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Abstract: The definition of strategies for forest restoration projects depends on information of the
successional stage of the area to be restored. Usually, classification of the successional stage is
carried out in the field using forest inventory campaigns. However, these campaigns are costly,
time-consuming, and limited in terms of spatial coverage. Currently, forest inventories are being
improved using 3D data obtained from remote sensing. The objective of this work was to estimate
several parameters of interest for the classification of the successional stages of secondary vegetation
areas using 3D digital aerial photogrammetry (DAP) data obtained from unmanned aerial vehicles
(UAVs). A cost analysis was also carried out considering the costs of equipment and data collection,
processing, and analysis. The study was carried out in southeastern Brazil in areas covered by
secondary Atlantic Forest. Regression models were fit to estimate total height (h), diameter at breast
height (dbh), and basal area (ba) of trees in 40 field inventory plots (0.09 ha each). The models were
fit using traditional metrics based on heights derived from DAP and a portable laser scanner (PLS).
The prediction models based on DAP data yielded a performance similar to models fit with LiDAR,
with values of R2 ranging from 88.3% to 94.0% and RMSE between 11.1% and 28.5%. Successional
stage maps produced by DAP were compatible with the successional classes estimated in the 40 field
plots. The results show that UAV photogrammetry metrics can be used to estimate h, dbh, and ba of
secondary vegetation with an accuracy similar to that obtained from LiDAR. In addition to presenting
the lowest cost, the estimates derived from DAP allowed for the classification of successional stages
in the analyzed secondary forest areas.

Keywords: enhanced forest inventory; DAP; LiDAR SLAM; cost analysis; classification; atlantic forest

1. Introduction

In different regions of the planet, the extreme effects of climate change (e.g., high
air temperature, floods, long periods of drought, forest fires, and so on) are increasingly
present. As a result of these effects, researchers from different areas have expressed
concerns about current and future climate conditions and their possible impacts on the
maintenance and conservation of life on Earth. The current model of economic and social
development adopted by large nations has been criticized as the main culprit of climate
change. This unsustainable model has caused considerable changes to the ecological balance
and biodiversity of the planet due to significant deforestation and forest degradation in
various ecosystems [1–6].
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As such, methods of estimating deforestation and vegetation degradation are increas-
ingly needed at different spatial scales, with low cost and short time intervals [7]. To ensure
that the ecosystem is ecologically balanced, it is necessary to know the characteristics of
each type of environment in order to identify strategies to maintain, preserve, or recover
healthy conditions. One of the most efficient ways to identify the successional stages of
a given forest is by quantifying what exists in the vegetation of interest, which can be
achieved by carrying out forest inventories. Research has indicated that accurate forest
inventories increase the reliability of decision-making in forest management [8–10].

For sustainable management, it is necessary to obtain accurate information on the
composition and structure of forests. Forest inventories become essential in providing this
information. However, in order to obtain a high level of confidence in the information
collected, it is necessary to measure the population under study in a representative way.
However, with current methods, the more representative the sample is, the higher the
costs are to obtain it. This paradox between cost and precision is one of the great research
dilemmas for traditional forest inventories (TFIs). Traditional methods imply the use of
fixed area plots, in which the diameter and total height of all trees within the plot are
measured, in the case of natural forests, which also requires the identification of species
and, in some situations, the measurement of other variables of interest [11,12].

Comparatively, TFIs are much more costly in native forests than in planted forests due
to difficulties with accessibility, allocation of plots, movement within the forest, and the
greater number of variables to consider. In addition, these TFIs require a greater amount of
human resources and have many operational risks as well as limited spatial coverage. Thus,
current demands for information exceed the scope of many methods of TFIs, especially in
natural forest formations [13,14].

Remote sensing techniques offer an effective and less costly alternative to the quantifi-
cation of forest parameters [15]. In this context, three-dimensional vegetation formations
collected by light detection and ranging (LiDAR) and digital aerial photogrammetry (DAP)
using unmanned aerial vehicles (UAVs) have been successfully used to improve traditional
inventories [10]. Despite the ability of the LiDAR data to represent the vertical structure
of the vegetation and the terrain where it is located, its cost can still be considered high,
especially in developing countries. In contrast, the information obtained via DAP-UAVs
generally presents a lower cost and may therefore be a viable alternative. Although the
difficulty of DAP in representing understory and land under the forest can be consid-
ered a limitation, multiple studies have demonstrated its solid performance in estimating
characteristics of forest interest [16].

Identifying and understanding the ecological relationships within the different suc-
cessional stages is fundamental for the maintenance of those ecological values that still
exist as well as for the identification of strategies to recover degraded areas. In general,
methods for classifying forest ecological succession are based on aspects of vegetation
organization [17,18], with emphasis on abundance (i.e., horizontal structure), size (i.e.,
vertical structure), and composition (i.e., species diversity). To ensure sustainable forest
management, successional stage classification must cover large areas with vegetation. How-
ever, classification methods are normally based on field data collected in forest inventory
campaigns. While these field-based classifications are accurate, they are also spatially
limited and representative only of inventoried plots [19].

Succession is a three-dimensional process, and some types of remote sensing data (i.e.,
LiDAR, SAR, and DAP) are sensitive to the three-dimensional structure of the vegetation
canopy and can therefore provide accurate estimates of vegetation structure (mainly verti-
cal) [20,21]. Thus, unlike methods based on field data, this makes it possible to classify the
successional stage of large areas of forest. Nonetheless, studies that use DAP-UAV data
to classify the successional stages of different types of forest formations around the world
remain rare.

The Atlantic Forest biome possesses great importance due to its high biodiversity
and size. It is currently considered one of the richest ecosystems on the planet in terms
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of biological diversity. The biome is a hotspot, but it continues to suffer from numerous
anthropic pressures. Its vegetation cover reached 28%, in which the remainder is distributed
in fragments of up to 50 hectares [22,23]. Because it is an ecosystem composed of native
forest settlements, the need for detailed, accurate forest inventories within the shortest
possible time spaces are essential for good management of this natural resource.

Based on the above points, this study evaluated the potential of low-cost 3D DAP-UAV
point cloud data to classify the successional stage of different areas of a tropical secondary
Atlantic Forest in Brazil.

2. Materials and Methods
2.1. Study Area

The study was carried out in eight areas in the Atlantic Forest biome, located in the
north of the state of Espírito Santo, Brazil (Figure 1). According to the Köppen–Geiger
classification, the region has a predominantly “Aw” climate, meaning that it is rainy and
tropical with a dry season in winter. It has an average annual temperature of 23.6 ◦C and
average annual precipitation of 1.290 mm. Geographically, the area is predominantly flat
relief (80%), with a lower proportion of bumpy relief (19%) and an average altitude of 55 m.
The soil of the region is classified as dystrophic yellow argisol [24–26]. The eight areas
studied comprised approximately 201 ha.
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2.2. Methods

To evaluate the use of DAP-UAV as a tool for forest inventories to classify Atlantic
Forest succession stages and to compare it with LiDAR PLS in terms of accuracy and
costs, structured steps were followed (see Figure 2). To begin (step 1), the criteria for
the classification of succession stages were defined based on the national council for the
environment (CONAMA) resolution 29/94 (http://conama.mma.gov.br) [27]. In step 2, a
field inventory was carried out using the traditional method seeking to cover the greatest

http://conama.mma.gov.br
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possible vegetation variation. Thus, height (h), diameter at 1.30 m from soil level (dbh),
and basal area (ba) were measured in 40 fixed area plots of 0.09 ha that ranged from clean
pasture to the advanced stage of succession. Later (step 3), 3D point clouds were generated
via DAP-UAV and LiDAR PLS in the same plots. In step 4, regression models were adjusted
and validated to estimate the values of h, mean dbh, and ba from the traditional metrics
based on the heights of the DAP and LiDAR point cloud. The accuracy of the two methods
was compared using the RMSE and R2 of the models. In step 5, maps of vegetation
successional stage were generated with a spatial resolution of 30 m through application
of the models obtained for DAP-UAV and the pre-established intervals of h, mean dbh,
and ba, as per CONAMA resolution 29/94 [27]. Finally (step 6), a comparison was made
of inventory costs using the traditional method and the method using LiDAR PLS and
DAP-UAV.

Remote Sens. 2022, 14, x FOR PEER REVIEW3 of 30 
 

2.2. Methods 
To evaluate the use of DAP-UAV as a tool for forest inventories to classify Atlantic 

Forest succession stages and to compare it with LiDAR PLS in terms of accuracy and costs, 
structured steps were followed (see Figure 2). To begin (step 1), the criteria for the classi-
fication of succession stages were defined based on the national council for the environ-
ment (CONAMA) resolution 29/94 (http://conama.mma.gov.br) [27]. In step 2, a field in-
ventory was carried out using the traditional method seeking to cover the greatest possi-
ble vegetation variation. Thus, height (h), diameter at 1.30 meters from soil level (dbh), and 
basal area (ba) were measured in 40 fixed area plots of 0.09 ha that ranged from clean 
pasture to the advanced stage of succession. Later (step 3), 3D point clouds were generated 
via DAP-UAV and LiDAR PLS in the same plots. In step 4, regression models were ad-
justed and validated to estimate the values of h, mean dbh, and ba from the traditional 
metrics based on the heights of the DAP and LiDAR point cloud. The accuracy of the two 
methods was compared using the RMSE and R² of the models. In step 5, maps of vegeta-
tion successional stage were generated with a spatial resolution of 30 m through applica-
tion of the models obtained for DAP-UAV and the pre-established intervals of h, mean 
dbh, and ba, as per CONAMA resolution 29/94 [27]. Finally (step 6), a comparison was 
made of inventory costs using the traditional method and the method using LiDAR PLS 
and DAP-UAV. 

 
Figure 2. Flow of structured steps to perform the work. 

2.2.1. Traditional Forest Inventory 
Data from the traditional forest inventory method were collected in two campaigns, 

the first between 25 July and 30 July 2021, and the second between 13 September and 25 
September 2021. Forty permanent quadrangular plots (30 × 30 m) were randomly allo-
cated, with a total area of 3.6 ha (Figure 1). The area of the plots (0.09 ha) sought to reduce 
possible effects of clearings and very large trees in the extrapolation of data. The plots 
were located primarily in places with flat relief and respected (when possible) a minimum 
distance of 25 meters from the edges of the vegetation and of at least 50 meters between 
plots. The plots were oriented towards magnetic north by using a compass, and their ver-
tices were marked with piles with the aid of surveyor and tape measure squares and were 
georeferenced with precision RTK using the SIRGAS 2000 UTM 24 S Reference Coordinate 
System (SRC). Average RMSE values at x and y coordinates were 0.34 m.  

Figure 2. Flow of structured steps to perform the work.

2.2.1. Traditional Forest Inventory

Data from the traditional forest inventory method were collected in two campaigns,
the first between 25 July and 30 July 2021, and the second between 13 September and 25
September 2021. Forty permanent quadrangular plots (30 × 30 m) were randomly allocated,
with a total area of 3.6 ha (Figure 1). The area of the plots (0.09 ha) sought to reduce possible
effects of clearings and very large trees in the extrapolation of data. The plots were located
primarily in places with flat relief and respected (when possible) a minimum distance of
25 m from the edges of the vegetation and of at least 50 m between plots. The plots were
oriented towards magnetic north by using a compass, and their vertices were marked
with piles with the aid of surveyor and tape measure squares and were georeferenced
with precision RTK using the SIRGAS 2000 UTM 24 S Reference Coordinate System (SRC).
Average RMSE values at x and y coordinates were 0.34 m.

Data collections were always initiated by vertex A, which was always southwest (SW).
The other vertices (B, C, and D) were marked clockwise and followed alphabetical order.
All adult arboreal individuals with living stems and dbh greater than or equal to 5 cm were
measured at 1.30 m from the ground, with the bases of their trunks completely within the
limit of the plot. Every tree measured was identified via sequential numbering within the
plot. Trees with more than one stem out below 1.30 m were considered multi-stem and
had all spleens with the minimum inclusion diameter measured and identified using the
same number followed by an alphabetic differentiator (e.g., 1a, 1b, 1c. . . 1n). The h of the
trees, corresponding to the length between the base of the trunk and the apex of the canopy,
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was measured with the aid of a graduated ruler of 15 m. For the measurement of trees
in which the height exceeded the limit of the ruler, the Suunto PM-5/360PC Clinometer
(https://www.suunto.com, accessed on 27 October 2022) [28] was used. This instrument
is based on trigonometric principles, so it is essential to know the distance between the
observer and the tree so that the readings (lower and upper) are correct. In addition, it is
necessary to consider the topography of the site [29]. In this case, the distance between the
observer and the trees varied according to the specificity of each individual tree, with the
aim of finding the best position to measure each tree. Equation (1) was used to obtain the
total tree heights.

ht = L(tgα ± tgβ) (1)

Here, h is the total height; α and β are the lower and upper angles, respectively; and L
is the distance between the observer and the tree.

2.2.2. Classification of the Successional Stage

Initially, the study areas were chosen from pre-existing maps provided by the company
that owns the areas. These maps used six vegetation classes that were characterized
based on visual criteria. These classes are presented in Table 1 and were used to facilitate
the distribution of TFI plots in order to cover the greatest possible vegetation variation.
Therefore, five plots were used in each of these classes by the company that owns the area.

Table 1. Classes of vegetation used for the distribution of plots and number of plots sampled.

Vegetation Class Number of Plots

Clean Pasture (CP) 5
Sparse Dirty Pasture (SDP) 5
Dense Dirty Pasture (DDP) 5
Dense Dirty Pasture Infested with Exotics (DDPE) 5
Initial Stage Secondary Vegetation Infested with Exotics (ISVE) 5
Initial Stage Secondary Vegetation (ISV) 5
Medium-Stage Secondary Vegetation (MSV) 5
Advanced Stage Secondary Vegetation (ASV) 5
TOTAL 40

After the TFI, the plots were reclassified according to the criteria defined in CONAMA
resolution 29/94 [27] (Table 2). For a plot to be classified as belonging to a given stage, it
was established that it must present at least two parameters framed in the stage in question.
It is important to note that the criteria established by CONAMA [27] have overlap bands
between the stages, with the possibility of the same area falling into two stages. In this case,
the area in question is considered in transition between the initial and middle stages or the
middle and advanced stages.

Table 2. Criteria for classification of succession stages of the studied areas.

Class Physiognomy Average Height (m) Mean dbh (cm) Basal Area (m2/ha)

Initial stage Herbaceous/low-sized shrub 1 to 7 1 to 13 2.1 to 10

Medium stage Arboreal and/or shrubby prevailing
over herbaceous 5.1 to 13 10 to 20 10.1 to 18

Advanced stage
Dominant arboreal over the other ones,
forming a relatively uniform closed
canopy in size

>10 >18 >18

Source: CONAMA resolution [27].

https://www.suunto.com
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2.2.3. Digital Aerial Photogrammetry (DAP)
UAV Photos

High-resolution spatial images were obtained by a DJI Mavic 2 PRO multirotor plat-
form (SZ DJI Technology Co., Ltd., Shenzhen, China) between 21 September and 30 Septem-
ber 2021. The aircraft was equipped with an RGB camera with a 20-megapixel CMOS
sensor and resolution of 5472 × 3648. The camera was installed in a gimbal to reduce
possible mechanical vibrations at the time of taking the photos. The weather conditions
included clear sky (<5% clouds) and wind speed of less than 10 m s−1 [30]. The flights were
performed at a height of 120 m, respecting ICA 100–40 (https://publicacoes.decea.gov.br,
accessed on 2 August 2022) [31] and used the visual line of sight (VLOS) method with
longitudinal overlap of 75% and lateral overlap of 65%. The photos [32] were saved in .jpg
format on a SanDisk 128GB Extreme microSDXC memory card. Approximately 201 ha were
mapped with eight flights. The average time of each flight was approximately 10 min [33].

Structure from Motion Processing

The images obtained by UAV were processed using Agisoft Metashape software
(http://www.foif.com) [34], which uses structure from motion (SfM) algorithms to perform
image alignment and 3D point cloud generation. For the alignment of the photos and
acquisition of the sparse cloud, the “high” precision and key point and mooring limits
parameters of 40,000 and 10,000 points, respectively, were used. In the process of aligning
the photos, ground control points (GCPs) were used. The GCPs were distributed within the
flyover areas, with at least four GCPs per survey (Figure 1). The coordinates of the GCPs
were collected using RTK with sub-metric precision using the SRC SIRGAS 2000 UTM 24 S.
At the end of the alignment, the mean of the RMSE for the eight surveys was 0.55 m in X
and Y and 0.95 m in Z. In the creation of the dense cloud of points, the parameters were
defined as quality and “aggressive” depth filtering mode. The average ground sample
distance (GSD) for the eight surveys was approximately 2.5 cm per pixel.

2.2.4. Light Detection and Ranging (LiDAR)
Data Collection

The plots were scanted using the LiDAR PLS GeoSLam ZEB-HORIZON 3D sensor,
model GS_510254 (https://geoslam.com, accessed on 7 August 2022) [35], between 21
September and 29 September 2021. The five plots of the pasture class were not mapped
due to the lack of trees. The weather conditions included clear sky (< 5% clouds) and wind
speed of less than 10 m s−1. The ZEB-HORIZON is a 6.96 kg portable laser scanner (PLS)
LiDAR model and consists of a 2D laser scanner with a wavelength of 903 nm. It features a
motorized inertial measurement unit (IMU). The laser acquisition speed is 300,000 points
per second, with a range of approximately 100 m around the equipment [35]. It has 16
sensors; a 270◦ × 360◦ field of view; vertical and horizontal angular vision of 2◦ and 0.38◦,
respectively; and relative accuracy up to ± 6 mm, depending on the environment. The
geolocation of the clouds was subsequently adjusted in the GEOSLAM HUB software using
the vertices’ stakes as a physical reference [36].

The scan was performed by an operator who held the equipment with his hands at
a height of approximately 1.40 m from the ground while walking slowly (approximately
25 cm per second) throughout the interior in a zigzag, starting and ending at the “A” vertex
of each plot (Figure 3). The mean scan time of each plot was approximately 5 min.

Pre-Elaboration of Point Clouds

The 3D point cloud was obtained from the raw data collected in the field and the
GeoSLAM server. The application uses a [35] system based on Simultaneous Localization
and Mapping (SLAM), which combines 2D laser scan data with IMU data to generate
accurate 3D point clouds. Finally, 3D point clouds were produced for each of the plots,
with an average density of approximately 800 points per square meter. The vertices of
the inventory plots were used as GCPs to georeference the LiDAR point clouds. The

https://publicacoes.decea.gov.br
http://www.foif.com
https://geoslam.com


Remote Sens. 2023, 15, 509 7 of 29

coordinates of the four vertices of the inventory plots were collected with RTK, in UTM,
SIRGAS 2000, 24 S.
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2.2.5. Digital Terrain Model (DTM)

To obtain the digital terrain model (DTM), the 3D cloud points were first distinguished
as ground points or not. The algorithm used for the classification of ground points was the
“progressive morphological filter”, available in the LidR package [37] of the R software [38].
After the classification of the ground points, filtering was performed that kept only the
soil points. Finally, the DTM was constructed from interpolation of the ground points by
the inverse distance weighting (IDW) method, which is based on the assumption that the
altitude value of an unsampled point can be approximated from the weighted average of
the values of the sampled points within a certain distance (d) or a certain number of nearest
neighbors (k).

2.2.6. Structural Metrics

Upon obtaining the DTM, normalization of the point clouds was performed; that
is, the altitude of the DTM was subtracted from the elevation of the points of the cloud,
allowing for the manipulation of 3D clouds as if they had been acquired on a flat surface
and removing the influence of the terrain in the above-ground measurements [37]. After
normalization of the point clouds, structural metrics were estimated based on information
regarding the height of the points in the clouds using FUSION/LDV 3.42 software [39].
A threshold height of 1.5 m was used for the removal of soil points and separation of
undergrowth [40]. The metrics were calculated from DAP, DAP-DTMLiDAR and LiDAR
point clouds to describe the structure of each plot. The extracted metrics are described in
Table 3.

2.2.7. DAP-UAV Validation

The validation of DAP products was performed in two stages: (1) validation of the
topographic products obtained (i.e., the DTM) and (2) validation of the data from the
vertical structure of the normalized 3D point cloud.
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Table 3. Structural metrics extracted from point clouds derived from DAP-UAV, DAP-DTMLiDAR,
and LiDAR PLS.

Metric Type Variable

Height Minimum (Hmin)
Max (Hmax)
Mean (Hmean)
Mode (Hmode)
Coefficient of variation (Hcv)
Standard deviation (HSD)
Variance (HV)
Interquartile (HIQ)
Asymmetry (Hskew)
Kurtosis
Percentiles (HP01, HP05, HP10, HP20, HP25, HP30, HP40, HP50, HP60, HP70,
HP75, HP80, HP90, HP95, HP99)
Generalized square root mean (HSQRTmeanSQ)
Generalized cubic root mean (HCURTmeanCUBE)
Mean absolute deviation (HAAD)
Median absolute deviation from median height (HMADMedian)
Median Absolute Height Mode Deviation (HMADMode)
Linear moments (HL1, HL2, HL3, HL4)
Linear moment asymmetry height (HLskew)
Linear moment kurtosis height (HLkurt)
Coefficient of variation of linear moments (HLcv)
Canopy Relief Ratio (HCRR) (Hmean − Hmin)/(Hmax − Hmin)

Canopy cover Total all returns (CCH)
All returns above mean height (CCHmean)
All returns above height mode value (CCHmode)
Percentage of all returns > average height in relation to the total number of
points (CC%Hmean)
Percentage of all returns > mode height relative to total number of points
(CC%Hmode)All returns above 1.0 m (CCH1m)Percentage of all returns > 1m
height relative to total number of points

DTM Validation

The altitude (Z) values of the vertices of the plots (160 points) collected in the field with
the RTK were used to evaluate the accuracy of the DTM generated by the DAP. To evaluate
the influence of vegetation on the representation of relief, vertices were classified as (i) with
vegetation and (ii) without vegetation. Accuracy was evaluated using the values of RMSE
and bias (absolute and percentage) and R2 (Equations (2), (3), and (4), respectively).

RMSE =

√
∑n

i=1 (Yi − Ŷi)
2

n
RMSE(%) =

RMSE
Y

100 (2)

Vis = ∑n
i=1 Yi − ∑n

i=1 Ŷi

n
Vis(%) =

Vis
Y

100 (3)

R2 =
∑n

i=1 (Ŷi − Ŷm)
2

∑n
i=1 (Yi − Y)2 (4)

Here, Yi = observed dependent variable, Ŷi = estimated dependent variable, Y = mean
of the observed dependent variable, Ŷm = mean of the estimated dependent variable, and
n = number of observations.

Validation of the Vertical Structure of DAP-UAV Clouds

For validation of the vertical structure of the DAP and DAP-DTMLiDAR cloud, the
maximum heights and dominant heights of the inventory and field plots were compared
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with the metrics “Hmax” and “HP95”, respectively, of the DAP point clouds of each plot.
To determine the dominant heights of the plots, the average of 20% of the highest trees
per hectare was used. For comparison purposes, the same analysis was performed with
DAP-DTMLiDAR data. The Hmax and HP95 metrics of the point clouds were extracted using
fusion/LDV 3.42 software and are respectively the highest point height value of the point
cloud and the value of the height surpassing 95% of the points in the cloud. The statistics
of RMSE and bias (absolute and percentage) and R2 (Equations (2) and (3), respectively)
were evaluated.

2.2.8. Estimated Models of Mean h, Average dbh, and ba

Multiple linear regression (MLR) models were adjusted to estimate the values of mean
h, diameter, average dbh, and ba of trees at plot level. As predictor variables, the structural
metrics extracted from the clouds of normalized points obtained by DAP, DAP-DTMLiDAR,
and LiDAR were considered. The models adjusted for LiDAR and DAP-DTMLiDAR were
used to compare the efficiency and quality of the models generated from DAP normalized
clouds in terms of RMSE and R2.

Pearson correlation analysis (Equation (5)) was performed to verify the ρ̂ collinearity
between the variables. Multicollinear variables are considered when two or more predictors
are related to each other and explain the dependent variable in a similar way. Non-
multicollinear variables were considered as those that presented values ρ̂ within a threshold
between −0.8 and 0.8. The multicollinearity analysis was performed before fitting of the
models, maintaining only one predictor variable among each group of multicollinear
variables.

ρ̂x1x2 =
∑n

i (x1 − x1)(x2 − x2)√
∑n

i (x1 − x1)
2
√

∑n
i (x2 − x2)

2
(5)

Here, ρ̂x1x2 = Pearson linear correlation coefficient of the sample; x1 and x2= observed

values for the variables x1 and x2, respectively; and
−
x1 e

−
x2 = average of the observed values

in the variables x1 and x2, respectively.
The exhaustive search method was used with the aid of RStudio software and the

Leaps package [41]. The exhaustive method tests and compares all independent variables
(X) and finds the best subset to predict the dependent variable (Y) in linear regression by
using the branch-and-bound algorithm. The independent variables were selected to adjust
the models of each of the dependent variables in each of the datasets (DAP, LiDAR, and
DAP-DTMLiDAR).

For each dependent variable in each dataset, subgroups were selected with one, two,
three, four, or five independent variables. After selecting the predictor variables, the LMR
models (Equation (6)) were adjusted.

Yi = β0 + β1X1i + β2X2i + · · ·+ βpXpi + εi (6)

Here, Yi = value of the dependent variable in the i-th observation, corresponding to
the mean h, mean dbh, and ba; β = model coefficients; XYi1i, X2i, . . . , Xpi are the values of
the p-th independent variables in the i-th observation (data from the DAP, DAP-DTMLiDAR,
or LiDAR point clouds); and εi = random error of the model.

For the choice of the best model for each dependent variable in each dataset, the
RMSE and adjusted coefficient of determination (Equations (2) and (4)) were compared.
For validation of the chosen models, the datasets were divided into 80% for fitting and 20%
for validation with 1000 iterations. Subsequently, the frequencies of RMSE were compared.

2.2.9. Spatialization of DAP-UAV Models

With the DAP-UAV models adjusted for each vegetation variable, fusion/LDV 3.42
software was [39] used to obtain rasters where the pixel values correspond to the values
obtained for each of the metrics used in the models. These rasters were obtained with a
spatial resolution of 30 m × 30 m per pixel (same plot size) and afterwards were used in
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the application of the adjusted models to obtain the maps of h, dbh, and ba for each of the
eight areas.

From the spatialization of the vegetation data, classification maps of the succession
stages were created according to the criteria defined in Table 1. For this, the maps obtained
for the estimation of h, dbh, and ba were used as input files following the flowchart presented
in Figure 4. For a pixel to be sorted at a given stage, it must have at least two vegetation
parameters framed in this class.
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2.2.10. Cost–Benefit Analysis

In the cost–benefit analysis, the three methods of data collection were compared (i.e.,
DAP, LiDAR PLS, and TFI). To perform the analysis, three cost components associated
with each method were analyzed, namely equipment (including software licenses), data
acquisition, and data processing and analysis. First, the total costs of each method were
calculated, and then the total costs of equipment acquisition as well as of data acquisition
and analysis per hectare measured were separately identified. The costs were calculated
with updated values for the month of June 2022.

For the DAP method, eight flights were performed that mapped a total area of 201 ha.
For the areas measured by the TFI and PLS methods, the sum was found using the areas of
the 40 plots of 0.09 ha, totaling 3.6 ha.

Regarding equipment costs, the costs of acquiring the equipment and software for
each method were considered based on the use of a computer of the same model for each
method. For the DAP and PLS methods, it was necessary to collect points with RTK, which
required renting model equipment x for R$ 250.00/day. In total, 12 days were spent to
collect 178 points, yielding a cost of R$ 16.85/point. Considering a daily 11 h workday, an
average of 1.85 points/h were obtained per hour, which was used to calculate the cost of
the hour/man to collect the points during data acquisition.

The costs associated with the data acquisition stage were calculated based on the
time/man required for each step in each method, in addition to daily car rental and
lodging. For the three methods, teams included three members. Hence, all hours/man
were multiplied by three, with the exception of flight planning. Daily accommodation
comprised a three-guest room. For accommodation and vehicle rental, the data collection
days plus two nights for the team’s arrival and return were considered. For the collection
of control points with RTK, an average of four GCPs was considered for each of the eight
DAP flights, versus four GCPs per plot for PLS collections.

To evaluate the costs associated with the data processing and analysis component, the
time/man required for each step in each of the methods was calculated. Only one person
was considered for data analysis in the three methods.

The hour/man value was based on the technical time of R$ 153.00/hour for a profes-
sional agrarian scientist in the state of Espírito Santo [42]. It is necessary to emphasize that
the data collections using the three methods were performed simultaneously in the same
expedition for this study. Therefore, to calculate each method separately, the costs of the
data acquisition, analysis, and processing components were diluted to the smallest unit of
each item and evaluated based on how many units were required for each method.

3. Results and Discussion
3.1. TFI Results and Classification of Stage of Plots

The values of h, dbh, and ba, in addition to other parameters of the 40 plots of the TFI,
are presented in Table 4 together with the classification of the succession stage of each plot
according to the criteria defined by CONAMA 29/94 [27].
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Table 4. Parameters observed in TFI and classification according to CONAMA.

Plots dbh h ba ni CONAMA

1 0 0 0 0 Pasture
2 0 0 0 0 Pasture
3 0 0 0 0 Pasture
4 0 0 0 0 Pasture
5 0 0 0 0 Pasture
6 5.99 4.22 0.6057 14 ISV
7 8.86 5.80 0.1393 1 ISV
8 8.89 5.80 5.0260 44 ISV
9 6.72 4.98 0.7516 6 ISV
10 6.75 4.74 0.5210 8 ISV
11 12.61 8.17 3.6055 13 ISV/MSV
12 9.64 7.74 2.8332 22 ISV
13 13.63 9.61 10.9484 32 MSVE
14 7.56 5.85 2.6988 32 ISV
15 9,27 7.86 1.9157 17 Pasture
16 6.97 6.57 1.6313 22 ISVE
17 11.82 7.73 5.5644 31 ISVE/MSVE
18 9.87 8.03 0.5608 5 Pasture
19 10.86 7.12 3.6803 16 ISVE/MSVE
20 8.04 7.91 4.9073 61 ISVE
21 11.35 8.95 14.6125 84 MSVE
22 9.67 7.37 11.4459 81 MSVE
23 10.22 7.17 6.1436 44 ISVE/MSVE
24 11.14 9.76 14.9510 69 MSVE
25 10.35 11.66 14.8890 116 MSVE
26 12.32 11.14 9.4958 55 ISV/MSV
27 11.35 9.37 18.0306 106 MSV
28 11.45 9.83 16.6769 101 MSV
29 11.65 9.58 16.9390 96 MSV
30 8.29 8.63 7.8337 95 ISV
31 9.12 9.71 13.4685 154 MSV
32 9.91 9.01 18.0307 131 Pasture
33 9.19 8.00 13.8694 125 MSV
34 9.81 9.75 13.4069 120 MSV
35 9.45 8.19 13.0573 109 MSV
36 14.24 13.22 22.7074 86 ASV
37 11.80 9.93 19.9209 102 MSV
38 9.71 9.54 13.4571 120 MSV
39 11.51 9.77 17.9446 108 MSV
40 10.18 9.35 15.6695 124 MSV

The plots in which the acronyms of the stages were added to the letter “E” indicate that
infestation by invasive alien species was observed. The plots that did not meet the criteria
of any of the three stages proposed by CONAMA Resolution 29/94 [27] were considered
“Pasture”. Thus, the criteria established by CONAMA [27] do not always represent reality.
For example, plots such as “32,” which according to what was observed in the field does
not present pasture characteristics, have parameters that fall outside of the stages proposed
by CONAMA [27]. Figure 5 shows the frequency of the main species found in each stage.
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3.2. Validation of DAP-UAV Data
3.2.1. Digital Terrain Model

Figure 6 presents the DTMs generated via DAP-UAV for each of the eight areas
analyzed, in addition to the limit of inventory plots. The altitude values of the vertices of
the plots collected in the field with the RTK varied between 2.5 and 41.7 m, while those
estimated by the DAP varied between 3.7 and 47.8 m.

Table 5 assesses the accuracy of the elevation values estimated by DAP-UAV. Figure 7
displays the scatter plots between the measured and estimated altitude values of the terrain.
A strong correlation (R2 > 0.7) was observed between the values estimated by DAP and the
values observed with RTK. The DAP was able to reconstruct with regular efficiency the
soil position in areas that were fragmented or without vegetation (RMSE of 3.3 m, 15.6%,
and R2 of 0.87), underlining a greater difficulty in reconstructing the topography of the
terrain in areas with denser vegetation (RMSE of 7.4 m, 38.1%, and R2 of 0.80), as observed
by Almeida et al. [40]. As forest cover becomes dense, the procedure of rebuilding the
elevation of the terrain is more delicate and can prevent obtaining the altimetry points of
the soil [32].
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Table 5. Statistics of the comparison between the altitude of the DTM generated by photogrammetry
and the altitude of the terrain control points obtained by RTK in areas under vegetation (Present) and
in areas without vegetation (Absent).

Vegetation RMSE RMSE (%) Bias Bias (%) R2

No Vegetation (n = 57) 3.30 15.62 −1.28 −6.07 0.87
Under Vegetation (n = 103) 7.40 38.13 −5.07 −26.16 0.80
General (n = 160) 6.25 31.23 −3.72 −18.60 0.77

As observed in other studies, in general, the DAP also overestimated (n = 160;
bias = −3.72 m, −18.60%) the elevation values, with a total error of 6.25 m (31.23%).
The overestimation observed in this study may be related to DAP’s inability to penetrate
the canopy and understory of vegetation. This limitation is even more evident when consid-
ering only the values of elevation of the terrain of the vertices of the plots under vegetation
(n = 103), with R2 of 0.8, RMSE of 38.13% (7.40 m), and bias of −26.16% (−5.07 m). At
the vertices of plots without vegetation (n = 57), DAP’s capacity to reconstruct the land
increases considerably, where RMSE = 15.6% (3.3 m), bias = −6% (−1.28 m), and R2 = 0.87.
Despite the better performance in points without the presence of vegetation, the values
found in this study are lower than those observed in other studies. In addition to not being
able to penetrate the forest canopy, DAP’s low ability to represent the terrain may be related
to other factors, such as flight characteristics, the sensor used in taking the photographs,
the SfM processing algorithm, or the physiographic characteristics of the area [10,40,43–48].
The algorithm used for sorting points representative of the terrain may also have been a
source of error at the time of DTM generation [49,50].
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points in places without vegetation, and (c) represents points in places under vegetation.

Therefore, to survey fragments with extensive areas, it is recommended to perform
flights that cover areas outside the fragment, seeking places where it is possible to visualize
the terrain, such as roads or clearings, to improve representation of the altimetry of the
terrain. The analysis presented concerns regarding the quality of the DTM in the evaluated
points, and it is not possible to draw conclusions about the entire length of the area.
To complement analysis of the accuracy of DTM and other products obtained by DAP,
the maximum heights of the plots measured in the field were also compared with those
estimated by DAP.

3.2.2. Heights of Trees
Maximum Height x Hmax

Table 6 presents the results of the accuracy analysis of the estimates of the maximum
height of the trees per plot by DAP-UAV and DAP-DTMLiDAR. Figure 8 showcases the
scatter plots for the maximum height values measured in the field and estimated (Hmax) by
the two 3D point clouds. A clear correspondence can be noted between the Hmax values
estimated by the DAP and DAP-DTMLiDAR point clouds, which have similar statistics
(Table 6). Both 3D clouds underestimated (Table 6 and Figure 8) maximum height, a result
that was expected and observed in other studies with the normalized point cloud of the
DTM LiDAR [10]. In addition to the similarity between the estimates of maximum heights,
the performance was also satisfactory, with RMSE and bias values below 18.21% and 0.71%,
respectively. Almeida et al. [40] found an RMSE equal to 24% in a secondary Atlantic Forest
in northeastern Brazil when estimating maximum heights.

Table 6. Statistics of the comparison between the Hmax metric obtained by DAP-UAV and DAP-
DTMLiDAR and the maximum heights of the plots obtained by the TFI.

Method RMSE RMSE (%) Bias Vies (%) R2

DAP-UAV 2.63 15.92 0.77 4.71 0.85
LiDAR DAP-DTM 3.00 18.21 0.71 4.31 0.80
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compared with the maximum heights of the field plots.

Despite the difficulties inherent to obtaining the DTM, the DAP method proved to be
satisfactory for estimating the maximum height of the plot, presenting a high correlation
between the highest point of the point cloud (Hmax) and the height of the largest tree. Ganz
et al. [51] demonstrated that obtaining tree height through DAP can be more accurate than
traditional triangulation techniques, going so far as to declare that DAP is as reliable as
LiDAR. They estimated canopy height from DAP data and hybrid DAP data with LiDAR
and found an R2 of 0.83 and 0.84 and an RMSE of 9.3 m and 6.8 m, respectively. In addition
to the vegetation characteristics, the flat/slightly wavy relief of the analyzed areas may
have contributed to the strong performance of the height estimates, further supporting that
clouds of DAP-derived points can be used in areas with vegetation and relief similar to
that of this study [52].

Dominant Height HP95

Table 7 presents the statistics of the HP95 metric (95th percentile) extracted from
the DAP and DAP-DTMLiDAR point clouds and compared with the dominant heights of
the plots observed in the field. Figure 9 shows the scatter plots for the dominant height
values and HP95. It is possible to observe a high correlation (R2 > 0.84) between the values
estimated and those in the two point clouds, with a similar total error between them and
RMSE values of approximately 1.8 m (15%). The estimates of dominant height directly by
the HP95 metric generally present lower values than the heights obtained in the field both
for the DAP point cloud and for the DAP-DTMLiDAR cloud. However, the DAP estimate
showed a higher underestimation (4.83%) of HP95 values. The HP95 metric represents the
height surpassing 95% of the cloud points, while dominant height represents the average
of 20% tallest trees in the plot [53].

Table 7. Statistics comparing the HP95 metric (95th percentile) obtained by DAP and DAP-DTMLiDAR

and the dominant heights of the plots obtained by the TFI.

Method RMSE RMSE (%) Bias Bias (%) R2

DAP 1.80 15.04 0.58 4.84 0.84
DAP PLS 1.87 15.63 0.05 0.44 0.84
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(b) DAP-DTMLiDAR compared with the dominant heights of the TFI plots.

The analysis of the graphs and statistics indicates that both DAP and DAP-DTMLiDAR
have a tendency to underestimate dominant height values. There were no major differences
between DAP and DAP-DTMLiDAR statistics, and the two methods presented similar
accuracy. The tendency to underestimate height values occurred throughout the evaluation
and not only in the places where the terrain control points were obtained [51], indicating
the overestimation of DTM altitudes (see Section 3.2.1).

3.3. Selected Models

Multiple linear regression models were adjusted to estimate the values of mean h,
dbh, and ba of individuals belonging to the 40 plots of traditional forest inventory. Several
authors have evaluated the contribution of spectral data associated with photogrammetric
point clouds in predicting forest attributes from a per-area approach and concluded that
the benefit was negligible [54].

In a wide-ranging review conducted by Goodbody et al. [10], it was found that studies
have shown that data from DAP point clouds can generate accurate forest inventories. The
results obtained in this study further support that DAP is a reliable estimation method for
average h, mean dbh, and ba in a per-area approach.

3.3.1. Average Total Height

Table 8 presents the models, which presented better performance in estimating the
mean total h from DAP-UAV, LiDAR, and DAP-DTMLiDAR clouds. In general, all coeffi-
cients associated with the variables were significant, indicating that the predictor variables
selected were related to the response variable. For all data sources, four metrics were
selected as predictor variables.

Table 8. Models selected to estimate average height from DAP-UAV, DAP-DTMLiDAR, and LiDAR.

Source Templates

DAP-UAV Hcv + HMADmedian + HP30 + CC%1m
DAP-DTMLiDAR Hmin + HLcv + Hlkurt + HP75
LiDAR Hiq + HLcv + HSQRTmeanSQ + CC%1m

Table 9 includes the statistics of the models selected to estimate h. The performances
of the three data sources were satisfactory and similar, with DAP-DTMLiDAR presenting
slightly higher errors (RMSE of 12.97%, 0.95 m); this indicates that, for this parameter, the
use of hybrid data did not satisfactorily improve the estimates in the DAP point cloud.
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Gyawali et al. [55] also did not find significant differences between the estimation of height
by DAP or LiDAR, corroborating the findings of the present study, which showed that
DAP-UAV missed only 2.53% more than LiDAR (RMSE of 11.11%, 0.81 m, and RMSE of
8.58%, 0.63 m, respectively). Therefore, DAP data can be used to estimate mean height per
RLM in a per-area approach, presenting results with quality comparable to LiDAR data.

Table 9. Statistics from the fitting and validation of the best models for estimating average height
(DAP-UAV, DAP-DTMLiDAR, and LiDAR).

Source BIC
Fitting Validation

RMSE RMSE% R2 RMSE RMSE% R2

DAP-UAV 118.92 0.81 11.11 94.0% 0.92 12.62 88.20%
DAP-MDTLidar 197.82 0.95 12.97 91.8% 1.15 15.75 86.58%
LiDAR 98.20 0.63 8.58 96.4% 0.70 9.65 93.59%

The statistics presented in Table 9 corroborate the histograms of RMSE frequency
observed in the validations of the models (Figure 10), presenting mean values similar to
the RMSE values found in the fitting. The three methods presented normal distribution.
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In a review conducted by Goodbody et al. [56], the use of DAP point clouds normalized
with LiDAR DTMs was recommended for updating enhanced inventories. In the present
study, the performances presented by DAP-DTMLiDAR and DAP-UAV were similar, but
there was a downgrade in relation to the results of DAP-UAV data alone. Thus, it is possible
to adjust statistical models using DAP-UAV data reliably without the use of DTM’s LiDAR,
depending on factors such as characteristics of the evaluated vegetation and quality of the
photogrammetric survey.

3.3.2. Average dbh

The models that presented the best performance for dbh estimation are presented in
Table 10 along with their respective variables. In general, all coefficients associated with
the variables were significant, indicating that the predictor variables selected are related to
the response variable. Four metrics were selected in all data sources as predictor variables
for the best fit.

Table 10. Best models to estimate average dbh from DAP-UAV, DAP-DTMLiDAR, and LiDAR.

Source Templates

DAP-UAV Hmode + HLcv + HP40 + CC%1m
DAP-DTMLidar Hmin + HL1 + HLcv + CC%Hmode
LiDAR HLcv + Hlkurt + HP05 + HP40

Table 1 shows the statistics of the models selected to estimate the dbh. The three meth-
ods presented satisfactory performance in estimating diameter. As for h, DAP-DTMLiDAR
yielded the worst performance, with RMSE of 18.14% and R2 of 82.16%. Studies conducted
by Shimizu et al. [57] found different results, indicating that the integration of photogram-
metry data with LiDAR is beneficial for the estimation of forest attributes. DAP-UAV and
LiDAR showed very similar results, with DAP-UAV presenting an RMSE of 12.23% and R2

of 91.89% and LiDAR yielding an RMSE of 11.47% and R2 of 92.87%
The statistics presented in Table 11 corroborate the histograms of RMSE frequency

observed in the model validations (Figure 11) and present mean values similar to the
adjusted RMSE values. The three methods presented normal distribution. These results
corroborate those found by Moe et al. [58], which indicate that DAP-UAV can predict dbh
values with accuracy comparable to the estimate performed with LiDAR data.

Table 11. Fitting and validation statistics of the best models for estimating mean dbh from DAP-UAV,
DAP-DTMLiDAR, and LiDAR.

Source BIC
Fitting Validation

RMSE RMSE% R2 RMSE RMSE% R2

DAP-UAV 141.14 1.07 12.23 91.89% 1.17 13.38 82.90%
DAP-DTMLiDAR 197.82 1.59 18.14 82.16% 1.87 21.31 69.94%
LiDAR 135.96 1.00 11.47 92.87% 1.11 12.66 83.25%

In general, fitting of RLM models for the estimation of average dbh from DAP, DAP-
DTMLiDAR, and LiDAR point cloud data yielded reasonable results. The results found
for DAP-DTMLiDAR data were lower than the other two methods. Studies conducted by
Shimizu et al. [57] produced different results, indicating that the integration of photogram-
metry data with LiDAR is beneficial for the estimation of forest attributes. DAP and LiDAR
presented very similar fitting results, with DAP obtaining a slightly lower RMSE. These
facts corroborate the results found by [55], which indicate that DAP can predict dbh values
with accuracy comparable to the prediction performed with LiDAR data.
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3.3.3. Basal Area (ba)

The models that presented the best adjusted performance for the estimation of ba from
the DAP, DAP-DTMLiDAR, and LiDAR point clouds are presented in Table 12, along with
their respective estimated parameters and variables. In general, all coefficients associated
with the variables were significant, indicating that the predictor variables selected are
related to the response variable. For fitting of the models for the three data sources, only
three metrics were required as predictor variables.

Table 12. Best models to estimate basal area from DAP-UAV, DAP-DTMLiDAR, and LiDAR.

Source Templates

DAP-UAV Hmode + HP01 + CC%1m
DAP-DTMLiDAR Hmin + Hmean + CCHmode
LiDAR Hmax + Hiq + HL1

Table 1 presents the statistics of the models selected to estimate ba. The three methods
produced similar performances. Unlike h and dbh, the DAP estimation model presented
the best results of RMSE and R2 (%) in relation to the other two methods.

The statistics presented in Table 13 corroborate the histograms of RMSE frequency
observed in the model validations (Figure 12) and present mean values similar to the RMSE
values found in the fitting. The three methods presented normal distribution.
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Table 13. Fitting and validation statistics of the best models for estimating basal area from DAP-UAV,
DAP-DTMLiDAR, and LiDAR.

Source BIC
Fitting Validation

RMSE RMSE% R2 RMSE RMSE% R2

DAP-UAV 202.13 2.40 28.46 88.3% 2.55 30.16 87.18%
DAP-DTMLiDAR 213.04 2.75 32.61 84.6% 2.81 33.27 84.56%
LiDAR 215.51 2.85 33.63 83.6% 2.98 35.22 83.41%
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The three methods proved to be reliable for estimating ba from statistical models
obtained by multiple linear regression, corroborating what has been found in the literature.
The integration of DAP data with LiDAR [59,60] was shown to be lower in relation to
the use of DAP data exclusively for the estimation of this variable, in contrast to the
findings observed by Ullah et al. [61], which found close results for LiDAR data and
DAP data integrated with LiDAR DTM. In general, past studies have demonstrated better
performances for LiDAR data. However, estimation using DAP data was higher than the
use of LiDAR data in the present study [59,60,62].
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3.4. Spatialization Maps of DAP-UAV Models

Figures 13 and 14 display the maps resulting from the estimation of succession stages
according to the parameters established by CONAMA Resolution 29/94 [27] after executing
the procedures presented in Figure 4. Some areas met the criteria of both the initial and the
middle stages, while others were simultaneously in the middle and advanced stages. These
areas in transition were considered. In addition to the spatialization of stage estimation,
Figures 13 and 14 also present the plots and their respective stages according to CONAMA
29/94 [27]. For the plots where invasive species infestations were identified during the TFI,
the acronyms for identification of the stages were added to the letter “E”.
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3.5. Cost-Benefit Analysis

Table 14 presents the total costs of the classification of succession stages in the Atlantic
Forest using DAP-UAV, LiDAR PLS, and TFI and their respective cost components. The
tables with detailed values of the items and subcomponents of each methodology are
presented in “Appendix A Tables A1–A3”. LiDAR PLS presented the highest total cost at
R$ 466,309.12, followed by TFI (R$ 136,009.94) and, finally, DAP-UAV (R$ 103,659.42).

Table 14. Costs to obtain data by DAP-UAV, LiDAR PLS, and TFI.

DAP-UAV LiDAR PLS IFT

Component Value Value Value

Equipment R$ 86,895.23 R$ 407,092.15 R$ 41,443.94
Data acquisition R$ 12,912.13 R$ 56,724.60 R$ 92,118.00
Data processing and analysis R$ 3852.06 R$ 2492.37 R$ 2448.00

Total R$ 103,659.42 R$ 466,309.12 R$ 136,009.94

Table 15 separates the costs of equipment acquisition and data acquisition and pro-
cessing for the three methodologies. The high cost of LiDAR PLS is significantly influenced
by equipment acquisition, which costs R$ 407,092.15. For DAP-UAV, equipment costs
R$ 86,895.23, while for TFI it costs only R$ 41,443.94. Regarding the cost of data acquisition
and processing per hectare, the sampling capacity and speed presented by DAP-UAV
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resulted in a considerably lower cost of R$ 83.40/ha versus the other methods (LiDAR PLS
= R$ 16,449.16/ha, TFI = R$ 26,268.33/ha).

Table 15. Equipment cost and cost per hectare for data acquisition using DAP-UAV, LiDAR PLS,
and TFI.

Item DAP-UAV LiDAR PLS TFI

Sample area (hectares) 201.0 3.6 3.6
Equipment cost R$ 86,895.23 R$ 407,092.15 R$ 41,443.94
Cost of data acquisition and
processing per hectare R$ 83.40 R$ 16,449.16 R$ 26,268.33

Despite having lower equipment acquisition costs, TFI data acquisition operations are
slow and have limited sampling capacity. The limitations inherent to TFI operations have
increased their cost per hectare, as described by Navarro et al. [63] and Nogueira et al. [13],
in addition to exposing operators to greater risks for longer periods of time. Currently,
the cost of acquiring equipment for operations with LiDAR PLS is still very high, with the
acquisition of the LiDAR system itself representing the main expense. The acquisition of
forest inventory data by the LiDAR PLS method can be faster than in TFI, but it has great
limitations in terms of size of the sampled area compared to DAP-UAV. [64–66] highlighted
that PLS surveys for 3D modeling purposes have higher costs and require more field work,
while DAP surveys for the same purposes are reliable and low-cost.

DAP has an intermediate cost of acquiring equipment when compared to the other two
methods. As demonstrated, the cost of equipment for DAP operations can be approximately
twice as high as TFI and approximately five times lower than PLS. However, DAP’s capacity
regarding area to be sampled is significantly higher than that of PLS and TFI. While the
samples for TFI and PLS were limited to the size of the plots, totaling 3.6 ha of sample for
each method, the DAP can cover an area of 201 ha. Thus, DAP is suitable for forest use
due to low operational costs and high coating intensity [67,68]. Naturally, the adoption
of a methodology of LiDAR data collection with an aerial platform (ALS) would result
in a sampling capacity similar to DAP. However, acquiring UAVs capable of operating
with a LiDAR system would further increase equipment costs. This fact was confirmed by
Kangas et al. [16] when they evaluated the cost of acquiring ALS and DAP data for forest
decision-making and concluded that the higher accuracy of ALS does not significantly affect
the results; therefore, ALS and DAP were equally recommended for forest management
planning.

4. Conclusions

The collection of field data using the TFI method yielded suitable vegetation parame-
ters for the correct identification of ecological succession stages in areas with secondary
vegetation in the Atlantic Forest biome. In addition, the field data collected represented
the structure of the study area, with data ranging from clean pastures to vegetation in
advanced succession, thus offering a suitable source for adjusted statistical models.

DAP tends to overestimate the altitude of terrain, especially in an area of dense
vegetation, thereby causing a tendency to underestimate the height of the point cloud. As
such, it is not recommended to estimate heights via direct comparison with metrics of the
DAP-UAV point cloud. However, high correlation with field data allowed adequate fitting
of statistical models for the estimation of mean h, dbh at 1.30 m of soil, and ba, yielding
results similar to those found using DAP data integrated with LiDAR data or using LiDAR
data exclusively. The models obtained with DAP-UAV data permitted the creation of
spatialization maps with h, dbh, and ba estimates in addition to spatialization of the stages
of ecological succession.

DAP proved to be a technically effective and economically accessible method for
estimating the forest attributes necessary for the classification of successional stages in the
Atlantic Forest, demonstrating greater cost-effectiveness than LiDAR or TFI.
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Appendix A

Table A1. Traditional forest inventory cost components.

Component Sub-Component Item Quantity Unit Value Total

Equipment Equipment Stakes 1 Ensemble R$ 490.00 R$ 490.00
Equipment Equipment Telescopic ruler 15 m 1 Unit R$ 500.00 R$ 500.00
Equipment Equipment Clinometer 1 Unit R$ 1899.00 R$ 1,899.00
Equipment Equipment Trena + nylon +

measuring tape 1 Kit R$ 186.55 R$ 186.55
Equipment Equipment Ppe 3 Kit R$ 300.00 R$ 900.00

Equipment Equipment

Computer Dell
precision 3930 Rack +
Monitor Dell 34"
WQHD

1 Unit R$ 35,722.23 R$ 35,722.23

Equipment Software Native Forest 1 License R$ 1417.00 R$ 1417.00
Equipment Software Office Suite 1 License R$ 329.16 R$ 329.16
Data acquisition Data acquisition Access to the parcel 13 Hour/man R$ 459.00 R$ 5967.00
Data acquisition Data acquisition Plot demarcation 59 Hour/man R$ 459.00 R$ 27,081.00
Data acquisition Data acquisition Data collection 106 Hour/man R$ 459.00 R$ 48,654.00
Data acquisition Data acquisition Car Rental 24 Daily R$ 224.00 R$ 5376.00
Data acquisition Data acquisition Host 24 Daily R$ 210.00 R$ 5040.00
Data processing
and analysis

Data processing
and analysis Data tabbing 8 Hour/man R$ 153.00 R$ 1224.00

Data processing
and analysis

Data processing
and analysis

Data processing
and analysis 8 Hour/man R$ 153.00 R$ 1224.00

Total 3.6 ha R$ 136,009.94

Cost per hectare Equipment R$ 41,443.94
acquisition and
analysis of data
per hectare

1 ha R$ 26,268.33
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Table A2. Inventory cost components with terrestrial LiDAR.

Component Sub-Component Item Quantity Unit Value Total

Equipment Equipment Horizom Zeb 1 Unit R$ 367,700.00 R$ 367,700.00
Equipment Equipment Rent RTK 160 R$/dot R$ 16.85 R$ 2696.00

Equipment Equipment

Computer Dell
precision 3930 Rack +
Monitor Dell 34"
WQHD

1 Unit R$ 35,722.23 R$ 35,722.23

Equipment Equipment Machete 3 Unit R$ 24.64 R$ 73.92
Equipment Equipment Ppe 3 Kit R$ 300.00 R$ 900.00
Equipment Software Geoslam 1 License R$ -
Data acquisition Data acquisition Access to the parcel 13 Hour/man R$ 459.00 R$ 5967.00
Data acquisition Data acquisition Data collection 10 Hour/man R$ 459.00 R$ 4590.00
Data acquisition Data acquisition Collection of GCPs

with RTK 86,4 Hour/man R$ 459.00 R$ 39,657.60
Data acquisition Data acquisition Car Rental 15 Daily R$ 224.00 R$ 3360.00
Data acquisition Data acquisition Hosting 15 Daily R$ 210.00 R$ 3150.00
Data processing
and analysis

Data processing
and analysis

Point Clouds
Processing 6,6 Hour/man R$ 153.00 R$ 1009.80

Data processing
and analysis

Data processing
and analysis

Georeferencing of
point clouds 3,3 Hour/man R$ 153.00 R$ 504.90

Data processing
and analysis

Data processing
and analysis

Normalization of
point clouds 3,3 Hour/man R$ 153.00 R$ 504.90

Data processing
and analysis

Data processing
and analysis Extraction of metrics 1,76 Hour/man R$ 153.00 R$ 269.28

Data processing
and analysis

Data processing
and analysis Application of models 1,33 Hour/man R$ 153.00 R$ 203.49

Total 3.6 ha R$ 466,309.12

Cost per hectare Equipment R$ 407,092.15
acquisition and
analysis of data
per hectare

1 ha R$ 16,449.16

Table A3. Inventory cost components with DAP.

Component Sub-Component Item Quantity Unit Value Total

Equipment Equipment DJI Mavic 2 pro + kit
fly more + SD card 1 Unit R$ 21,999.00 R$ 21,999.00

Equipment Equipment Rent RTK 40 R$/dot R$ 16.85 R$ 674.00

Equipment Equipment

Computer Dell
precision 3930 Rack +
Monitor Dell 34"
WQHD

1 Unit R$ 35,722.23 R$ 35,722.23

Equipment Software Agisoft 1 License R$ 28,500.00 R$ 28,500.00
Data acquisition Data acquisition Flight planning 1 Hour/man R$ 153.00 R$ 153.00
Data acquisition Data acquisition Collection of GCPs

with RTK 21,62 Hour/man R$ 459.00 R$ 9923.58
Data acquisition Data acquisition Flight 1,45 Hour/man R$ 459.00 R$ 665.55
Data acquisition Data acquisition Car Rental 5 Daily R$ 224.00 R$ 1120.00
Data acquisition Data acquisition Hosting 5 Daily R$ 210.00 R$ 1050.00
Data processing
and analysis

Data processing
and analysis Photo alignment 2 Hour/man R$ 153.00 R$ 306.00

Data processing
and analysis

Data processing
and analysis GPCs pointing 2 Hour/man R$ 153.00 R$ 306.00

Data processing
and analysis

Data processing
and analysis Point Cloud Cleanup 1,33 Hour/man R$ 153.00 R$ 203.49

Data processing
and analysis

Data processing
and analysis

Dense cloud
construction 8,7 Hour/man R$ 154.00 R$ 1339.80

Data processing
and analysis

Data processing
and analysis

Normalization of
point clouds 8 Hour/man R$ 153,00 R$ 1224.00

Data processing
and analysis

Data processing
and analysis Extraction of metrics 1,76 Hour/man R$ 153.00 R$ 269.28

Data processing
and analysis

Data processing
and analysis Application of models 1,33 Hour/man R$ 153.00 R$ 203.49

Total 201 ha R$ 103,659.42

Cost per hectare Equipment R$ 86,895.23
acquisition and
analysis of data
per hectare

1 ha R$ 83.40
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