the image size.

• ResNets: ResNets are a family of deep CNN architectures that follow the residual
learning principle to ease the training of very deep networks [24]. Their design offers
an efficient way to solve the issues related to the vanishing gradients. ResNet follows
VGG’s full 3× 3 convolutional layer design. The residual block has two 3× 3 convolu-
tional layers with the same number of output channels. Each convolutional layer is
followed by a batch normalization layer and a Rectified Linear Unit (ReLU) activation
function. Then, there is a skip (or so-called skip connection) of those two convolution
operations, where the input is directly added before the final ReLU activation function.
This kind of design requires that the output of the two convolutional layers has to
be the same shape as the input, so that they can be added together. By configuring
different numbers of channels and residual blocks in the module, we can create dif-
ferent ResNet models, such as the deeper 152-layer ResNets, i.e., ResNet-152. For the
experiments, we use three variants of ResNet: ResNet-34, ResNet-50, and ResNet-152.

• EfficientNets: Unlike conventional deep CNNs, which are often over-parameterized,
and arbitrarily scale network dimensions, such as width, depth, and resolution, Effi-
cientNets are methods that uniformly scale each dimension with a fixed set of scaling
coefficients [25]. These models surpass state-of-the-art accuracy, with up to 10 times
better efficiency (i.e., are both smaller and faster than competitors).

2.2.2. Tree Ensemble Methods

In the experiments, we consider two types of ensemble methods based on decision
trees for MLC as a main learning model, namely, ensembles based on random forests for
MLC [33] and extremely randomized trees for MLC [34], respectively.

• Random Forest: Random forest (RF) is an ensemble learning method for classification
and regression, which creates a set of individual decision trees that operate as an
ensemble. It uses bagging and feature randomness to create diversity among the
predictors: At each node in the decision tree, a random subset of attributes is taken,
and the best split is selected from this subset of attributes. Each individual tree in the
random forest provides a class prediction, where the predictions can be aggregated by
taking the average (for regression tasks) and the majority or probability distribution
vote (for classification tasks). RFs were adapted for the task of MLC [33].

• Extremely Randomized Trees: Extremely Randomized Trees, or so-called Extra Trees
(ET), is also an ensemble learning method similar to the Random Forest, which is
based on extreme randomization of the tree construction algorithm. As compared

Remote Sens. 2023, 15, 538 8 of 23

to the Random Forest ensemble, it operates with two key differences: it splits nodes
by choosing the cut-points fully at random, and it uses the whole learning sample to
grow the trees. The randomness in this method comes from the random splits of all
observations, rather then bootstrapping the data as in RF. ETs were adapted for the
task of MLC [34].

3. Experimental Design

This section presents the details of the experimental study design. It includes a detailed
overview of the experimental setup describing the different learning settings in the end-to-
end approaches and the tree ensemble methods. Next, we describe the evaluation strategy
of the partitioning of the image datasets into disjoint splits used for training and testing
MLC models. Finally, we describe the evaluation measures used to assess the predictive
performance of the different methods as well as the statistical procedures used to analyze
the results.

The experimental study is tailored to answer the following research questions:

(i) What is the influence of the learning strategy on the performance of end-to-end ap-
proaches: Is fine-tuning or pre-training only more suitable for solving the RSI-MLC task?

(ii) Which network architecture is the best choice for end-to-end MLC of RSI and for use
as a feature extractor and further training of tree ensembles for MLC?

(iii) How do end-to-end learning and feature extraction plus tree ensembles compare on
the task of RSI for MLC (assessed by using the best performing architecture from the
previous analysis)? and

(iv) How does the number of training examples influence the predictive performance of
the methods used?

3.1. Experimental Setup
3.1.1. End-to-End Learning Approaches

We train the deep network models by using two different learning strategies based on
transfer learning. Both settings use the ImageNet weights for initialization, while fine-tuning
different parts of the backbone CNN model. In the first learning setting, shown in Figure 4a,
we fix all the model layers pre-trained on ImageNet and directly transfer the learned
knowledge to the target domain. In the second learning setting, shown in Figure 4b, the
entire network architecture is being fine-tuned to the new target domain. In both settings,
we use a single application-dependent fully connected layer learned from scratch (i.e., the
classification layer).

We use the binary cross entropy as an objective function (see Equation (1)) to optimize
the model parameters, and apply the same training procedure and hyperparameters for
100 epochs across all datasets. The optimization of the model parameters is performed with
the Adam optimizer with a learning rate of 1× 10−4 and a mini-batch of 64.

Remote Sens. 2023, 15, 538 9 of 23

F
C

f

Frozen

Unfrozen

ImageNet weight

initialization

F
C

f

Pre-training Fine-tuned

σ
 σ

Tree Ensemble Tree Ensemble

Feature Extraction

End-to-end learning End-to-end learning

Feature Extraction

(a) (b)

Figure 4. Two distinctive learning strategies for the MLC task. In the first learning setting, marked as
(a), we rely on the ImageNet pre-training, where all the model layers are frozen, except the last fully
connected layer, which is trained for the new target domain. In the second learning setting, marked
as (b), the entire network architecture is fine-tuned along with the newly added fully connected layer.
Moreover, we use both approaches either as feature extractors (in “offline” mode) jointly with tree
ensemble methods, or as end-to-end learning machines to directly perform the MLC task. Note that
the parts of the model highlighted with blue indicate that there is no update of the parameters in the
model during the training process; on the other hand, with red, we highlight the opposite task, which
means the parameters of the model are unfrozen and updated during training.

To prevent overfitting, we use data augmentation and modify data on the fly, so that
our CNN models are transformation-invariant to the maximum possible extent. Moreover,
we use data augmentation because we want to ensure that the predictive performance
and generalization capability of the learned model is preserved to some extent, espe-
cially when training a predictive model on a dataset that contains a limited number of
images (e.g., the Ankara dataset). Using the Albumentations library [35] (Available at:
https://albumentations.ai (accessed on 4 January 2023)), we performed the following
image transformations: horizontal flipping, random rotations in the range ±10%, scaling
by a factor in the range (0, 0.15), shifting by a factor in the range (0, 0.1), random crops
with 50% of the original image size, random brightness within the range of (−0.3, 0.3), and
random contrast within the range of (−0.3, 0.3). In addition, we consider the application of
the following transformations to the input image: Contrast Limited Adaptive Histogram
Equalization (CLAHE) to the input image, where the size of the grid for histogram equal-
ization is set to 8× 8 pixels; blurring with Gaussian kernel with σ value in the range (3, 7);
median blur with aperture linear size value v randomly sampled once per image in the
range (3, 7); motion blur with kernel size ω for blurring the input image, randomly chosen
once per image in the range (3, 7); or Gaussian noise, where the variance range for noise is
taken from the interval (10, 50).

The augmentations are performed in random order and with a 50% chance, which
means that in such a setting there might be no augmentations applied over an image at all.
This is important because, during the training process, the model needs to see the original
image at least once in order to make reasonable predictions afterwards [36]. Some example
augmentations are shown in Figure 5. Each row represents a specific dataset, where the
left-most image marked with red is the original version, while the remaining images are the

 https://albumentations.ai

Remote Sens. 2023, 15, 538 10 of 23

augmented versions of the same image. Note that multiple augmentations could be applied
on the same image. Because of that, we are not mixing certain image augmentations, such
as the blurring operations (i.e., Gaussian, median and motion blur) with color (i.e., CLAHE)
and Gaussian noise corruption transformations, simultaneously. The main reason for this is
that we want to avoid strong image degradation and loss of contextual information, which
is crucial in remote sensing imagery.

Ankara

UCM

AID

DFC-15

MLRSNet

BigEarthNet-19/43

Figure 5. Augmentation examples. The left most image in each row marked with red is the original
version, while the remaining images are the augmented versions. We can see the extent of variability
added to the training datasets by the augmented images.

3.1.2. CNNs as Feature Extractors and Tree Ensembles

The deep learning methods presented in Section 2.2.1, are further used as feature
extractors, for each of the two learning settings described in Section 3.1.1. Hence, we
rely on two feature representations f ∈ Rd extracted from the CNN feature extractors:
representations based on pre-training (Figure 4a), and fine-tuning (Figure 4b). Furthermore,
each feature representation is used as input to the tree ensemble methods, i.e., Random
Forests (RF) and Extremely Randomized Trees (ERT)/Extra Trees (ET) for short. We use
150 base models in each of the ensembles and sqrt as the feature subset size.

3.2. Evaluation Strategy

We conducted experiments over the several publicly available RSI datasets described
above and explored how the performance of the learning strategies is affected by data
availability, image quality, and label dimensionality. To tackle this problem, we included
datasets which are less challenging in terms of image resolution, such as DFC-15 and
MLRSNet, and datasets such as Ankara, which is very limited in size and has poor image
quality. To evaluate the effectiveness of the methods, we perform the splitting according to
the datasets that already contain a predefined subset of images, such as AID and DFC-15,
where the train and test ratios are approximately 80% and 20%. The remaining dataset is
partitioned accordingly, by adopting an iterative stratified sampling strategy in order to
preserve the relative frequency of the labels in the datasets to the maximum possible extent.

Remote Sens. 2023, 15, 538 11 of 23

Moreover, we split a validation set of 10% from the overall training data, which is only
used to monitor the learning progress and to provide an unbiased estimate of the model fit
when tuning hyperparameters. A description of the datasets after the splitting procedure is
given in Table 1.

3.3. Evaluation Measures and Statistical Analysis

Many evaluation measures are used to assess the predictive performance and effec-
tiveness of MLC methods, offering different viewpoints on the performance of the methods.
The evaluation measures can be grouped into two groups: measures based on bipartitions
(example-based and label-based measures) and ranking-based evaluation measures [8].
The example-based evaluation measures compute the average difference between the true
labels and the predicted labels for each data point, averaged across all the examples in
the dataset. Unlike example-based measures, label-based measures evaluate each label
separately and then average the performances across all labels. The ranking-based evalua-
tion measures compare the predicted ranking of the labels with the ground truth ranking
(where all present labels are ranked before all absent labels).

In this study, we present the results in terms of ranking-loss as an evaluation measure.
Ranking loss evaluates the average fraction of label pairs that are misordered for a given
example. Note, however, that we provide complete results in terms of all other evaluation
measures for the MLC task in the Appendix A section (for the calculation of the evaluation
measures, we use the sckit-learn implementation [37]). We focus on ranking loss, since
we believe it is one of the best indicators for measuring the performance of methods for
MLC. Moreover, this measure is threshold-independent, which means we do not rely on
the use of techniques for threshold estimation to produce the predicted labels. Ranking
loss is defined as follows:

rl =
1
N

N

∑
i=1

∑
(j,k):yj>yk

(I[ri(j) < ri(k)] +
1
2

I[ri(j) = ri(k)]), (2)

where yi and ŷi are the true and the predicted labels, respectively, N is the number of
examples, ri(j) is the ranking of label j for instance xi, and I is an indicator function. The
smaller the value of rl, the better the performance.

We use the Friedman test to assess whether the overall differences in performance
of the used approaches evaluated across the RSI datasets are statistically significant and
the post hoc Nemenyi test to detect between which methods the statistically significant
differences occur. The obtained results are presented in the form of Nemenyi post hoc
average rank diagrams [38] for the ranking loss measure. In the analysis, the significance
level was set to α = 0.05. The best-performing methods are on the left-most side of the
diagram along the axis (average ranks closer to 1), and the methods whose predictive
performance does not differ significantly at α = 0.05, are connected with a red line.

3.4. Implementation Details

We implemented the deep learning models in the PyTorch framework (Available at:
https://pytorch.org, accessed on 4 January 2023). We use the built-in implementations
of VGGs, ResNets and EfficientNets, initialized with weights learned on ImageNet. We
modify each of the backbone models in order to accept arbitrary-sized input images by
replacing the last max pooling layer with the average pooling operation with a kernel size
of 1, resulting in the following d-dimensional feature representations: d = 4096 for VGG-16
and VGG-19, d = 512 for ResNet-34, and d = 2048 for ResNet-50 and ResNet-152. We have
1280 output dimensions for EfficientNet-B0 and EfficientNet-B1, while EfficientNet-B2 has
1408 dimensions. Finally, for the tree ensemble methods, we use the scikit-learn [37]
implementation of Random Forest tree ensembles for multi-label classification (MLC) [33]
and Extra Tree ensembles for MLC [34]. The tree ensembles for MLC simultaneously predict
the probability of each of the multiple class labels. The labels can then be ranked based on

https://pytorch.org

Remote Sens. 2023, 15, 538 12 of 23

these predicted probabilities. The complete source code and the datasets used to execute the
study are publicly and freely available at https://github.com/marjanstoimchev/RSMLC
(accessed on 4 January 2023).

4. Results and Discussion

This section presents the results of our experimental study in MLC of RSI. It answers
one of the experimental questions posed in Section 3 in each subsection. It thus discusses (1)
the influence of the learning strategy, (2) the comparison of different network architectures
used as end-to-end approaches, as well as feature extractors, (3) the comparison between
end-to-end methods and tree ensembles, and (4) the influence of the number of available
labeled images on predictive performance.

4.1. The Influence of the Learning Strategy

In the first experiment, we explored whether fine-tuning or pre-training only is the
more appropriate learning strategy (as defined in Section 3.1.1). To provide the answer to
this question, we conducted experiments by training different network architectures over
the datasets, and using them in two different modes of operation: (1) as feature extractors
providing the feature representations to the tree ensembles, and (2) as end-to-end learning
methods. Moreover, for each learning approach, we present the difference in performance
in the form of a heat map, which can be formally defined as follows:

H =

rl11 rl12 · · · rl1n
rl21 rl22 · · · rl2n

...
...

. . .
...

rlm1 rlm2 · · · rlmn

 ∈ Rm×n, (3)

where rli,j = rl f ine−tune
i,j − rlpre−train

i,j is the difference between fine-tuning (rl f ine−tune) and

pre-training (rlpre−train) in terms of the ranking loss measure, calculated for the i-th dataset
and the j-th method, respectively. This is performed for i = 1, . . . , m and j = 1, . . . , n, where
m denotes the number of datasets and n is the number of methods/CNN architectures.

These differences in performance are presented in Figure 6. We observe that for smaller
datasets (e.g., Ankara, UCM, etc.), pre-training is the preferred choice, which can be mostly
seen for the VGG architectures trained in an end-to-end manner over the DFC-15 dataset,
where the largest differences in ranking loss are observed. These differences are slightly
smaller for the DFC-15 dataset and the tree-ensemble methods. On the other hand, the
fine-tuned versions of the models perform significantly better when data availability is not
a problem. Furthermore, for the tree ensemble methods, the differences in performance
are significantly increased (and more on the positive side), which points to the fact that the
quality of the feature representations is of great importance for the tree ensemble methods
to further boost their predictive performance. Overall, we can conclude that by solely
relying on the ImageNet pre-training, we end up with worse model performance in almost
all cases, because the content present in RSI is quite complex as compared to images present
in the ImageNet dataset. More detailed results of the analysis are presented in Table A1
(Appendix A), where the performance figures for the ranking loss measure are given.

https://github.com/marjanstoimchev/RSMLC

Remote Sens. 2023, 15, 538 13 of 23

VG
G-

16

VG
G-

19

Re
sN

et
-3

4

Re
sN

et
-5

0

Re
sN

et
-1

52

Ef
fic

ie
nt

Ne
t-B

0

Ef
fic

ie
nt

Ne
t-B

1

Ef
fic

ie
nt

Ne
t-B

2

Ankara

UCM

AID

DFC-15

MLRSNet

BigEarthNet-43

BigEarthNet-19

0.001 0.004 -0.020 -0.020 -0.021 0.022 0.013 0.094

-0.005 -0.069 0.009 0.006 0.004 0.014 0.010 0.010

-0.020 -0.001 0.004 0.007 0.003 0.007 0.011 0.007

-0.134 -0.134 0.020 0.015 0.015 0.016 0.016 0.014

0.017 0.013 0.020 0.012 0.011 0.019 0.021 0.022

0.036 0.034 0.032 0.025 0.025 0.034 0.036 0.038

0.073 0.069 0.059 0.046 0.045 0.062 0.065 0.068

End-to-end

VG
G-

16

VG
G-

19

Re
sN

et
-3

4

Re
sN

et
-5

0

Re
sN

et
-1

52

Ef
fic

ie
nt

Ne
t-B

0

Ef
fic

ie
nt

Ne
t-B

1

Ef
fic

ie
nt

Ne
t-B

2

-0.007 -0.007 -0.015 -0.000 0.003 -0.012 -0.000 -0.003

0.048 0.012 0.076 0.072 0.107 0.099 0.107 0.099

-0.007 -0.084 0.013 0.008 0.003 0.019 0.023 0.030

-0.094 -0.082 0.052 0.039 0.094 0.059 0.050 0.057

0.057 0.058 0.079 0.073 0.104 0.098 0.085 0.080

0.032 0.029 0.042 0.037 0.037 0.050 0.053 0.054

0.058 0.054 0.072 0.065 0.063 0.087 0.093 0.095

Random Forest

VG
G-

16

VG
G-

19

Re
sN

et
-3

4

Re
sN

et
-5

0

Re
sN

et
-1

52

Ef
fic

ie
nt

Ne
t-B

0

Ef
fic

ie
nt

Ne
t-B

1

Ef
fic

ie
nt

Ne
t-B

2

-0.011 -0.019 -0.006 0.009 0.022 -0.009 0.003 -0.004

0.045 0.003 0.079 0.071 0.111 0.104 0.108 0.098

-0.011 -0.084 0.011 0.010 0.007 0.019 0.024 0.031

-0.096 -0.083 0.052 0.043 0.097 0.054 0.047 0.052

0.056 0.059 0.079 0.073 0.107 0.085 0.078 0.071

0.031 0.028 0.043 0.039 0.039 0.051 0.055 0.055

0.057 0.053 0.075 0.068 0.067 0.090 0.096 0.098

Extra Trees

-0.10 -0.05 0.00 0.05
Difference in terms of ranking loss

-0.05 0.00 0.05 0.10
Difference in terms of ranking loss

-0.05 0.00 0.05 0.10
Difference in terms of ranking loss

Figure 6. Comparison between fine-tuning and pre-training in terms of ranking loss. The results
for the different architectures are presented in the form of a heat map showing the difference in
performance between the learning approaches. Negative values indicate that pre-training is better
than fine-tuning and positive when fine-tuning is better than pre-training. The intensities of the colors
in the heat map are directly related to the difference in performance between the learning approaches
(CNN architectures). The datasets on the y-axis are ordered by the number of images they contain.

4.2. Comparison of Different Network Architectures

Based on the analysis from Section 4.1, we used the fine-tuning approach to further
explore which network architecture is the most suitable choice for RSI MLC tasks. The
results are shown in terms of ranking loss and in the form of average rank diagrams.
From Figure 7, we see that the EfficientNet variants, especially EfficientNet-B2, tend to
produce the better results as compared to other network architectures. The differences in
performance are statistically significant as compared to the VGG variants. The results also
reveal that the EfficientNet-B2 model, used as base feature extractor in combination with
tree ensemble methods, such as RF as in Figure 7b and ET in Figure 7c, is the clear winner,
which indicates that this network architecture is the best choice for this task. Moreover, the
ResNet-based network architectures are the closest competitors to EfficientNet variants
(both when used with tree ensembles and in an end-to-end manner), i.e., the ResNet-
152 model. Although the EfficientNet variants are not statistically significantly better
than ResNet-152, they are by far more lightweight in terms of model parameters (e.g.,
EfficientNet-B0 is approximately 11× smaller, EfficientNet-B1 is 8×, and EfficientNet-B2 is
approximately 6.5× smaller than ResNet-152, respectively). Comparison between different
network architectures in terms of other MLC performance measures in the form of average
rank diagrams is given in Figures A1–A6 in the Appendix A (Figures A1–A3 for fine-
tuned features and label-based, example-based and ranking-based measures, respectively,
Figures A4–A6 for pre-trained features and label-based, example-based and ranking-based
measures, respectively).

1 2 3 4 5 6 7 8

EfficientNetB2@1.714
EfficientNetB1@2.143
EfficientNetB0@2.714
ResNet152@4.714

VGG19@6.714
VGG16@6.429

ResNet34@5.857
ResNet50@5.143

critical distance: 3.9685

(a) End-to-end

1 2 3 4 5 6 7 8

EfficientNetB2@2.571
EfficientNetB1@3.0
EfficientNetB0@3.143
ResNet152@3.857

VGG19@7.0
VGG16@6.429

ResNet34@5.286
ResNet50@4.0

critical distance: 3.9685

(b) Random forest

1 2 3 4 5 6 7 8

EfficientNetB2@2.0
EfficientNetB1@2.429
EfficientNetB0@2.857
ResNet152@3.571

VGG19@7.429
VGG16@7.286

ResNet34@5.286
ResNet50@4.429

critical distance: 3.9685

(c) Extra trees
Figure 7. Comparison between different network architectures in terms of ranking loss. The results
are presented in the form of average rank diagrams at 0.05 significance level for (a) End-to-end
learning, (b) Random forests and (c) Extra trees. The best ranking methods are at the left-most side
of the diagram. The difference in performance among the methods connected with a red line is not
statistically significant.

Overall, we can conclude that in the fine-tuning setting, it is favorable to use lightweight
network architectures in terms of model parameters for end-to-end learning, which are

Remote Sens. 2023, 15, 538 14 of 23

also capable of learning more discriminative feature representations when used as feature
extractors. This is in direct relation to their capability of capturing high-level content
present in RSI to a greater extent as compared to the other network architectures. Moreover,
they are the preferred choice when addressing the problems encountered in challenging
deployment scenarios, which means they can maintain good predictive performance while
keeping the computational costs at a reasonable level.

4.3. Comparison of Different Learning Approaches

To answer the experimental question of how end-to-end learning and feature extraction
plus the tree ensembles compare in the task of RSI MLC, we present the results in the
form of average rank diagrams, where we use the pre-trained and fine-tuned versions of
the EfficientNet-B2 model. Recall that EfficientNet-B2 produced the best results overall,
either when used as a feature extractor where the extracted feature representations are
further utilized in the tree ensembles, or as an end-to-end approach to directly address
the MLC task. The results are shown in Figure 8a for fine-tuning and in Figure 8b for
pre-training only.

1 2 3

End-to-end@1.714 Random Forest@2.0
Extra Trees@1.857

critical distance: 1.2529

(a) Fine-tuning

1 2 3

End-to-end@1.286 Random Forest@2.571
Extra Trees@2.143

critical distance: 1.2529

(b) Pre-training

Figure 8. Comparison between different learning methods in terms of ranking loss. The results are
presented in the form of average rank diagrams at 0.05 significance level for (a) Fine-tuning and (b)
Pre-training only. The best ranking methods are at the left-most side of the diagram. The differences
among the methods connected with a red line is not statistically significant.

As seen from the diagrams, end-to-end learning is ranked best, followed by Extra
trees and Random Forests. In the case of fine-tuning (Figure 8a), there is no statistically
significant difference among the classification methods. In the pre-training setting, the end-
to-end learning approach is significantly better than the random forest method. Overall,
the differences in predictive performance depend on the specific deep neural network
architecture and the learning setting. Comparison between different learning methods in
terms of other MLC performance measures in the form of average rank diagrams is given
in Figures A7 and A8 in the Appendix A. Figure A7 concerns the use of fine-tuned and
Figure A8 the use of pre-trained features.

4.4. Influence of the Number of Available Labeled Images

To answer the fourth question about the relation of the number of available images
and the performance of the different MLC models, we conducted additional experiments
focusing on the biggest dataset available—BigEarthNet. We design an experimental pro-
tocol which partitions the BigEarthNet dataset into distinctive subsets of images, namely,
fractions of: 0.1%, 0.5%, 1%, 5%, 10%, 25%, and 50% of 590,326 images, respectively. Each
of the fractions is further split into disjoint subsets of training, validation, and testing
images, with sizes 70%, 10%, and 20% of the fraction size, respectively. Moreover, the
test sets are built in a cumulative manner, which means the test subset of images from
the previous fractions are inherited into the test set of the next fraction. By doing this,
we are evaluating the effectiveness of the models on new subsets of images, while taking
the old ones into account, i.e., we simulate a scenario where we add new images. The
sampling of the fractions and the subsets within the fractions can be done in two different
ways: (i) sampling with stratification, and (ii) random sampling. Furthermore, we are also
assessing the generalization capability of the model when exposed to different distribution
shifts. To obtain a more reliable estimate of the predictive performance, we repeated the
experiment five times and calculated the average performance and standard deviation
(µ± σ) in terms of ranking loss.

Remote Sens. 2023, 15, 538 15 of 23

To carry out the experiment, we used the two versions of the BigEarthNet dataset,
namely, BigEarthNet with 19 and 43 CLC nomenclatures. We selected this dataset because
it is the largest one in terms of the number of images. For these experiments, we used
EfficientNet-B2 as network architecture, since it produced the best results overall in the
previous experiments. We fine-tuned the model parameters for 25 epochs and used the
trained model as a feature extractor for the tree ensembles, as well as an end-to-end
approach. We present the results in the form of learning curves in order to see how
the number of training examples influences the predictive performance. The results of
the experiment for the BigEarthNet-19 and BigEarthNet-43 are shown in Figure 9. We
can see that the performance of the learning methods in all cases improves of the total
number of training examples by up to 10%, after which it degrades. End-to-end learning
methods perform worse than tree ensemble methods in all cases in the learning curve,
but the differences in performance are only visible in the case of stratified sampling. The
differences are more expressed in the BigEarthNet-19 dataset (Figure 9). This means that the
different learning methods are affected differently by the choice of the sampling strategy.

0.1 0.5 1 5 10 25 50

Fraction in (%)

0.025

0.050

0.075

0.100

0.125

0.150

R
an

ki
n

g
lo

ss

Random sampling

0.1 0.5 1 5 10 25 50

Fraction in (%)

Stratified sampling

0.1 0.5 1 5 10 25 50

Fraction in (%)

R
an

ki
n

g
lo

ss

Random sampling

0.1 0.5 1 5 10 25 50

Fraction in (%)

Stratified sampling
Method

End-to-end

Random Forest

Extra Trees

BigEarthNet-19 BigEarthNet-43

Figure 9. Comparison between different learning methods in terms of ranking loss when evaluated
on different fractions of labeled examples from the BigEarthNet-19 and BigEarthNet-43 datasets,. The
results are shown as learning curves depicting µ± σ for ranking loss across five repeats. The y-axis is
shared across the figures.

5. Conclusions

In this study, we have presented a comparative analysis of methods for multi-label
classification of remote sensing imagery. We have compared several popular deep learning
methods based on two modes of operation, where they are (1) used as feature extractors in
a combination with tree ensemble methods such as random forests and extra trees, and (2)
used as end-to-end approaches to directly address the MLC task.

We focused on four aspects: (1) different transfer learning paradigms, namely, learn-
ing features based on ImageNet pre-training only, as well as learning features with fine-
tuning, where the whole network architecture and the model parameters are trained on
the new target domain of interest; (2) comparison between different network architectures;
(3) comparison between tree ensembles and end-to-end approaches; and (4) investigating
the influence of the number of labeled examples on the relative predictive performance
of MLC methods. In the first dimension, we showed that it is beneficial to fine-tune the
models on RSI to improve their performance. However, in certain cases, where the number
of data is limited, it is better to extract features with ImageNet pre-training and only fine-
tune the last layer for classification. Furthermore, we showed that it is very important to
choose a proper network architecture: EfficientNets proved to be overall the most suitable
choice for the task of MLC. They have significantly fewer parameters as compared to
the ResNet variants, and no statistically significant difference in predictive performance
is observed. We also showed that having the right feature extractor plays an important
role in boosting the performance of tree ensemble methods, so that they outperform the
end-to-end approaches in certain cases. In the last dimension, we investigated the influence
of the amount of labeled data from the BigEarthNet dataset on the relative performance of
MLC methods, where we applied two types of sampling strategies: random sampling and
sampling with stratification. We showed that in such a setting, the tree ensemble methods

Remote Sens. 2023, 15, 538 16 of 23

outperform the end-to-end approaches, with the difference in performance clearly visible
for stratified sampling.

Considering the findings from this study, further extension of this work should focus
on several aspects. Firstly, we will incorporate even a wider range of deep learning models
specially devised for the RS MLC task. Next, we will take into account different MLC loss
functions to analyze whether they are more suitable for the RS MLC task. Moreover, since
the label space of BigEarthNet dataset is organized in a hierarchical manner, we will further
analyze the effect of using the hierarchical information in the tree ensemble methods and
in the end-to-end approaches. Lastly, we will focus on the application of the methods in a
semi-supervised learning setting, where we will exploit the abundance of the unlabeled
data in RS domain and investigate if the semi-supervised counterparts can surpass the
performance of the supervised learning methods.

Author Contributions: Conceptualization, S.D.; methodology, M.S., D.K., and S.D.; software, M.S.;
validation, M.S. and D.K.; writing—original draft preparation, M.S.; writing—review and editing,
D.K. and S.D.; supervision, S.D. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge the support of the European Space Agency ESA through the activity
of the AiTLAS - AI4EO rapid prototyping environment. This work was also partially supported
by the Slovenian research agency through the knowledge technologies program P2-0103 and the
project J2-2505.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The AID Dataset in this study is openly and freely available at https:
//github.com/Hua-YS/AID-Multilabel-Dataset (accessed on 1 July 2022). The DFC-15 dataset
in this study is openly and freely available at https://drive.google.com/drive/folders/1TKGS6
TIRxQ6a7gdaj0cHs-mRCtv_J1HA (accessed on 1 July 2022). The MLRSNet dataset in this study
is openly and freely available at https://data.mendeley.com/datasets/7j9bv9vwsx/2 (accessed on
1 July 2022). UCM dataset in this study is openly and freely available at https://drive.google.
com/file/d/1DtKiauowCB0ykjFe8v0OVvT76rEfOk0v/view (accessed on 1 July 2022). The Ankara
dataset in this study is openly and freely available at https://bigearth.eu/datasets (accessed on 1
July 2022). The BigEarthNet-19 and BigEarthNet-43 in this study are openly and freely available at
https://bigearth.net/ (accessed on 1 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
RSI Remote Sensing Images
MLC Multi-Label-Classification
DNN Deep Neural Network
CNN Convolutional Neural Network
DL Deep Learning
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GCN Graph Convolutional Network
CLC Corine Land Cover
ReLU Rectified Linear Unit
RF Random Forest
ET Extra Trees

https://github.com/Hua-YS/AID-Multilabel-Dataset
https://github.com/Hua-YS/AID-Multilabel-Dataset
https://drive.google.com/drive/folders/1TKGS6TIRxQ6a7gdaj0cHs-mRCtv_J1HA
https://drive.google.com/drive/folders/1TKGS6TIRxQ6a7gdaj0cHs-mRCtv_J1HA
https://data.mendeley.com/datasets/7j9bv9vwsx/2
https://drive.google.com/file/d/1DtKiauowCB0ykjFe8v0OVvT76rEfOk0v/view
https://drive.google.com/file/d/1DtKiauowCB0ykjFe8v0OVvT76rEfOk0v/view
https://bigearth.eu/datasets
https://bigearth.net/

Remote Sens. 2023, 15, 538 17 of 23

Appendix A. Complete Results from the Experimental Evaluation

Table A1. The performance in terms of ranking loss measure of fine-tuning and pre-training feature
learning approaches with different network architectures and different MLC approaches. The best
performing network architecture for each dataset is highlighted with green.

V
G

G
-1

6

V
G

G
-1

9

R
es

N
et

-3
4

R
es

N
et

-5
0

R
es

N
et

-1
52

Ef
fic

ie
nt

N
et

-B
0

Ef
fic

ie
nt

N
et

-B
1

Ef
fic

ie
nt

N
et

-B
2

Approach Datasets Pre-Training

Ankara 0.298 0.371 0.343 0.351 0.350 0.349 0.330 0.422

End-to-end

UCM 0.186 0.180 0.154 0.149 0.135 0.194 0.185 0.184
AID 0.215 0.208 0.171 0.181 0.179 0.198 0.194 0.188
DFC-15 0.176 0.176 0.147 0.134 0.134 0.127 0.120 0.113
MLRSNet 0.347 0.360 0.306 0.240 0.229 0.318 0.300 0.326
BigEarthNet-19 0.557 0.550 0.461 0.399 0.391 0.460 0.476 0.478
BigEarthNet-43 0.578 0.546 0.480 0.431 0.410 0.468 0.481 0.480

Ankara 0.322 0.320 0.324 0.329 0.388 0.317 0.337 0.345

Random Forest

UCM 0.381 0.398 0.469 0.420 0.539 0.495 0.508 0.468
AID 0.250 0.244 0.265 0.247 0.294 0.268 0.257 0.262
DFC-15 0.297 0.337 0.235 0.201 0.342 0.259 0.222 0.242
MLRSNet 0.529 0.545 0.566 0.549 0.615 0.587 0.567 0.548
BigEarthNet-19 0.534 0.525 0.588 0.543 0.532 0.637 0.670 0.669
BigEarthNet-43 0.547 0.537 0.600 0.557 0.545 0.654 0.686 0.683

Ankara 0.318 0.312 0.331 0.325 0.370 0.328 0.320 0.330

Extra Trees

UCM 0.390 0.405 0.457 0.417 0.552 0.483 0.513 0.462
AID 0.254 0.250 0.255 0.253 0.305 0.265 0.250 0.256
DFC-15 0.297 0.338 0.235 0.204 0.351 0.235 0.218 0.229
MLRSNet 0.530 0.545 0.567 0.549 0.620 0.573 0.556 0.534
BigEarthNet-19 0.539 0.528 0.608 0.567 0.556 0.658 0.693 0.698
BigEarthNet-43 0.550 0.540 0.622 0.581 0.570 0.676 0.709 0.713

Fine-tuning
Ankara 0.294 0.285 0.377 0.356 0.360 0.335 0.353 0.322

End-to-end

UCM 0.224 0.508 0.101 0.097 0.112 0.088 0.096 0.081
AID 0.265 0.202 0.152 0.143 0.147 0.137 0.131 0.137
DFC-15 0.433 0.433 0.068 0.075 0.067 0.054 0.046 0.050
MLRSNet 0.180 0.223 0.093 0.091 0.088 0.082 0.084 0.084
BigEarthNet-19 0.276 0.282 0.235 0.236 0.210 0.207 0.203 0.202
BigEarthNet-43 0.271 0.276 0.243 0.232 0.199 0.206 0.195 0.194
Ankara 0.318 0.319 0.344 0.338 0.345 0.304 0.335 0.320

Random Forest

UCM 0.182 0.323 0.103 0.098 0.103 0.106 0.104 0.106
AID 0.245 0.197 0.146 0.144 0.149 0.138 0.138 0.137
DFC-15 0.433 0.433 0.050 0.047 0.050 0.046 0.041 0.044
MLRSNet 0.185 0.221 0.104 0.103 0.102 0.093 0.095 0.090
BigEarthNet-19 0.258 0.268 0.229 0.219 0.214 0.222 0.219 0.217
BigEarthNet-43 0.255 0.267 0.235 0.230 0.219 0.228 0.221 0.224

Ankara 0.364 0.348 0.342 0.322 0.362 0.313 0.343 0.321

Extra Trees

UCM 0.177 0.334 0.103 0.102 0.102 0.100 0.098 0.097
AID 0.248 0.194 0.144 0.146 0.146 0.135 0.134 0.136
DFC-15 0.433 0.433 0.049 0.050 0.046 0.046 0.041 0.043
MLRSNet 0.184 0.221 0.106 0.104 0.103 0.097 0.100 0.094
BigEarthNet-19 0.257 0.268 0.227 0.217 0.213 0.222 0.218 0.216
BigEarthNet-43 0.255 0.267 0.233 0.228 0.217 0.227 0.219 0.224

Remote Sens. 2023, 15, 538 18 of 23

1 2 3 4 5 6 7 8

EfficientNetB2@1.571
EfficientNetB1@2.429
EfficientNetB0@2.714
ResNet152@4.571

VGG19@6.714
VGG16@6.429
ResNet34@6.0
ResNet50@5.0

critical distance: 3.9685

(a) End-to-end: Micro-F1

1 2 3 4 5 6 7 8

EfficientNetB2@2.286
EfficientNetB1@3.143
EfficientNetB0@3.286
ResNet50@3.571

VGG19@7.0
VGG16@6.429

ResNet34@5.429
ResNet152@3.857

critical distance: 3.9685

(b) Random forest: Micro-F1

1 2 3 4 5 6 7 8

EfficientNetB2@2.571
EfficientNetB1@2.714
ResNet152@3.286
EfficientNetB0@3.286

VGG19@7.571
VGG16@7.143

ResNet34@5.143
ResNet50@3.571

critical distance: 3.9685

(c) Extra trees: Micro-F1

1 2 3 4 5 6 7 8

EfficientNetB2@2.143
EfficientNetB0@2.286
EfficientNetB1@3.0
ResNet152@4.714

VGG19@6.714
VGG16@6.429

ResNet34@5.429
ResNet50@4.857

critical distance: 3.9685

(d) End-to-end: Micro-recall

1 2 3 4 5 6 7 8

EfficientNetB2@2.429
EfficientNetB0@2.714
EfficientNetB1@3.143
ResNet50@3.857

VGG19@7.143
VGG16@6.571
ResNet34@5.0

ResNet152@3.857

critical distance: 3.9685

(e) Random forest: Micro-recall

1 2 3 4 5 6 7 8

EfficientNetB2@2.0
EfficientNetB0@2.714
EfficientNetB1@3.0
ResNet50@3.857

VGG19@7.143
VGG16@7.0

ResNet34@5.286
ResNet152@4.286

critical distance: 3.9685

(f) Extra trees: Micro-recall

1 2 3 4 5 6 7 8

EfficientNetB1@3.0
EfficientNetB2@3.143
ResNet152@3.286
ResNet50@3.571

VGG19@6.857
VGG16@6.286

ResNet34@4.857
EfficientNetB0@3.857

critical distance: 3.9685

(g) End-to-end: Micro-precision

1 2 3 4 5 6 7 8

ResNet152@2.0
ResNet50@2.286
EfficientNetB1@2.286
EfficientNetB2@3.429

VGG19@7.143
VGG16@7.0

EfficientNetB0@4.429
ResNet34@4.429

critical distance: 3.9685

(h) Random forest: Micro-precision

1 2 3 4 5 6 7 8

ResNet50@2.143
ResNet152@2.429
EfficientNetB1@2.714
EfficientNetB2@3.143

VGG19@7.714
VGG16@7.143

EfficientNetB0@4.714
ResNet34@4.286

critical distance: 3.9685

(i) Extra trees: Micro-precision

1 2 3 4 5 6 7 8

EfficientNetB2@2.143
EfficientNetB0@2.286
EfficientNetB1@2.714
ResNet152@4.143

VGG19@7.571
VGG16@7.286

ResNet50@4.714
ResNet34@4.571

critical distance: 3.9685

(j) End-to-end: Macro-F1

1 2 3 4 5 6 7 8

ResNet50@3.143
ResNet152@3.143
EfficientNetB1@3.571
EfficientNetB2@3.571

VGG16@7.0
VGG19@6.857

ResNet34@4.571
EfficientNetB0@3.857

critical distance: 3.9685

(k) Random forest: Macro-F1

1 2 3 4 5 6 7 8

EfficientNetB2@2.714
EfficientNetB1@3.0
ResNet50@3.143
ResNet152@3.857

VGG16@7.0
VGG19@6.857

ResNet34@4.714
EfficientNetB0@4.286

critical distance: 3.9685

(l) Extra trees: Macro-F1

1 2 3 4 5 6 7 8

EfficientNetB0@2.143
EfficientNetB2@2.571
EfficientNetB1@2.857
ResNet152@4.0

VGG19@7.429
VGG16@7.286

ResNet34@4.857
ResNet50@4.143

critical distance: 3.9685

(m) End-to-end: Macro-recall

1 2 3 4 5 6 7 8

EfficientNetB0@3.286
ResNet50@3.429
EfficientNetB2@3.429
ResNet152@3.571

VGG19@7.0
VGG16@6.571

ResNet34@4.571
EfficientNetB1@3.857

critical distance: 3.9685

(n) Random forest: Macro-recall

1 2 3 4 5 6 7 8

EfficientNetB2@2.857
ResNet50@3.0
ResNet152@3.714
EfficientNetB0@4.0

VGG19@6.857
VGG16@6.857

ResNet34@4.429
EfficientNetB1@4.0

critical distance: 3.9685

(o) Extra trees: Macro-recall

1 2 3 4 5 6 7 8

EfficientNetB1@2.0
EfficientNetB2@2.143
EfficientNetB0@3.0
ResNet50@4.143

VGG19@7.714
VGG16@7.286

ResNet34@5.143
ResNet152@4.143

critical distance: 3.9685

(p) End-to-end: Macro-precision

1 2 3 4 5 6 7 8

EfficientNetB1@2.429
EfficientNetB2@2.714
ResNet152@3.0
EfficientNetB0@3.143

VGG19@7.571
VGG16@7.0

ResNet34@5.143
ResNet50@4.143

critical distance: 3.9685

(q) Random forest: Macro-precision

1 2 3 4 5 6 7 8

EfficientNetB1@2.143
EfficientNetB2@2.143
ResNet152@3.0
ResNet50@3.143

VGG19@7.714
VGG16@7.143

ResNet34@4.714
EfficientNetB0@3.714

critical distance: 3.9685

(r) Extra trees: Macro-precision

Figure A1. Performance of different network architectures in terms of label-based evaluation mea-
sures for fine-tuned features. The results are presented in the form of average rank diagrams at
a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.

1 2 3 4 5 6 7 8

EfficientNetB2@1.571
EfficientNetB1@1.857
EfficientNetB0@2.714
ResNet152@4.143

VGG19@6.714
VGG16@6.429

ResNet34@5.714
ResNet50@4.571

critical distance: 3.9685

(a) End-to-end: Hamming loss

1 2 3 4 5 6 7 8

EfficientNetB1@2.143
EfficientNetB2@2.429
ResNet50@3.143
EfficientNetB0@3.143

VGG19@7.0
VGG16@6.571

ResNet34@5.286
ResNet152@3.857

critical distance: 3.9685

(b) Random forest: Hamming loss

1 2 3 4 5 6 7 8

EfficientNetB1@1.857
EfficientNetB2@2.286
ResNet50@3.143
ResNet152@3.143

VGG19@7.714
VGG16@7.143

ResNet34@4.714
EfficientNetB0@3.143

critical distance: 3.9685

(c) Extra trees: Hamming loss

1 2 3 4 5 6 7 8

EfficientNetB2@1.857
EfficientNetB1@2.857
EfficientNetB0@3.0
ResNet152@3.429

VGG19@7.286
VGG16@6.857

ResNet34@5.143
ResNet50@4.571

critical distance: 3.9685

(d) End-to-end: Subset Accuracy

1 2 3 4 5 6 7 8

EfficientNetB2@1.857
EfficientNetB1@2.857
ResNet152@3.0
EfficientNetB0@3.286

VGG19@7.286
VGG16@6.857

ResNet34@5.429
ResNet50@3.714

critical distance: 3.9685

(e) Random forest: Subset Accuracy

1 2 3 4 5 6 7 8

EfficientNetB2@2.286
ResNet152@2.714
EfficientNetB1@2.714
EfficientNetB0@3.714

VGG19@7.143
VGG16@6.857

ResNet34@4.714
ResNet50@4.286

critical distance: 3.9685

(f) Extra trees: Subset Accuracy

Figure A2. Performance of different network architectures in terms of example-based evaluation
measures for fine-tuned features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.

Remote Sens. 2023, 15, 538 19 of 23

1 2 3 4 5 6 7 8

EfficientNetB2@2.143
EfficientNetB0@2.714
EfficientNetB1@3.0
ResNet152@3.857

VGG16@7.286
VGG19@7.143

ResNet34@5.143
ResNet50@4.571

critical distance: 3.9685

(a) End-to-end: Coverage

1 2 3 4 5 6 7 8

EfficientNetB0@2.571
EfficientNetB2@2.571
EfficientNetB1@3.143
ResNet152@3.714

VGG19@7.0
VGG16@6.429
ResNet34@6.0

ResNet50@4.143

critical distance: 3.9685

(b) Random forest: Coverage

1 2 3 4 5 6 7 8

EfficientNetB1@2.571
EfficientNetB2@2.714
EfficientNetB0@3.286
ResNet152@3.714

VGG19@6.857
VGG16@6.286

ResNet34@5.714
ResNet50@4.714

critical distance: 3.9685

(c) Extra trees: Coverage

1 2 3 4 5 6 7 8

EfficientNetB1@2.286
EfficientNetB0@3.0
EfficientNetB2@3.0
ResNet152@3.429

VGG19@6.857
VGG16@6.286

ResNet34@5.143
ResNet50@4.143

critical distance: 3.9685

(d) End-to-end: Average Precision

1 2 3 4 5 6 7 8

EfficientNetB1@1.571
EfficientNetB2@2.714
ResNet50@3.286
ResNet152@3.286

VGG19@7.571
VGG16@6.571
ResNet34@5.0

EfficientNetB0@4.143

critical distance: 3.9685

(e) Random forest: Average Precision

1 2 3 4 5 6 7 8

EfficientNetB1@2.143
EfficientNetB2@2.429
ResNet152@2.714
ResNet50@3.286

VGG19@7.857
VGG16@7.0

ResNet34@4.857
EfficientNetB0@3.714

critical distance: 3.9685

(f) Extra trees: Average Precision

Figure A3. Performance of different network architectures in terms of ranking-based evaluation
measures for fine-tuned features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.

1 2 3 4 5 6 7 8

ResNet152@2.0
ResNet50@2.714
ResNet34@3.857
EfficientNetB1@4.286

VGG19@6.429
VGG16@6.143

EfficientNetB2@5.571
EfficientNetB0@4.714

critical distance: 3.9685

(a) End-to-end: Micro-F1

1 2 3 4 5 6 7 8

ResNet50@2.571
VGG19@2.714
VGG16@3.429
ResNet34@4.286

EfficientNetB1@6.143
EfficientNetB2@6.0

EfficientNetB0@5.429
ResNet152@5.0

critical distance: 3.9685

(b) Random forest: Micro-F1

1 2 3 4 5 6 7 8

VGG19@2.571
VGG16@3.0
ResNet50@3.143
ResNet34@5.0

EfficientNetB0@5.857
ResNet152@5.714

EfficientNetB2@5.286
EfficientNetB1@5.0

critical distance: 3.9685

(c) Extra trees: Micro-F1

1 2 3 4 5 6 7 8

ResNet152@2.143
ResNet50@3.143
ResNet34@4.0
EfficientNetB0@4.714

VGG19@5.857
EfficientNetB2@5.714

VGG16@5.571
EfficientNetB1@4.714

critical distance: 3.9685

(d) End-to-end: Micro-recall

1 2 3 4 5 6 7 8

VGG16@2.857
VGG19@2.857
ResNet50@3.0
ResNet34@4.143

EfficientNetB1@6.429
EfficientNetB2@5.571
EfficientNetB0@5.429

ResNet152@5.143

critical distance: 3.9685

(e) Random forest: Micro-recall

1 2 3 4 5 6 7 8

VGG19@2.571
VGG16@2.714
ResNet50@2.857
ResNet34@5.0

EfficientNetB2@5.714
ResNet152@5.714

EfficientNetB1@5.571
EfficientNetB0@5.571

critical distance: 3.9685

(f) Extra trees: Micro-recall

1 2 3 4 5 6 7 8

ResNet152@1.857
ResNet50@2.429
ResNet34@4.143
EfficientNetB0@4.714

VGG19@5.857
VGG16@5.714

EfficientNetB2@5.571
EfficientNetB1@5.429

critical distance: 3.9685

(g) End-to-end: Micro-precision

1 2 3 4 5 6 7 8

ResNet50@2.714
VGG16@3.429
VGG19@3.429
ResNet34@4.571

EfficientNetB2@5.857
EfficientNetB0@5.571
EfficientNetB1@5.143

ResNet152@5.143

critical distance: 3.9685

(h) Random forest: Micro-precision

1 2 3 4 5 6 7 8

ResNet50@2.857
VGG19@3.143
VGG16@3.571
ResNet34@4.857

EfficientNetB0@5.714
EfficientNetB2@5.286
EfficientNetB1@5.143

ResNet152@5.0

critical distance: 3.9685

(i) Extra trees: Micro-precision

1 2 3 4 5 6 7 8

ResNet152@2.286
ResNet50@3.286
EfficientNetB2@4.429
EfficientNetB0@4.571

VGG19@6.0
VGG16@5.857

ResNet34@4.857
EfficientNetB1@4.571

critical distance: 3.9685

(j) End-to-end: Macro-F1

1 2 3 4 5 6 7 8

VGG16@2.714
VGG19@2.857
ResNet50@3.0
ResNet34@4.857

EfficientNetB1@5.714
EfficientNetB2@5.571
EfficientNetB0@5.571

ResNet152@5.571

critical distance: 3.9685

(k) Random forest: Macro-F1

1 2 3 4 5 6 7 8

VGG19@2.286
VGG16@2.714
ResNet50@3.286
ResNet152@5.0

EfficientNetB0@6.143
EfficientNetB1@5.571
EfficientNetB2@5.429

ResNet34@5.143

critical distance: 3.9685

(l) Extra trees: Macro-F1

1 2 3 4 5 6 7 8

ResNet152@2.286
ResNet50@3.143
EfficientNetB1@4.429
EfficientNetB2@4.429

VGG19@5.857
VGG16@5.571

EfficientNetB0@5.143
ResNet34@5.143

critical distance: 3.9685

(m) End-to-end: Macro-recall

1 2 3 4 5 6 7 8

VGG16@2.714
VGG19@2.857
ResNet50@3.143
ResNet34@4.714

EfficientNetB1@5.857
ResNet152@5.714

EfficientNetB2@5.571
EfficientNetB0@5.286

critical distance: 3.9685

(n) Random forest: Macro-recall

1 2 3 4 5 6 7 8

VGG19@2.286
VGG16@3.143
ResNet50@3.143
ResNet34@5.0

EfficientNetB0@5.857
EfficientNetB1@5.714
EfficientNetB2@5.571

ResNet152@5.0

critical distance: 3.9685

(o) Extra trees: Macro-recall

1 2 3 4 5 6 7 8

ResNet152@1.571
ResNet50@3.0
ResNet34@4.714
EfficientNetB0@4.857

EfficientNetB2@6.143
EfficientNetB1@5.143

VGG19@5.143
VGG16@5.143

critical distance: 3.9685

(p) End-to-end: Macro-precision

1 2 3 4 5 6 7 8

ResNet50@2.571
VGG16@3.286
VGG19@3.286
ResNet34@4.286

EfficientNetB0@5.714
EfficientNetB1@5.571
EfficientNetB2@5.429

ResNet152@5.429

critical distance: 3.9685

(q) Random forest: Macro-precision

1 2 3 4 5 6 7 8

VGG19@2.857
ResNet50@3.143
VGG16@3.429
ResNet34@4.429

EfficientNetB1@5.857
ResNet152@5.571

EfficientNetB2@5.429
EfficientNetB0@5.286

critical distance: 3.9685

(r) Extra trees: Macro-precision

Figure A4. Performance of different network architectures in terms of label-based evaluation mea-
sures for pre-trained features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.

Remote Sens. 2023, 15, 538 20 of 23

1 2 3 4 5 6 7 8

ResNet152@1.857
ResNet50@2.429
ResNet34@3.714
EfficientNetB1@4.286

VGG19@6.286
VGG16@6.286

EfficientNetB2@4.429
EfficientNetB0@4.429

critical distance: 3.9685

(a) End-to-end: Hamming loss

1 2 3 4 5 6 7 8

ResNet50@2.143
VGG19@3.143
VGG16@3.286
ResNet34@4.286

EfficientNetB2@6.0
EfficientNetB0@5.429
EfficientNetB1@5.143

ResNet152@5.0

critical distance: 3.9685

(b) Random forest: Hamming loss

1 2 3 4 5 6 7 8

VGG19@2.714
ResNet50@2.714
VGG16@3.286
ResNet34@4.429

EfficientNetB0@5.857
EfficientNetB2@5.143
EfficientNetB1@5.143

ResNet152@5.143

critical distance: 3.9685

(c) Extra trees: Hamming loss

1 2 3 4 5 6 7 8

ResNet152@2.0
ResNet50@3.143
EfficientNetB0@3.429
EfficientNetB2@4.143

VGG16@6.714
VGG19@6.143

ResNet34@4.429
EfficientNetB1@4.286

critical distance: 3.9685

(d) End-to-end: Subset Accuracy

1 2 3 4 5 6 7 8

ResNet50@2.714
VGG16@3.0
VGG19@3.714
ResNet34@3.714

EfficientNetB0@6.286
EfficientNetB1@6.0

EfficientNetB2@5.286
ResNet152@3.857

critical distance: 3.9685

(e) Random forest: Subset Accuracy

1 2 3 4 5 6 7 8

VGG16@2.571
VGG19@2.714
ResNet50@3.286
ResNet34@4.0

EfficientNetB0@6.286
EfficientNetB1@6.0

EfficientNetB2@5.571
ResNet152@4.571

critical distance: 3.9685

(f) Extra trees: Subset Accuracy

Figure A5. Performance of different network architectures in terms of example-based evaluation
measures for pre-trained features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.

1 2 3 4 5 6 7 8

ResNet152@2.429
ResNet50@2.714
EfficientNetB1@3.857
ResNet34@4.0

VGG16@6.571
VGG19@6.286

EfficientNetB2@4.857
EfficientNetB0@4.714

critical distance: 3.9685

(a) End-to-end: Coverage

1 2 3 4 5 6 7 8

ResNet50@2.857
VGG16@3.429
VGG19@4.0
ResNet34@4.0

EfficientNetB1@6.0
EfficientNetB0@5.857
EfficientNetB2@5.286

ResNet152@4.0

critical distance: 3.9685

(b) Random forest: Coverage

1 2 3 4 5 6 7 8

VGG16@2.857
ResNet50@2.857
VGG19@3.143
ResNet34@4.429

EfficientNetB0@6.143
EfficientNetB1@6.0

EfficientNetB2@5.571
ResNet152@4.714

critical distance: 3.9685

(c) Extra trees: Coverage

1 2 3 4 5 6 7 8

ResNet152@1.571
ResNet50@2.286
ResNet34@4.143
EfficientNetB0@4.143

VGG19@6.714
VGG16@6.429

EfficientNetB2@4.857
EfficientNetB1@4.714

critical distance: 3.9685

(d) End-to-end: Average Precision

1 2 3 4 5 6 7 8

ResNet50@2.571
VGG19@3.571
VGG16@3.714
ResNet34@4.429

EfficientNetB2@5.571
EfficientNetB1@5.429
EfficientNetB0@5.286

ResNet152@5.0

critical distance: 3.9685

(e) Random forest: Average Precision

1 2 3 4 5 6 7 8

ResNet50@2.857
VGG19@3.286
VGG16@3.714
ResNet34@4.571

EfficientNetB1@5.571
EfficientNetB0@5.571
EfficientNetB2@5.143

ResNet152@5.143

critical distance: 3.9685

(f) Extra trees: Average Precision

Figure A6. Performance of different network architectures in terms of ranking-based evaluation
measures for pre-trained features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.

1 2 3

End-to-end@1.857 Random Forest@2.143
Extra Trees@2.0

critical distance: 1.2529

(a) Micro F1

1 2 3

Extra Trees@1.571 Random Forest@2.143
End-to-end@1.857

critical distance: 1.2529

(b) Micro Precision

1 2 3

End-to-end@1.286 Extra Trees@2.0
Random Forest@2.0

critical distance: 1.2529

(c) Micro Recall

1 2 3

End-to-end@1.429 Random Forest@2.571
Extra Trees@1.857

critical distance: 1.2529

(d) Macro F1

1 2 3

End-to-end@1.286 Random Forest@2.571
Extra Trees@2.0

critical distance: 1.2529

(e) Macro Recall

1 2 3

Extra Trees@1.571 Random Forest@2.571
End-to-end@1.714

critical distance: 1.2529

(f) Macro Precision

1 2 3

Random Forest@1.286 End-to-end@1.857
Extra Trees@1.286

critical distance: 1.2529

(g) Hamming loss

1 2 3

Random Forest@1.571 End-to-end@2.429
Extra Trees@1.714

critical distance: 1.2529

(h) Subset Accuracy

1 2 3

End-to-end@1.286 Extra Trees@2.571
Random Forest@2.143

critical distance: 1.2529

(i) Coverage

1 2 3

End-to-end@1.571 Random Forest@2.143
Extra Trees@1.714

critical distance: 1.2529

(j) Average Precision

Figure A7. Performance of different learning methods in terms of all MLC evaluation measures
for fine-tuned features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.

Remote Sens. 2023, 15, 538 21 of 23

1 2 3

End-to-end@1.286 Random Forest@2.429
Extra Trees@2.286

critical distance: 1.2529

(a) Micro F1

1 2 3

End-to-end@1.286 Random Forest@2.429
Extra Trees@2.286

critical distance: 1.2529

(b) Micro Precision

1 2 3

End-to-end@1.286 Random Forest@2.429
Extra Trees@2.286

critical distance: 1.2529

(c) Micro Recall

1 2 3

End-to-end@1.286 Extra Trees@2.429
Random Forest@2.286

critical distance: 1.2529

(d) Macro F1

1 2 3

End-to-end@1.0 Extra Trees@2.571
Random Forest@2.429

critical distance: 1.2529

(e) Macro Recall

1 2 3

End-to-end@1.286 Random Forest@2.571
Extra Trees@2.143

critical distance: 1.2529

(f) Macro Precision

1 2 3

End-to-end@1.286 Random Forest@2.429
Extra Trees@2.286

critical distance: 1.2529

(g) Hamming loss

1 2 3

End-to-end@1.286 Extra Trees@2.286
Random Forest@2.286

critical distance: 1.2529

(h) Subset Accuracy

1 2 3

End-to-end@1.286 Extra Trees@2.286
Random Forest@2.286

critical distance: 1.2529

(i) Coverage

1 2 3

End-to-end@1.286 Extra Trees@2.286
Random Forest@2.286

critical distance: 1.2529

(j) Average Precision

Figure A8. Performance of different learning methods in terms of all MLC evaluation measures
for pre-trained features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.

References
1. Ibrahim, S.K.; Ziedan, I.E.; Ahmed, A. Study of Climate Change Detection in North-East Africa Using Machine Learning and

Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11080–11094. [CrossRef]
2. Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2022,

60, 1–14. [CrossRef]
3. Ortega Adarme, M.; Queiroz Feitosa, R.; Nigri Happ, P.; Aparecido De Almeida, C.; Rodrigues Gomes, A. Evaluation of Deep

Learning Techniques for Deforestation Detection in the Brazilian Amazon and Cerrado Biomes From Remote Sensing Imagery.
Remote Sens. 2020, 12. [CrossRef]

4. Park, M.; Tran, D.Q.; Jung, D.; Park, S. Wildfire-Detection Method Using DenseNet and CycleGAN Data Augmentation-Based
Remote Camera Imagery. Remote Sens. 2020, 12, 910. [CrossRef]

5. Zhang, Q.; Ge, L.; Zhang, R.; Metternicht, G.I.; Liu, C.; Du, Z. Towards a Deep-Learning-Based Framework of Sentinel-2 Imagery
for Automated Active Fire Detection. Remote Sens. 2021, 13, 4790. [CrossRef]

6. Papoutsis, I.; Bountos, N.I.; Zavras, A.; Michail, D.; Tryfonopoulos, C. Benchmarking and scaling of deep learning models for
land cover image classification. ISPRS J. Photogramm. Remote Sens. 2023, 195, 250–268. [CrossRef]

7. Yansheng, L.; Ruixian, C.; Yongjun, Z.; Mi, Z.; Ling, C. Multi-Label Remote Sensing Image Scene Classification by Combining a
Convolutional Neural Network and a Graph Neural Network. Remote Sens. 2020, 12, 4003.

8. Bogatinovski, J.; Todorovski, L.; Džeroski, S.; Kocev, D. Comprehensive comparative study of multi-label classification methods.
Expert Syst. Appl. 2022, 203, 117215. [CrossRef]

9. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16× 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations (ICLR), virtual, 3–7 May 2021.

10. Deng, J.; Dong, W.; Socher, R.; Li, L.; Kai, L.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255.

11. Dimitrovski, I.; Kitanovski, I.; Kocev, D.; Simidjievski, N. Current Trends in Deep Learning for Earth Observation: An Open-source
Benchmark Arena for Image Classification. arXiv 2022, arXiv:2207.07189.

12. Pires de Lima, R.; Marfurt, K. Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning
Analysis. Remote Sens. 2020, 12, 86. [CrossRef]

http://doi.org/10.1109/JSTARS.2021.3120987
http://dx.doi.org/10.1109/TGRS.2021.3095166
http://dx.doi.org/10.3390/rs12060910
http://dx.doi.org/10.3390/rs12223715
http://dx.doi.org/10.3390/rs13234790
http://dx.doi.org/10.1016/j.isprsjprs.2022.11.012
http://dx.doi.org/10.1016/j.eswa.2022.117215
http://dx.doi.org/10.3390/rs12010086

Remote Sens. 2023, 15, 538 22 of 23

13. Khaleghian, S.; Ullah, H.; Kræmer, T.; Hughes, N.; Eltoft, T.; Marinoni, A. Sea Ice Classification of SAR Imagery Based on
Convolution Neural Networks. Remote Sens. 2021, 13, 1734. [CrossRef]

14. Wang, A.X.; Tran, C.; Desai, N.; Lobell, D.; Ermon, S. Deep Transfer Learning for Crop Yield Prediction with Remote Sensing
Data. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, San Jose, CA, USA, 20–22
June 2018; Association for Computing Machinery: New York, NY, USA, 2018; COMPASS’18.

15. Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; Xu, W. CNN-RNN: A Unified Framework for Multi-label Image Classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2285–2294.

16. Chen, Z.; Wei, X.; Wang, P.; Guo, Y. Multi-Label Image Recognition with Graph Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5172–5181.

17. Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image
Understanding. IEEE Int. Geosci. Remote Sens. Symp. 2019, 12, 5901–5904.

18. Yessou, H.; Sumbul, G.; Demir, B. A Comparative Study of Deep Learning Loss Functions for Multi-Label Remote Sensing Image
Classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI,
USA, 26 September–2 October 2020;

19. Sumbul, G.; Kang, J.; Demir, B. Deep Learning for Image Search and Retrieval in Large Remote Sensing Archives. arXiv 2020,
arXiv:2004.01613.

20. Hua, Y.; Mou, L.; Zhu, X. Relation Network for Multi-label Aerial Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 58,
4558–4572. [CrossRef]

21. Sumbul, G.; Demİr, B. A Deep Multi-Attention Driven Approach for Multi-Label Remote Sensing Image Classification. IEEE
Access 2020, 8, 95934–95946. [CrossRef]

22. Wang, X.; Duan, L.; Ning, C. Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image
Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11179–11196. [CrossRef]

23. Karen, S.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

24. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.;
Volume 97, pp. 6105–6114.

26. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th ACM
SIGSPATIAL International Symposium on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November
2010; pp. 270–279.

27. Chaudhuri, B.; Demir, B.; Chaudhuri, S.; Bruzzone, L. "Multilabel Remote Sensing Image Retrieval Using a Semisupervised
Graph-Theoretic Method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1144–1158. [CrossRef]

28. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Lu, X.; Zhang, L. AID: A Benchmark Data Set for Performance Evaluation of
Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]

29. Ömrüuzun, F.; Demir, B.; L. Bruzzone, L.; Çetin, Y. Content based hyperspectral image retrieval using bag of endmembers image
descriptors. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–4.

30. Hua, Y.; Mou, L.; Zhu, X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network
for multi-label aerial image classification. ISPRS J. Photogramm. Remote Sens. 2019, 149, 188–199. [CrossRef]

31. Qi, Q.X.; Panpan, Z.; Yuebin, W.; Liqiang, Z.; Junhuan, P.; Mengfan, W.; Jialong, C.; Xudong, Z.; Ning, Z.; P.M.Takis. MLRSNet: A
multi-label high spatial resolution remote sensing dataset for semantic scene understanding. ISPRS J. Photogramm. Remote Sens.
2020, 169, 337–350. [CrossRef]

32. Sumbul, G.; d. Wall, A.; Kreuziger, T.; Marcelino, F.; Costa, H.; Benevides, P.; Caetano, M.; Demir, B.; Markl, V. BigEarthNet-MM:
A Large Scale Multi-Modal Multi-Label Benchmark Archive for Remote Sensing Image Classification and Retrieval. IEEE Geosci.
Remote Sens. Mag. 2021, 9, 174–180. [CrossRef]

33. Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Tree ensembles for predicting structured outputs. Pattern Recognit. 2013, 46, 817–833.
[CrossRef]

34. Kocev, D.; Ceci, M.; Stepisnik, T. Ensembles of extremely randomized predictive clustering trees for predicting structured outputs.
Mach. Learn. 2020, 109, 2213–2241. [CrossRef]

35. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image
Augmentations. Information 2020, 11, 125. [CrossRef]

36. Xiao, Q.; Liu, B.; Li, Z.; Ni, W.; Yang, Z.; Li, L. Progressive Data Augmentation Method for Remote Sensing Ship Image
Classification Based on Imaging Simulation System and Neural Style Transfer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 9176–9186. [CrossRef]

http://dx.doi.org/10.3390/rs13091734
http://dx.doi.org/10.1109/TGRS.2019.2963364
http://dx.doi.org/10.1109/ACCESS.2020.2995805
http://dx.doi.org/10.1109/JSTARS.2021.3122464
http://dx.doi.org/10.1109/TGRS.2017.2760909
http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.1016/j.isprsjprs.2019.01.015
http://dx.doi.org/10.1016/j.isprsjprs.2020.09.020
http://dx.doi.org/10.1109/MGRS.2021.3089174
http://dx.doi.org/10.1016/j.patcog.2012.09.023
http://dx.doi.org/10.1007/s10994-020-05894-4
http://dx.doi.org/10.3390/info11020125
http://dx.doi.org/10.1109/JSTARS.2021.3109600

Remote Sens. 2023, 15, 538 23 of 23

37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

38. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Materials and Methods
	Datasets
	UC Merced Land Use
	AID Multilabel
	Ankara HIS Archive
	DFC-15 Multilabel
	MLRSNet
	The BigEarthNet Archive

	Overview of the Learning Methods for Multi-Label Classification
	Deep Learning Methods
	Tree Ensemble Methods

	Experimental Design
	Experimental Setup
	End-to-End Learning Approaches
	CNNs as Feature Extractors and Tree Ensembles

	Evaluation Strategy
	Evaluation Measures and Statistical Analysis
	Implementation Details

	Results and Discussion
	The Influence of the Learning Strategy
	Comparison of Different Network Architectures
	Comparison of Different Learning Approaches
	Influence of the Number of Available Labeled Images

	Conclusions
	Appendix A
	References

