
Citation: Guo, X.; Cao, Y.; Zhou, J.;

Huang, Y.; Li, B. HDM-RRT: A Fast

HD-Map-Guided Motion Planning

Algorithm for Autonomous Driving

in the Campus Environment. Remote

Sens. 2023, 15, 487. https://doi.org/

10.3390/rs15020487

Academic Editors: Józef Lisowski,

Mohammad Aldibaja, Zheng Liu and

Hanbing Wei

Received: 23 November 2022

Revised: 11 December 2022

Accepted: 10 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

HDM-RRT: A Fast HD-Map-Guided Motion Planning
Algorithm for Autonomous Driving in the
Campus Environment
Xiaomin Guo , Yongxing Cao, Jian Zhou , Yuanxian Huang and Bijun Li *

State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University,
Wuhan 430072, China
* Correspondence: lee@whu.edu.cn

Abstract: On campus, the complexity of the environment and the lack of regulatory constraints make
it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve
this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We
proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided
rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that
quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for
sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm
is deeply optimized through the prior information of the CR-Map to improve the convergence rate
and solve the problem of poor stability in campus environments. Three experiments were designed
to verify the efficiency and stability of our approach. The results show that the sampling efficiency
of our algorithm is four times higher than that of the Gaussian distribution method. The average
convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm.
In terms of algorithm efficiency, the average computation time of the proposed algorithm is only
15.98 ms, which is much better than that of the three compared algorithms.

Keywords: autonomous driving; HD-Map; motion planning; sampling-based algorithm; algorithm
efficiency

1. Introduction

Autonomous vehicles (AVs) have been developed tremendously through the efforts
of research institutes, universities and enterprises around the world. AVs can potentially
improve the quality of the time spent in cars and increase the safety and efficiency of
transportation systems [1]. Autonomous vehicles now successfully drive safely and stably
on closed pre-approved roads in good weather; however, robust autonomous driving in
urban traffic is still an unrealized goal [2]. In order to make AVs function in urban situations
with unpredictable traffic, several real-time systems must interoperate [3], including high-
definition maps (HD-Maps) [4,5], perception [6], localization [7,8], motion planning and
control [9,10]. Motion planning, a basic component of autonomous driving, acts as a bridge
between the decision and control modules and is indispensable for the safe and stable
operation of AVs [11], by generating smooth and safe trajectories in the locally feasible
solution space provided by the decision-making system.

Considerable attention has focused on feasible and optimal trajectory planning prob-
lems. Researchers have developed numerous motion planning algorithms and successfully
applied them in specific autonomous driving scenarios. However, when it is applied
to university campuses, the complexity of the environment and the lack of regulatory
constraints make motion planning particularly challenging. The university campuses are
typical widespread semi-enclosed environments where large numbers of staff and students
live. There are more than 1.3 million college students living on university campuses in

Remote Sens. 2023, 15, 487. https://doi.org/10.3390/rs15020487 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020487
https://doi.org/10.3390/rs15020487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9499-0866
https://orcid.org/0000-0001-6707-6542
https://orcid.org/0000-0001-7180-7627
https://doi.org/10.3390/rs15020487
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020487?type=check_update&version=1


Remote Sens. 2023, 15, 487 2 of 29

Wuhan, China. Wuhan University alone has more than 50,000 students and 10,000 faculty
and staff living there. Autonomous driving applications such as self-driving buses, au-
tonomous last-mile delivery logistics and unmanned patrol cars have large applications
on campus [12–14]. University campus scenes are filled with narrow, semi-structured [15]
roads and many obstacles, thus narrowing the access range. Figure 1 shows examples of
the campus environment of Wuhan University.

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 31 
 

 

typical widespread semi-enclosed environments where large numbers of staff and stu-
dents live. There are more than 1.3 million college students living on university campuses 
in Wuhan, China. Wuhan University alone has more than 50,000 students and 10,000 fac-
ulty and staff living there. Autonomous driving applications such as self-driving buses, 
autonomous last-mile delivery logistics and unmanned patrol cars have large applications 
on campus [12–14]. University campus scenes are filled with narrow, semi-structured [15] 
roads and many obstacles, thus narrowing the access range. Figure 1 shows examples of 
the campus environment of Wuhan University. 

 
Figure 1. Examples of Wuhan University campus scenes(a, b). 

Figure 1a is an HD-Map of the Wuhan University campus, and Figure 1b shows three 
scenes shot in it. There are narrow and irregular roads, unclear lane information and a 
large number of moving and stationary obstacles. Many electric bikes and vehicles are 
parked at random along the roadsides, destroying the original road boundaries. Bicycles 
and pedestrians on the campus do not necessarily follow the traffic rules, adding more 
uncertainty to the environment. In addition, the positioning accuracy of AVs on campuses 
is also very poor due to the large number of trees and buildings. These factors make it 
difficult to model the environment and also render the graph search motion planning al-
gorithms that need to discretize the environment inefficient [16]. It is still a challenge for 
motion planning algorithms to achieve optimal real-time performance and high-quality 
trajectories for autonomous driving in campus scenes. 

Sampling-based methods, as one of the most popular types of motion planning algo-
rithms, are very effective in solving complex problems due to their strong exploration 
properties [17]. Sampling-based algorithms do not need to explicitly model obstacles in 
the state space, which saves a large amount of computation time. Recently, a large number 
of scholars have developed algorithms such as RRT, RRT *, Bi-RRT and DT-RRT [18–21], 

Figure 1. Examples of Wuhan University campus scenes (a,b).

Figure 1a is an HD-Map of the Wuhan University campus, and Figure 1b shows three
scenes shot in it. There are narrow and irregular roads, unclear lane information and a
large number of moving and stationary obstacles. Many electric bikes and vehicles are
parked at random along the roadsides, destroying the original road boundaries. Bicycles
and pedestrians on the campus do not necessarily follow the traffic rules, adding more
uncertainty to the environment. In addition, the positioning accuracy of AVs on campuses
is also very poor due to the large number of trees and buildings. These factors make it
difficult to model the environment and also render the graph search motion planning
algorithms that need to discretize the environment inefficient [16]. It is still a challenge for
motion planning algorithms to achieve optimal real-time performance and high-quality
trajectories for autonomous driving in campus scenes.

Sampling-based methods, as one of the most popular types of motion planning al-
gorithms, are very effective in solving complex problems due to their strong exploration
properties [17]. Sampling-based algorithms do not need to explicitly model obstacles in
the state space, which saves a large amount of computation time. Recently, a large number
of scholars have developed algorithms such as RRT, RRT *, Bi-RRT and DT-RRT [18–21],
greatly promoting sampling-based algorithms’ applications in AVs. However, the complex-
ity of campus scenes still restricts the algorithms’ efficiency and optimization. Due to the
random nature of sampling-based algorithms, a large number of sampling iterations are



Remote Sens. 2023, 15, 487 3 of 29

needed to explore the environment to calculate the feasible trajectory, which will reduce
the efficiency and stability.

In order to improve the computational efficiency and stability, sampling and node
optimization strategies are the key factors. The sampling efficiency and node optimization
speed can be greatly optimized using the prior information in the environment. As an
important part of autonomous driving systems, HD-Maps can accurately provide AVs with
prior information, including lane lines and road signs in the vector layer [22]. However,
on the campus, the complexity of the environment and the lack of regulatory constraints
make the traffic unpredictable. The prior information of a traditional navigation map is not
enough to deal with this situation. To solve these problems, we combined HD-Maps with
the artificial potential field (APF) method to generate a collision risk map (CR-Map) for
sampling-based algorithms.

In our work, we optimized the motion planning module by combining an HD-Map
and a sampling-based algorithm, aiming to quickly obtain high-quality, feasible trajectories
in complex campus scenarios. A fast sampling-based algorithm is proposed for AVs in
campus scenes, which is called the HD-map-guided rapidly-exploring random tree (HDM-
RRT). The overall architecture of the proposed approach in this paper is shown in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 31 
 

 

greatly promoting sampling-based algorithms’ applications in AVs. However, the com-
plexity of campus scenes still restricts the algorithms’ efficiency and optimization. Due to 
the random nature of sampling-based algorithms, a large number of sampling iterations 
are needed to explore the environment to calculate the feasible trajectory, which will re-
duce the efficiency and stability. 

In order to improve the computational efficiency and stability, sampling and node 
optimization strategies are the key factors. The sampling efficiency and node optimization 
speed can be greatly optimized using the prior information in the environment. As an 
important part of autonomous driving systems, HD-Maps can accurately provide AVs 
with prior information, including lane lines and road signs in the vector layer [22]. How-
ever, on the campus, the complexity of the environment and the lack of regulatory con-
straints make the traffic unpredictable. The prior information of a traditional navigation 
map is not enough to deal with this situation. To solve these problems, we combined HD-
Maps with the artificial potential field (APF) method to generate a collision risk map (CR-
Map) for sampling-based algorithms. 

In our work, we optimized the motion planning module by combining an HD-Map 
and a sampling-based algorithm, aiming to quickly obtain high-quality, feasible trajecto-
ries in complex campus scenarios. A fast sampling-based algorithm is proposed for AVs 
in campus scenes, which is called the HD-map-guided rapidly-exploring random tree 
(HDM-RRT). The overall architecture of the proposed approach in this paper is shown in 
Figure 2. 

 
Figure 2. Overall architecture of the algorithm(a-d). 

As shown in Figure 2a, we generate the CR-Map through the vector layer of the HD-
Map and the perception layer of the sensors, drawing on the idea of the APF method. The 
CR-Map can describe the risk coefficient of the collision between the autonomous vehicle 
and other obstacles on the road. The CR-Map is expressed in the form of a grid map, and 
each grid point has a collision risk coefficient. Regions with high collision risk coefficients 
are more dangerous than regions with low collision risk coefficients and will be given 
lower priority in the sampling space. Each node in our algorithm is assigned a collision 
risk coefficient. In the process of node optimization, the collision risk coefficient of each 
node is taken into account when calculating the cost function. The CR-Map can provide 
prior information and heuristic guidance for the sampling and node optimization pro-
cesses. As shown in Figure 2b, we obtain sampling points in the sampling space through 
the CR-Map and Gaussian distribution. The CR-Map can provide heuristic guidance for 
the sampling process and improve the sampling efficiency of the algorithm. The sampling 
range and density are adjusted using the Gaussian distribution. The node optimization 
process in Figure 2c focuses on optimizing the parent–child relationship of the nodes in 
the tree. The cost function for determining the optimal parent node takes into account 
multiple factors such as the trajectory length, trajectory curvature and collision risk 

Figure 2. Overall architecture of the algorithm (a–d).

As shown in Figure 2a, we generate the CR-Map through the vector layer of the HD-
Map and the perception layer of the sensors, drawing on the idea of the APF method. The
CR-Map can describe the risk coefficient of the collision between the autonomous vehicle
and other obstacles on the road. The CR-Map is expressed in the form of a grid map, and
each grid point has a collision risk coefficient. Regions with high collision risk coefficients
are more dangerous than regions with low collision risk coefficients and will be given lower
priority in the sampling space. Each node in our algorithm is assigned a collision risk
coefficient. In the process of node optimization, the collision risk coefficient of each node
is taken into account when calculating the cost function. The CR-Map can provide prior
information and heuristic guidance for the sampling and node optimization processes. As
shown in Figure 2b, we obtain sampling points in the sampling space through the CR-Map
and Gaussian distribution. The CR-Map can provide heuristic guidance for the sampling
process and improve the sampling efficiency of the algorithm. The sampling range and
density are adjusted using the Gaussian distribution. The node optimization process in
Figure 2c focuses on optimizing the parent–child relationship of the nodes in the tree. The
cost function for determining the optimal parent node takes into account multiple factors
such as the trajectory length, trajectory curvature and collision risk coefficient to improve
the convergence rate of the algorithm. Moreover, the lane geometry information and traffic
rule information provided by the HD-Map are used to constrain the node optimization
process. Figure 2d shows examples of the sampling process, node optimization process
and planned trajectory set.



Remote Sens. 2023, 15, 487 4 of 29

The proposed algorithm significantly improves the sampling efficiency and convergence
rate by optimizing the sampling and node optimization processes. Furthermore, the pro-
posed algorithm reduces the iteration times and improves the computational efficiency while
ensuring the trajectory quality. The four main contributions of this paper are as follows:

(1) We propose a CR-Map layer to quantify the collision risk coefficient on the road,
greatly expanding the prior information of the HD-Map to guide motion planning.
The CR-Map is combined with Gaussian distribution for sampling, which significantly
improves the efficiency of motion planning algorithms in campus scenes.

(2) The node optimization strategy of the sampling-based algorithm is deeply optimized
through the prior information of the CR-Map, which greatly improves the convergence
rate, reduces the number of iterations and solves the problem of poor stability in
campus environments.

(3) The proposed HDM-RRT algorithm achieves optimal real-time performance and high-
quality trajectories for autonomous driving in campus scenes. It is of great significance
for applications such as self-driving buses, last-mile delivery logistics and unmanned
patrol vehicles in campus and residential environments.

The remainder of this paper is organized as follows. Section 2 describes the related
work of motion planning algorithms. Section 3 introduces the fundamentals including
the data sources, the vehicle kinematic model and steering method, and the original RRT
and RRT* descriptions. In Section 4, we describe the proposed CR-Map and HDM-RRT
algorithm in detail. In Section 5, three experiments are conducted to compare the proposed
HDM-RRT algorithm with the existing RRT*, DT-RRT* and dynEFWA-APF algorithms.
Section 6 is the conclusion.

2. Related Work

In general, a motion planning module computes a feasible trajectory from the initial
state of an AV to a goal state while satisfying the given kinodynamic and environmental
constraints [19]. Researchers have developed numerous motion planning algorithms and
successfully applied them in specific autonomous driving scenarios [23]. Motion planning
algorithms can be broadly divided into two main categories according to the environmental
modeling and searching strategy: graph search methods and sampling-based methods [17].
Graph search algorithms are a classic motion planning method and widely used in various
applications such as robots, drones and AVs. A graph search algorithm discretizes the
environment around the vehicle into a graph and searches the graph for the shortest path.
Graph search algorithms include Dijkstra [24], A* [25] and the artificial potential field
(APF) [26] method.

The Dijkstra algorithm is a shortest-path algorithm proposed in 1959. It performs a
search to build a tree representing the shortest paths from a given root vertex to all other
vertices in the graph. However, in a dense graph network, Dijkstra’s search efficiency is
very low. A* is a heuristic search algorithm based on weighted graphs as an extension
of the Dijkstra algorithm. A lot of research has been conducted to improve the efficiency
of the A* algorithm [27–29]. The A* algorithm performs effectively on raster maps, but it
is limited by the map resolution. The APF algorithm introduces the concept of physical
fields into motion planning, where a target position generates an attractive field while
obstacles generate repulsive fields [30]. In this way, a collision-free trajectory is calculated
by searching the descending direction of the potential function from the initial point to
the goal point. The simple structure and high computational efficiency of this algorithm
make it widely applicable, but it easily falls into a local minimum point and often cannot
achieve an optimum solution [31]. An improved APF algorithm based on a safety model
analyzes the path planning mechanisms of human drivers [32]. This approach accounts for
multiple traffic factors, making it suitable for AVs, but it has been verified only under ideal
conditions on a structured road with a constant velocity. An optimization method based
on dynEFWA and APF combined was proposed to plan a safe, smooth and dynamically



Remote Sens. 2023, 15, 487 5 of 29

feasible path for AVs [33]. However, this approach is still limited by the complexity of
the environment.

The disadvantage of graph search algorithms is that they search over a fixed graph
discretization; therefore, the trajectories can only be constructed from primitives. The
graph resolution affects the motion planning effect, thus presenting an inescapable problem
for graph search algorithms. At the same time, graph search algorithms cannot tackle
complicated obstacle models in urban scenes as these scenes create modeling difficulties
and reduce computational efficiency. Effective alternatives are sampling-based algorithms
that can overcome the limitations of graph search approaches. Sampling-based methods
sample points in the configuration space and incrementally build a reachability tree. When
the tree is large enough to extend to the goal region, a feasible solution is found by tracing
the edges to the starting state. Sampling-based methods are very effective in solving
complex problems because of their strong exploration properties. The classical sampling-
based algorithms include the rapidly-exploring random tree (RRT) [18] and RRT* [19].

The RRT algorithm was proposed as an efficient method for complex systems and has
the characteristic of rapid exploration by taking a random sample in the configuration space
and extending the tree in the direction of the sample. LaValle argued that the RRT algorithm
is probabilistically complete, which means that a solution can be eventually found if it
exists [34]. The RRT algorithm has attracted extensive attention because of its success in
many tough scenes. Different from many other complete motion planning algorithms, the
RRT framework does not need to explicitly model obstacles in the state space, which saves
a large amount of computation time. Other than the explicit representation of the obstacles,
the RRT algorithm only needs to employ a collision detector. This makes the RRT algorithm
highly efficient for real-time autonomous driving systems [35] and particularly suited for
problems with general differential constraints, complicated obstacle constraints and high
degrees of freedom [36,37]. However, the RRT algorithm quickly obtains a feasible but
suboptimal solution with no consideration of solution optimality [38].

The RRT* algorithm improves the RRT algorithm by solving the optimal problem,
providing not only feasible but also asymptotically optimal solutions. The term asymptoti-
cally optimal means that the obtained trajectory continuously optimizes through increased
sampling until converging to a global optimal solution. The RRT* algorithm converges
with infinite samples but has no guarantees on their rate of convergence, resulting in low
computational efficiency [39]. Dealing with complex scenes, when kinodynamic constraints
are considered, the original RRT* algorithm cannot perform in real-time systems because of
its slow convergence rate to the optimum.

Many researchers have proposed solutions to these RRT* problems. Some worked on
improving the convergence rate [40,41], and others on non-holonomic systems [42,43]. A
revised Gaussian distribution sampling-based RRT* algorithm was proposed that optimizes its
sampling efficiency using the Gaussian distribution to avoid aimless full-plane sampling [44].
Nevertheless, its Gaussian sampling method does not optimize the convergence rate of the
RRT* algorithm. Chen proposed a novel DT-RRT* algorithm utilizing a double-tree structure
with high computational efficiency [21]. The double-tree structure includes an RRT tree and an
RRT* tree. An RRT curve was generated as a reference path for the RRT* algorithm, achieving
a fast convergence rate and a high-quality trajectory. However, this approach can only increase
the convergence rate near the reference path; when the reference path generated via the
RRT algorithm falls into a suboptimal solution, it is difficult for this method to achieve the
optimum. Another double-tree RRT algorithm, Bi-RRT, was proposed and applied to various
autonomous driving scenarios [45,46]. The Bi-RRT algorithm generates double trees from the
initial and goal points simultaneously to increase the convergence rate of the algorithm. Some
researchers enhanced the RRT algorithm performance by combining the APF algorithm and
RRT [47–49]. These methods use the attractive and repulsive forces to offset the sampling
points and nodes and provide better convergence rates. However, in complex scenes, the
repulsive forces of obstacles are too complicated to model, resulting in the low efficiency of
the algorithm.



Remote Sens. 2023, 15, 487 6 of 29

The RRT and RRT* algorithms are effective for constraints such as complicated ob-
stacles and narrow, semi-structured roads in autonomous driving systems, but they still
have many problems including the suboptimal solution of RRT and the slow convergence
rate of RRT*. In campus scenes, the low efficiency of the RRT* algorithm often fails to meet
the real-time requirements. In harsh environments such as narrow entrances, it is also
difficult for RRT* to quickly obtain the first feasible solution. Therefore, it is imperative to
study how the algorithm efficiency can be improved while maintaining the quality of the
trajectory. The main contributions and limitations of existing algorithms and our approach
are shown in Table 1.

Table 1. Main contributions and limitations of existing algorithms and our approach.

Algorithms Contributions Limitations

RRT [18] Fast and effective in
complex problems

RRT always converges to a
suboptimal solution

RRT* [19] Asymptotically optimal
Slow convergence rate to the

optimum results in low efficiency of
RRT*

DT-RRT* [21] Fast convergence rate and
optimal trajectory

The performance of DT-RRT*
depends on the quality of reference

RRT-path

dynEFWA-APF [33] Safe, smooth and
dynamically feasible path

Algorithm applications are limited by
the complexity of the environment

Proposed HDM-RRT Algorithm Improvements

Improving the efficiency and stability while ensuring the trajectory quality in challenging campus
environment

This paper draws on the idea of the artificial potential field method to generate a CR-
Map using the vector layer of the HD-Map and the perceptual layer of the sensors. Through
the prior information and heuristic guidance provided by the CR-Map, the sampling and
node optimization processes of the sampling-based algorithm are improved to optimize
the sampling efficiency and convergence rate. The next section presents the fundamentals
of the proposed algorithm, with abbreviations listed in Table 2 for better readability.

Table 2. The main abbreviations in the manuscript.

Full Form Abbreviations

High-definition map HD-Map
HD-Map-guided rapidly-exploring random tree HDM-RRT

Collision risk map CR-Map
Autonomous vehicle AV

Artificial potential field APF
Rapidly-exploring random tree RRT

Area of interest AOI

3. Fundamentals of Algorithms

The proposed algorithm applies to real-time autonomous driving systems in campus
scenes and uses various sensors of AVs such as the LIDAR, millimeter-wave radar, cameras
and navigation systems. This section introduces the HD-Map used in our approach, the
vehicle kinematic model and steering method, the definitions used in the motion planning
problem and the original RRT and RRT* descriptions.

3.1. HD-Map of Wuhan University

This paper uses an HD-Map of Wuhan University independently developed by our
team. The HD-Map contains a vector layer and a perception layer. The vector layer includes



Remote Sens. 2023, 15, 487 7 of 29

information such as topology, lane lines, lane midlines, intersections, sidewalks and stop
lines. Figure 3 shows the HD-Map information of three campus scenes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 31 
 

 

3. Fundamentals of Algorithms 
The proposed algorithm applies to real-time autonomous driving systems in campus 

scenes and uses various sensors of AVs such as the LIDAR, millimeter-wave radar, cam-
eras and navigation systems. This section introduces the HD-Map used in our approach, 
the vehicle kinematic model and steering method, the definitions used in the motion plan-
ning problem and the original RRT and RRT* descriptions. 

3.1. HD-Map of Wuhan University 
This paper uses an HD-Map of Wuhan University independently developed by our 

team. The HD-Map contains a vector layer and a perception layer. The vector layer in-
cludes information such as topology, lane lines, lane midlines, intersections, sidewalks 
and stop lines. Figure 3 shows the HD-Map information of three campus scenes. 

 
Figure 3. The HD-Map information of three campus scenes(a-c). 

In Figure 3, the vector layer, perception layer and images of three scenes are shown. 
In the vector layer, the purple lines represent the lanes, the blue lines represent the mid-
lines of the lanes and the blue dots are the topology points where the roads connect. The 
yellow areas are the junctions, the pink area is the sidewalk and the red lines are the stop 
lines. The vehicle kinematic model and steering method will be introduced in the next 
section. 

3.2. Vehicle Kinematic Model and Steering 
The kinematic model of the vehicle is a factor that must be considered in motion 

planning. According to the Ackerman geometry, a vehicle’s kinematic model can be sim-
plified to a two-wheeled model (bicycle model). The bicycle model takes a four-wheeled 
model and combines the front and rear wheels to form a two-wheeled model [50]. The 
kinematic model of the AV used in our approach is shown in Figure 4, and for better 
readability, the symbols in this paper are listed in Table 3. 

Table 3. The main symbols in the manuscript. 

Symbols Meanings (𝑥, 𝑦, 𝜓) (𝑥, 𝑦) represents the vehicle coordinates, 𝜓 represents the intersection 
Angle between the head direction and coordinate axis 𝑣 Velocity of vehicle 𝑎 Acceleration of vehicle 𝛿௙ Front-wheel angle of vehicle 𝑤 Angular velocity of front wheel 

Figure 3. The HD-Map information of three campus scenes (a–c).

In Figure 3, the vector layer, perception layer and images of three scenes are shown. In
the vector layer, the purple lines represent the lanes, the blue lines represent the midlines
of the lanes and the blue dots are the topology points where the roads connect. The yellow
areas are the junctions, the pink area is the sidewalk and the red lines are the stop lines.
The vehicle kinematic model and steering method will be introduced in the next section.

3.2. Vehicle Kinematic Model and Steering

The kinematic model of the vehicle is a factor that must be considered in motion
planning. According to the Ackerman geometry, a vehicle’s kinematic model can be
simplified to a two-wheeled model (bicycle model). The bicycle model takes a four-wheeled
model and combines the front and rear wheels to form a two-wheeled model [50]. The
kinematic model of the AV used in our approach is shown in Figure 4, and for better
readability, the symbols in this paper are listed in Table 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 31 
 

 

𝑙 The wheelbase length 𝑋௙௥௘௘ The obstacle-free space 𝑋௢௕௦ The obstacle space 𝑈 The control space 𝑠௜௡௜௧ Initial condition of vehicle 𝑠௚௢௔௟ Goal region of vehicle 𝜆 Feasible trajectory 𝑇(𝑉, 𝐸) A tree 𝑇 containing nodes 𝑉 and edges 𝐸 𝑈௥௘௣ Repulsive force field 𝑑(𝑞, 𝑞௢௕௦) Distance between the grid point 𝑞 and obstacle 𝑞௢௕௦ 𝑄∗ Influence radius of obstacles 𝐹௠௔௫ Maximum value of the repulsive force 

 
Figure 4. Kinematic model of an autonomous vehicle. 

In Figure 4, the vehicle’s state space is (𝑥, 𝑦, 𝜓) ∈ 𝑋, where (𝑥, 𝑦) represents the co-
ordinates of mid-point of rear wheel, as shown by point CG. The 𝜓 represents the inter-
section angle between the head direction and coordinate axis, 𝑙 represents the wheelbase 
length. The kinematics of a front-steering vehicle can be expressed using Equation (1): 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧d𝑥(𝑡)d𝑡 = 𝑣(𝑡) ∙ 𝑐𝑜𝑠𝜓(𝑡)d𝑦(𝑡)d𝑡 = 𝑣(𝑡) ∙ 𝑠𝑖𝑛𝜓(𝑡)d𝑣(𝑡)d𝑡 = 𝑎(𝑡)d𝜓(𝑡)d𝑡 = 𝑣(𝑡) ∙ 𝑡𝑎𝑛𝛿௙(𝑡)𝑙d𝛿௙(𝑡)d𝑡 = 𝑤(𝑡)

 (1)

In Equation (1), 𝑣 represents the velocity of vehicle, 𝑎 represents the corresponding 
acceleration, 𝛿௙ represents the steering angle of front wheels and 𝑤 refers to the corre-
sponding angular velocity. 𝑤(𝑡)  and 𝑎(𝑡)  are control variables and the 𝑠(𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡), 𝑣(𝑡), 𝛿௙(𝑡))  are regarded as state variables. With their initial values 
known, the state variables will be determined one after another through integral pro-
vided. We set 𝑋௢௕௦  as the obstacle region,  𝑋௙௥௘௘ = 𝑋/𝑋௢௕௦  as the obstacle-free space, 𝑢(𝑤, 𝑎) ∈ 𝑈 as the control space, 𝑠௜௡௜௧, 𝑠௚௢௔௟  and 𝜆 as the initial condition, goal region 
and feasible trajectory, respectively. Therefore, the motion planning problem can be 

Figure 4. Kinematic model of an autonomous vehicle.



Remote Sens. 2023, 15, 487 8 of 29

Table 3. The main symbols in the manuscript.

Symbols Meanings

(x, y, ψ)
(x, y) represents the vehicle coordinates, ψ represents the intersection

Angle between the head direction and coordinate axis
v Velocity of vehicle
a Acceleration of vehicle
δ f Front-wheel angle of vehicle
w Angular velocity of front wheel
l The wheelbase length

X f ree The obstacle-free space
Xobs The obstacle space

U The control space
sinit Initial condition of vehicle
sgoal Goal region of vehicle

λ Feasible trajectory
T(V, E) A tree T containing nodes V and edges E

Urep Repulsive force field
d(q, qobs) Distance between the grid point q and obstacle qobs

Q∗ Influence radius of obstacles
Fmax Maximum value of the repulsive force

In Figure 4, the vehicle’s state space is (x, y, ψ) ∈ X, where (x, y) represents the coordi-
nates of mid-point of rear wheel, as shown by point CG. The ψ represents the intersection
angle between the head direction and coordinate axis, l represents the wheelbase length.
The kinematics of a front-steering vehicle can be expressed using Equation (1):

dx(t)
dt = v(t)·cosψ(t)

dy(t)
dt = v(t)·sinψ(t)

dv(t)
dt = a(t)

dψ(t)
dt =

v(t)·tanδ f (t)
l

dδ f (t)
dt = w(t)

(1)

In Equation (1), v represents the velocity of vehicle, a represents the corresponding ac-
celeration, δ f represents the steering angle of front wheels and w refers to the corresponding

angular velocity. w(t) and a(t) are control variables and the s
(

x(t), y(t), ψ(t), v(t), δ f (t)
)

are regarded as state variables. With their initial values known, the state variables will be
determined one after another through integral provided. We set Xobs as the obstacle region,
X f ree = X/Xobs as the obstacle-free space, u(w, a) ∈ U as the control space, sinit, sgoal and
λ as the initial condition, goal region and feasible trajectory, respectively. Therefore, the
motion planning problem can be described as follows: given an initial state sinit and a
goal state sgoal , find a feasible trajectory λ ∈ X f ree and control input u ∈ U that satisfy the
system constraints.

The steering procedure is crucial in the RRT-like algorithm, while the optimal controller
is widely used to propagate a path from one point to another. Nevertheless, it is challenging
to obtain a good input because it relies too much on the controllers’ quality. In this way, it
makes the algorithm’s performance sensitive to the selection of the controllers and inputs,
reducing the robustness. In our approach, we use a fast clothoid fitting method to compute
the steering procedure, proven by Bertolazzi [51]. The clothoid curve is a G1 continuous
curve generated using the Fresnel integral, and its curvature varies linearly with the arc.
Shan developed a CF-pursuit algorithm to decrease fitting errors using the clothoid fitting
method, proving that the clothoid curve is highly consistent with vehicle driving [52]. In
addition, we also define the following terms for the rest of the paper:

(1) Collision_ f ree(λ): checks the obstacle collision; if the λ is feasible, it returns true.
(2) Sample_ f ree: returns a random sample point without collision.



Remote Sens. 2023, 15, 487 9 of 29

(3) Nearest(s, V): returns the node Vclosest to point s in the tree.
(4) NearNodes(V): returns the set of nodes near the node V in the tree.
(5) Steer(s1, s2): propagates a local path λ from point s1 to point s2.

These terms will be used in the pseudocode, formulas and descriptions in the follow-
ing sections.

3.3. Sampling-Based Algorithms: RRT and RRT*

The RRT* algorithm includes all the processes of the RRT algorithm and optimizes
the node optimization strategy of the RRT algorithm. This section will describe the RRT*
algorithm and its optimization process. The process of the RRT* algorithm is shown in
Algorithm 1.

Algorithm 1: RRT*

1: Tree (V← xinit E←Ø);
2: while Flag_stop do
3: xrand ← SampleFree;
4: xnearest ← Nearest(T = (V,E), xrand);
5: xnew ← Steer(xnearest, xrand);
6: costmin←∞;
7: if Collision_free(xnearest, xnew) then
8: Xnearnodes ← NearNodes(T = (V,E), xnew);
9: foreach xnear in Xnearnodes do
10: Rewire (xnear, xnew, costmin);
11: end
12: V←V ∪ {xnew};
13: E← E ∪ {(xnearest, xnew)};
14: foreach xnear in Xnearnodes do
15: if Rewire (xnew, xnear, costmin) then
16: xparent ← Parent(xnear);
17: E← E{(xparent, xnear)}∪{(xnew, xnear)};
18: end
19: end
20: end
21: end

In the RRT* algorithm, the tree T(V, E) is initialized first (Algorithm 1, row 1). Then,
a random sampling point xrand in the X f ree space is generated, and its nearest parent
node in the tree is found, generating a new node xnew through Steer(x1, x2) (Algorithm 1,
rows 3–5). Next, if the point xnew passes the collision detection, the Xnearnodes in the tree are
searched, and the optimal parent node is selected through the process Rewire (Algorithm 1,
rows 9–11). Finally, the point xnew is added to the tree, and then it is checked whether xnew
can be the parent of the node in Xnearnodes (Algorithm 1, rows 14–19). If so, the parent–child
relationship is modified (Algorithm 1, rows 16–17). The optimization of RRT* compared
with RRT is that RRT* has the procedure of rewire after xnew is generated. The procedure
for rewire is described in Algorithm 2.

Algorithm 2: Rewire (x1, x2, costmin)

1: if cost(x1) + cost(Line(x1, x2)) < costmin then
2: costmin← cost(x1) + cost(Line(x1, x2));
3: Return true
4: end

As can be seen in Algorithm 2, the rewire process compares the cost of xnew to the
root through different parent nodes, in order to determine the optimal parent node of



Remote Sens. 2023, 15, 487 10 of 29

xnew. There are two rewire processes in RRT* (Algorithm 1, rows 11 and 17). The first one
determines the parent node of xnew, and the second one finds out whether xnew can replace
the parent node of other nodes. The second rewire process greatly reduces the efficiency
of the algorithm because it needs to correct the relationship between the child and parent
nodes in the tree. In the next section, we will introduce how the proposed HDM-RRT
algorithm avoids this problem.

4. The Proposed HDM-RRT Algorithm

This section describes the proposed HDM-RRT algorithm in detail. The HDM-RRT
algorithm includes the CR-Map, and the sampling, node optimization and trajectory
optimization strategies. First, the CR-Map is proposed as an environmental model to
describe the collision risk on roads. Then, we describe the structure of our approach and
the sampling process. The cost functions for determining the optimal parent node and the
optimal trajectory are described. Furthermore, the constraints and filters that respond to
the requirements of the environment are discussed.

4.1. Collision Risk Map (CR-Map)

The CR-Map is an environmental model describing the collision risk on the road,
represented in the form of a grid map. Based on the artificial potential field (APF) method,
the CR-Map is constructed through the multi-source data, including the vector layer of the
HD-Map and the perception layer of the sensors. A CR-Map example is shown in Figure 5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 31 
 

 

 
Figure 5. An example of a CR-Map(a, b). 

Figure 5a shows the perception layer, and Figure 5b shows the CR-Map. In the CR-
Map, the value of the collision risk for each grid point is represented. The collision risk 
values of different points in the CR-Map vary with the color. The dark-red points have 
large risk values, and the dark-blue points have small risk values. The collision risk values 
of the yellow and green points are between the dark-red points and the dark-blue points. 
The larger the grid point value on the CR-Map, the higher the risk of a vehicle collision. 
The maximum value is set to ten, and the minimum value is set to zero. When the collision 
risk of an area is 10, this area is inaccessible to a vehicle, as in the dark-red areas. When 
the collision risk of an area is zero, this area is feasible for a vehicle, as in the dark-blue 
areas in the map. The CR-Map construction method is described below. 

To model the environment around the vehicle, a LIDAR point cloud is the basic data 
source. The driving environmental model includes the information of feasible road sur-
faces and the information of moving and stationary obstacles, where the accessible trajec-
tory of the vehicle is planned on the road while avoiding obstacles. In the APF method, 
the obstacle in the state space generates repulsion when the target point generates attrac-
tion. We set obstacles on the road to create repulsive force, which means that they are 
inaccessible, and vehicles must avoid them. The road direction is more effective than the 
target point in a local plan, and it is not necessary to reach the target point of each plan. 
Therefore, in the CR-Map, we only need to consider the obstacle’s repulsive force, not the 
target point’s attractive force. Based on the above discussion, we set each grid point of 
obstacles on the map to exert a repulsive force on its surroundings, which is inversely 
proportional to the square of the distance. We use the repulsive field formula of the APF 
method to calculate the collision risk, as shown in Equations (2) and (3) [24]. The collision 
risk coefficient of each grid point on the CR-Map is calculated in Equation (4). 

𝑈௥௘௣ = ቐ𝜌2 ൈ ൬ 1𝑑(𝑞, 𝑞௢௕௦) െ 1𝑄∗൰ଶ 𝑑(𝑞, 𝑞௢௕௦) ൑ 𝑄∗0 𝑑(𝑞, 𝑞௢௕௦) ൒ 𝑄∗ (2) 

 𝐹௥௘௣(௡)௉(௜,௝) = ൝ఘଶ ቀ ଵொ∗ െ ଵௗ(௉(௜,௝),௉(௡))ቁ ଵௗ(௉(௜,௝),௉(௡))మ  డௗడ௉(௡) 𝑑(𝑃(𝑖, 𝑗), 𝑃(𝑛)) ൑ 𝑄∗0 𝑑(𝑃(𝑖, 𝑗), 𝑃(𝑛)) ൒ 𝑄∗ (3) 

Figure 5. An example of a CR-Map (a,b).

Figure 5a shows the perception layer, and Figure 5b shows the CR-Map. In the CR-
Map, the value of the collision risk for each grid point is represented. The collision risk
values of different points in the CR-Map vary with the color. The dark-red points have
large risk values, and the dark-blue points have small risk values. The collision risk values
of the yellow and green points are between the dark-red points and the dark-blue points.
The larger the grid point value on the CR-Map, the higher the risk of a vehicle collision.
The maximum value is set to ten, and the minimum value is set to zero. When the collision
risk of an area is 10, this area is inaccessible to a vehicle, as in the dark-red areas. When the
collision risk of an area is zero, this area is feasible for a vehicle, as in the dark-blue areas in
the map. The CR-Map construction method is described below.



Remote Sens. 2023, 15, 487 11 of 29

To model the environment around the vehicle, a LIDAR point cloud is the basic data
source. The driving environmental model includes the information of feasible road surfaces
and the information of moving and stationary obstacles, where the accessible trajectory of
the vehicle is planned on the road while avoiding obstacles. In the APF method, the obstacle
in the state space generates repulsion when the target point generates attraction. We set
obstacles on the road to create repulsive force, which means that they are inaccessible, and
vehicles must avoid them. The road direction is more effective than the target point in a
local plan, and it is not necessary to reach the target point of each plan. Therefore, in the
CR-Map, we only need to consider the obstacle’s repulsive force, not the target point’s
attractive force. Based on the above discussion, we set each grid point of obstacles on the
map to exert a repulsive force on its surroundings, which is inversely proportional to the
square of the distance. We use the repulsive field formula of the APF method to calculate
the collision risk, as shown in Equations (2) and (3) [24]. The collision risk coefficient of
each grid point on the CR-Map is calculated in Equation (4).

Urep =

{
ρ
2 ×

(
1

d(q,qobs)
− 1

Q∗

)2
d(q, qobs) ≤ Q∗

0 d(q, qobs) ≥ Q∗
(2)

FP(i,j)
rep(n) =

{
ρ
2

(
1

Q∗ −
1

d(P(i,j),P(n))

)
1

d(P(i,j),P(n))2
∂d

∂P(n) d(P(i, j), P(n)) ≤ Q∗

0 d(P(i, j), P(n)) ≥ Q∗
(3)

FP(i,j)
rep = ∑

n
FP(i,j)

rep(n), i f
(

FP(i,j)
rep > Fmax

)
, FP(i,j)

rep = Fmax (4)

where Urep represents the repulsive force field, ρ represents the coefficient, d(q, qobs) is the
distance between the grid point and obstacle and Q∗ is the obstacle influence radius. When
the distance is greater than Q∗, the obstacles’ influence on the grid point is considered
zero. For any point P(i, j) and obstacle point P(n) to be measured in the grid space,
d(P(i, j), P(n)) is the distance between the grid point P(i, j) and obstacle P(n), ∂d

∂P(n) is the
partial derivative vector of the distance from the P(n) to the P(i, j). The repulsive force of
the P(n) to P(i, j) is FP(i,j)

rep(n), and the total repulsive force FP(i,j)
rep is the sum of the repulsive

force of each obstacle point. In our road CR-Map, repulsion is used to calculate the cost
function for determining the optimal trajectory instead of changing the location of sampling
points or existing tree nodes. Hence, we only consider the intensity not the direction of the
repulsion. The repulsive force FP(i,j)

rep generated by multiple obstacle points on the same
grid is superimposed by addition, and the maximum value of the repulsive force of grid
points is Fmax, which is set to 10. When the value of FP(i,j)

rep is 10, the grid is the dark-red

areas in Figure 5b. When the value of FP(i,j)
rep is 0, the grid is the dark-blue areas in Figure 5b.

When the repulsive force value of the grid point is greater than Fmax, it is set to Fmax. After
obtaining the repulsive force field, it is necessary to fuse the road and traffic information
of the HD-Map to generate the CR-Map and obtain the collision risk coefficient of each
grid point.

The CR-Map supports the sampling, node optimization and trajectory optimization
processes. The sampling uses the Gaussian distribution based on the CR-Map coefficient.
The cost functions for selecting the optimal parent node and optimal trajectory also consider
the collision risk coefficient in the CR-Map. Each trajectory in the CR-Map has a risk value,
called CR-Cost, which is obtained by adding the risk coefficient for each grid on this
trajectory. The structure of HDM-RRT will be described in Section 4.2.

4.2. Structure of the Proposed HDM-RRT Algorithm

The proposed HDM-RRT algorithm is an improved sampling-based algorithm based
on a CR-Map. The difference between our approach and the original RRT algorithm lies
in the sampling, node optimization and cost function to determine the optimal parent



Remote Sens. 2023, 15, 487 12 of 29

node and the optimal trajectory. The framework of the HDM-RRT algorithm is shown in
Algorithm 3.

Algorithm 3: HDM_RRT*

1: Tree (V← xinit E←Ø);
2: xrand ← CR_GussianSampling;
3: xnearnodes ← Nearest(T = (V, E), xrand);
4: foreach xnear in xnearnodes sort() do
5: xnew = Steer(xrand, xnearnodes);
6: if constrains_check() then
7: xtemp = xnear;
8: Break;
9: end
10: end
11: xnearnodes ← Nearest(T = (V,E), xnew);
12: foreach xnear in xnearnodes do
13: if cost(xnew) < costmin && constrains_check() then
14: costmin← cost(xnew)
15: xtemparent = xnear;
16: end
17: end
18: xtemp = xtemparent;
19: while xtemp!= xinit do
20: xtemp = xtemp.getparent();
21: if cost(xtemp) + cost(xtemp, xnew) < costmin && constrains_check() then
22: Costmin← cost(xtemp) + cost(xtemp, xnew);
23: xfinalparent = xtemp;
24: end
25: end
26: V← V ∪{xnew}; E← E ∪{(xfinalparent, xnew)};
27: Flag_add = true;

In Algorithm 3, the tree T(V, E) is initialized first (Algorithm 3, row 1). To obtain xrand,
we propose CR_GaussianSampling by combining the Gaussian distribution and CR-Map
to improve the sampling efficiency of the algorithm (Algorithm 3, row 2). The sampling
strategy will be described in Section 4.2.1. After generating a random sample point xrand,
we use the Euclidean distance to find a series of tree nodes closest xnearnodes to the sample
point and sort them by distance (Algorithm 3, rows 4–10). Starting from the nearest tree
node, obstacle detection and kinodynamic constraint detection are carried out one by one;
thus, the passing nodes are taken as candidate parent nodes. The parent node does not
directly match the nearest node of the new node but searches from a point set to avoid
selecting the invalid parent node.

After obtaining the temporary parent node of the new node xtemp, we propose a new
method to replace the original rewire method in RRT*, dividing it into two steps. The
first step is to find the nearby node set of the new node and then calculate the optimal
parent node xtemparent using the new cost function, which takes the CR-Map coefficient into
account (Algorithm 3, rows 12–17). The second part traces the optimal parent node of the
new node to the root point to find out whether there is a better parent node x f inalparent
(Algorithm 3, rows 19–25). There are also two rewire processes in the original optimization
process of RRT*; in particular, the second Rewire(xnew, xnear) needs to modify each child
node of xnear, requiring a huge amount of calculation. Compared with RRT*, the HDM-RRT
method is similar to a shortcut method, improving the computational speed and reducing
the redundancy and tree depth. The new rewire method of the node optimization is shown
in Section 4.2.2. If the above steps pass the obstacle detection and constraint checks, the
new node is pushed into the tree T(V, E) (Algorithm 3, row 26). Finally, the method checks



Remote Sens. 2023, 15, 487 13 of 29

whether the new node can extend directly to the goal point and satisfy the constraints. If
the result is satisfied, this indicates that a feasible trajectory has been generated.

4.2.1. Sampling Strategy

The random distribution sampling method is widely used in sampling-based algo-
rithms, as shown in Figure 6. The red points are the sampling points. It can be seen in
Figure 6 that the sampling points obtained by the random distribution sampling method
are uniformly distributed in the configuration space, which makes this random method
very inefficient.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 31 
 

 

4.2.1. Sampling Strategy 
The random distribution sampling method is widely used in sampling-based algo-

rithms, as shown in Figure 6. The red points are the sampling points. It can be seen in 
Figure 6 that the sampling points obtained by the random distribution sampling method 
are uniformly distributed in the configuration space, which makes this random method 
very inefficient. 

 
Figure 6. Random distribution sampling. 

Gaussian distribution sampling requires a reference point and a reference line, and 
the sampling points are distributed near the reference point. The distribution range of 
sampling points can be adjusted by changing the parameters of the Gaussian distribution. 
The sampling method based on the Gaussian distribution takes the center line of the lane 
as the reference line and randomly selects a reference point on that line. The obtained 
sampling points are shown in Figure 7. Most of the points sampled using the Gaussian 
method are distributed near the center line of the two lanes, while a few points are dis-
tributed relatively far from the center line of the lanes. 

 
Figure 7. Gaussian distribution sampling. 

When there are obstacles in the environment, as shown in Figure 8, the primary task 
of motion planning is to avoid obstacles. In this scenario, the AV has to avoid obstacles to 
change lanes, and the blue curve is the trajectory. Our area of interest (AOI) is between 
the two obstacles, as shown in the green box. When the sampling points are concentrated 
in the AOI, it is easier to avoid obstacles and find feasible trajectories. In order to sample 
more points in the AOI, a sampling method that combines the CR-Map and Gaussian dis-
tribution is proposed, as shown in Algorithm 4. 

Figure 6. Random distribution sampling.

Gaussian distribution sampling requires a reference point and a reference line, and
the sampling points are distributed near the reference point. The distribution range of
sampling points can be adjusted by changing the parameters of the Gaussian distribution.
The sampling method based on the Gaussian distribution takes the center line of the lane as
the reference line and randomly selects a reference point on that line. The obtained sampling
points are shown in Figure 7. Most of the points sampled using the Gaussian method are
distributed near the center line of the two lanes, while a few points are distributed relatively
far from the center line of the lanes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 31 
 

 

4.2.1. Sampling Strategy 
The random distribution sampling method is widely used in sampling-based algo-

rithms, as shown in Figure 6. The red points are the sampling points. It can be seen in 
Figure 6 that the sampling points obtained by the random distribution sampling method 
are uniformly distributed in the configuration space, which makes this random method 
very inefficient. 

 
Figure 6. Random distribution sampling. 

Gaussian distribution sampling requires a reference point and a reference line, and 
the sampling points are distributed near the reference point. The distribution range of 
sampling points can be adjusted by changing the parameters of the Gaussian distribution. 
The sampling method based on the Gaussian distribution takes the center line of the lane 
as the reference line and randomly selects a reference point on that line. The obtained 
sampling points are shown in Figure 7. Most of the points sampled using the Gaussian 
method are distributed near the center line of the two lanes, while a few points are dis-
tributed relatively far from the center line of the lanes. 

 
Figure 7. Gaussian distribution sampling. 

When there are obstacles in the environment, as shown in Figure 8, the primary task 
of motion planning is to avoid obstacles. In this scenario, the AV has to avoid obstacles to 
change lanes, and the blue curve is the trajectory. Our area of interest (AOI) is between 
the two obstacles, as shown in the green box. When the sampling points are concentrated 
in the AOI, it is easier to avoid obstacles and find feasible trajectories. In order to sample 
more points in the AOI, a sampling method that combines the CR-Map and Gaussian dis-
tribution is proposed, as shown in Algorithm 4. 

Figure 7. Gaussian distribution sampling.

When there are obstacles in the environment, as shown in Figure 8, the primary task
of motion planning is to avoid obstacles. In this scenario, the AV has to avoid obstacles to
change lanes, and the blue curve is the trajectory. Our area of interest (AOI) is between the
two obstacles, as shown in the green box. When the sampling points are concentrated in
the AOI, it is easier to avoid obstacles and find feasible trajectories. In order to sample more
points in the AOI, a sampling method that combines the CR-Map and Gaussian distribution
is proposed, as shown in Algorithm 4.



Remote Sens. 2023, 15, 487 14 of 29Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 8. Road environment containing obstacles. 

Algorithm 4: CR_GussianSampling 

1： x0, y0, θ0 = GetReferencepoint(); 
2： do 
3：     Radiusrandom, θrandom = BoxMuller(); 
4：     Radius = σradius * abs(Radiusrandom); 
5：     θ = σθ * θrandom + θ0; 
6：     RandomPoint.x = x0 + Radius * cos(θ); 
7：     RandomPoint.y = y0 + Radius * sin(θ); 
8： while (rand(max_risk) ＜ CRcoefficient(RandomPoint)); 

In Algorithm 4, the reference point of the Gaussian distribution is obtained first (Al-
gorithm 4, row 1). The sampling range can be controlled through the selection of control 
reference points. In the CR-Map, the value of each grid point represents the collision risk 
coefficient. The grid points in the obstacle area have the highest value, and those in the 
area away from the obstacle have the lowest value. Therefore, the area of gradient descent 
in the CR-Map is the surrounding region of the obstacles. In the proposed method, we 
increase the probability of selecting the point in the gradient descent region as the refer-
ence point. Next, the Box–Muller algorithm is employed to obtain Gaussian-distributed 
random numbers. Two Gaussian random numbers, 𝑅𝑎𝑑𝑖𝑢𝑠௥௔௡ௗ௢௠ and 𝜃௥௔௡ௗ௢௠, are cal-
culated using the Box–Muller model (Algorithm 4, row 3). From this, we can calculate the Radius and 𝜃 (Algorithm 4, rows 4–5), where 𝜎௥௔ௗ௜௨௦ and 𝜎ఏ represent the range radius 
and angle of the sampling. After that, the random point can be computed using trigono-
metric functions (Algorithm 4, rows 6–7). The calculated random point must be projected 
into the CR-Map to calculate its collision risk coefficient (Algorithm 4, row 8). Taking the 
CR-Map coefficients into account, a random point is discarded if its collision risk value is 
higher than the generated random risk value. As shown in Figure 9, the proposed sam-
pling method significantly increases the number of samples in the key area near the ob-
stacles. 

 
Figure 9. The combined CR-Map and Gaussian distribution sampling. 

Figure 8. Road environment containing obstacles.

Algorithm 4: CR_GussianSampling

1: x0, y0, θ0 = GetReferencepoint();
2: do
3: Radiusrandom, θrandom = BoxMuller();
4: Radius = σradius * abs(Radiusrandom);
5: θ = σθ * θrandom + θ0;
6: RandomPoint.x = x0 + Radius * cos(θ);
7: RandomPoint.y = y0 + Radius * sin(θ);
8: while (rand(max_risk) < CRcoefficient(RandomPoint));

In Algorithm 4, the reference point of the Gaussian distribution is obtained first
(Algorithm 4, row 1). The sampling range can be controlled through the selection of control
reference points. In the CR-Map, the value of each grid point represents the collision risk
coefficient. The grid points in the obstacle area have the highest value, and those in the
area away from the obstacle have the lowest value. Therefore, the area of gradient descent
in the CR-Map is the surrounding region of the obstacles. In the proposed method, we
increase the probability of selecting the point in the gradient descent region as the reference
point. Next, the Box–Muller algorithm is employed to obtain Gaussian-distributed random
numbers. Two Gaussian random numbers, Radiusrandom and θrandom, are calculated using
the Box–Muller model (Algorithm 4, row 3). From this, we can calculate the Radius and θ
(Algorithm 4, rows 4–5), where σradius and σθ represent the range radius and angle of the
sampling. After that, the random point can be computed using trigonometric functions
(Algorithm 4, rows 6–7). The calculated random point must be projected into the CR-
Map to calculate its collision risk coefficient (Algorithm 4, row 8). Taking the CR-Map
coefficients into account, a random point is discarded if its collision risk value is higher than
the generated random risk value. As shown in Figure 9, the proposed sampling method
significantly increases the number of samples in the key area near the obstacles.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 8. Road environment containing obstacles. 

Algorithm 4: CR_GussianSampling 

1： x0, y0, θ0 = GetReferencepoint(); 
2： do 
3：     Radiusrandom, θrandom = BoxMuller(); 
4：     Radius = σradius * abs(Radiusrandom); 
5：     θ = σθ * θrandom + θ0; 
6：     RandomPoint.x = x0 + Radius * cos(θ); 
7：     RandomPoint.y = y0 + Radius * sin(θ); 
8： while (rand(max_risk) ＜ CRcoefficient(RandomPoint)); 

In Algorithm 4, the reference point of the Gaussian distribution is obtained first (Al-
gorithm 4, row 1). The sampling range can be controlled through the selection of control 
reference points. In the CR-Map, the value of each grid point represents the collision risk 
coefficient. The grid points in the obstacle area have the highest value, and those in the 
area away from the obstacle have the lowest value. Therefore, the area of gradient descent 
in the CR-Map is the surrounding region of the obstacles. In the proposed method, we 
increase the probability of selecting the point in the gradient descent region as the refer-
ence point. Next, the Box–Muller algorithm is employed to obtain Gaussian-distributed 
random numbers. Two Gaussian random numbers, 𝑅𝑎𝑑𝑖𝑢𝑠௥௔௡ௗ௢௠ and 𝜃௥௔௡ௗ௢௠, are cal-
culated using the Box–Muller model (Algorithm 4, row 3). From this, we can calculate the Radius and 𝜃 (Algorithm 4, rows 4–5), where 𝜎௥௔ௗ௜௨௦ and 𝜎ఏ represent the range radius 
and angle of the sampling. After that, the random point can be computed using trigono-
metric functions (Algorithm 4, rows 6–7). The calculated random point must be projected 
into the CR-Map to calculate its collision risk coefficient (Algorithm 4, row 8). Taking the 
CR-Map coefficients into account, a random point is discarded if its collision risk value is 
higher than the generated random risk value. As shown in Figure 9, the proposed sam-
pling method significantly increases the number of samples in the key area near the ob-
stacles. 

 
Figure 9. The combined CR-Map and Gaussian distribution sampling. Figure 9. The combined CR-Map and Gaussian distribution sampling.

After introducing the sampling method, the node optimization strategy of the pro-
posed HDM-RRT algorithm is introduced in detail. It includes the strategy of selecting the



Remote Sens. 2023, 15, 487 15 of 29

optimal parent node, the cost function of determining the optimal parent node and the cost
function of determining the optimal trajectory.

4.2.2. Node Optimization Strategy

The node optimization of our approach is to calculate the optimal parent node of the
new node and avoid excessive computation. Different from RRT*, the search strategy of the
proposed HDM-RRT is similar to a shortcut method, improving the computational speed,
and reducing the redundant branches and tree depth. Our search strategy for selecting the
optimal parent node is divided into four steps, as shown in Figure 10.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 31 
 

 

After introducing the sampling method, the node optimization strategy of the pro-
posed HDM-RRT algorithm is introduced in detail. It includes the strategy of selecting the 
optimal parent node, the cost function of determining the optimal parent node and the 
cost function of determining the optimal trajectory. 

4.2.2. Node Optimization Strategy 
The node optimization of our approach is to calculate the optimal parent node of the 

new node and avoid excessive computation. Different from RRT*, the search strategy of 
the proposed HDM-RRT is similar to a shortcut method, improving the computational 
speed, and reducing the redundant branches and tree depth. Our search strategy for se-
lecting the optimal parent node is divided into four steps, as shown in Figure 10. 

 
Figure 10. New rewire process of HDM-RRT, where (a) is the initial state, (b) is the collision and 
kinematic limitation, (c) shows the selection of the optimal parent node using the cost function and 
(d) shows the tracing of the parent node to the starting point to find out whether there is a better 
parent node. 

In Figure 10a, a series of points closest to the sampling point in the tree are searched 
as candidate parent nodes. The white node is the random sampling point 𝑥௥௔௡ௗ, while the 
green nodes are the candidate parent nodes near the sampling point. In Figure 10b, the 
trajectories of the candidate parent nodes are projected to 𝑥௥௔௡ௗ through the steer process. 
The collision detection, vehicle kinematic constraint detection and environment constraint 
detection of the trajectories are taken to eliminate the unsuitable points. The gray nodes 
are the disqualified parent nodes, while the green nodes are the available parent nodes. 
After obtaining the potential parent nodes, the optimal parent node is selected through 
the global cost of different parent nodes to the root node. The red nodes in Figure 10c are 
the successfully paired parent nodes and sampling points 𝑥௥௔௡ௗ. In Figure 10d, from the 
current optimal parent node tracing back to the root node, the global cost function is used 
to calculate whether there is a better parent node. The connected yellow nodes are the 
parent and child nodes that are finally paired successfully. When calculating the optimal 
parent node and the optimal trajectory, the cost functions must be considered. 

The cost functions in our approach are designed by incorporating multiple factors 
such as the trajectory length, trajectory curvature and CR-Map coefficient. In the CR-Map, 
each grid has a CR-Map coefficient, so we can obtain the CR-Cost of any trajectory. We 
fuse the CR-Cost and trajectory length cost in a weighted way to select the optimal parent 
node, as shown in Equation (5): 𝑛𝑒𝑤𝑐𝑜𝑠𝑡_𝑛(𝑥ଵ, 𝑥ଶ) = 𝛿௖௥ ∗ 𝐶𝑅_𝑐𝑜𝑠𝑡(𝑥ଵ, 𝑥ଶ) ൅ 𝛿௟ ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥ଵ, 𝑥ଶ) (5) 

where, after normalization, 𝐶𝑅_𝑐𝑜𝑠𝑡(𝑥ଵ, 𝑥ଶ) is the CR-Map coefficient of the trajectory 
from 𝑥ଵ to 𝑥ଶ, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥ଵ, 𝑥ଶ) is the travel distance of the trajectory from 𝑥ଵ to 𝑥ଶ, and 

Figure 10. New rewire process of HDM-RRT, where (a) is the initial state, (b) is the collision and
kinematic limitation, (c) shows the selection of the optimal parent node using the cost function and
(d) shows the tracing of the parent node to the starting point to find out whether there is a better
parent node.

In Figure 10a, a series of points closest to the sampling point in the tree are searched
as candidate parent nodes. The white node is the random sampling point xrand, while the
green nodes are the candidate parent nodes near the sampling point. In Figure 10b, the
trajectories of the candidate parent nodes are projected to xrand through the steer process.
The collision detection, vehicle kinematic constraint detection and environment constraint
detection of the trajectories are taken to eliminate the unsuitable points. The gray nodes
are the disqualified parent nodes, while the green nodes are the available parent nodes.
After obtaining the potential parent nodes, the optimal parent node is selected through
the global cost of different parent nodes to the root node. The red nodes in Figure 10c are
the successfully paired parent nodes and sampling points xrand. In Figure 10d, from the
current optimal parent node tracing back to the root node, the global cost function is used
to calculate whether there is a better parent node. The connected yellow nodes are the
parent and child nodes that are finally paired successfully. When calculating the optimal
parent node and the optimal trajectory, the cost functions must be considered.

The cost functions in our approach are designed by incorporating multiple factors
such as the trajectory length, trajectory curvature and CR-Map coefficient. In the CR-Map,
each grid has a CR-Map coefficient, so we can obtain the CR-Cost of any trajectory. We fuse
the CR-Cost and trajectory length cost in a weighted way to select the optimal parent node,
as shown in Equation (5):

newcost_n(x1, x2) = δcr ∗ CR_cost(x1, x2) + δl ∗ length(x1, x2) (5)

where, after normalization, CR_cost(x1, x2) is the CR-Map coefficient of the trajectory from
x1 to x2, length(x1, x2) is the travel distance of the trajectory from x1 to x2, and δcr and δl



Remote Sens. 2023, 15, 487 16 of 29

are the weights of the CR-Cost and trajectory length cost, respectively. The cost function to
select the optimal trajectory is described in Equation (6):

newcost_t(t1) = δcr ∗ CR_cost(t1) + δl ∗ length(t1) + δk ∗ curvature(t1) (6)

where, after normalization, CR_cost(t1) is the CR-Map coefficient of trajectory t1, length(t1)
is the travel distance of trajectory t1, curvature(t1) is the curvature index of trajectory t1,
and δcr, δl and δk are the weights of the CR-Cost, trajectory length cost and curvature
cost, respectively.

4.2.3. Constraints and Filters

HDM-RRT is designed for autonomous vehicles, so the vehicle kinematic model
and traffic constraints have to be considered to filter out some unqualified nodes in the
algorithm. The vector layer of the HD-Map and vehicle parameters are used as a basis for
the constraints. These include the curvature, detour and turning radius constraints.

(1) Curvature constraint: The Dubins curve is one of the most widely used trajectory
methods in autonomous driving, but its curvature is not continuous, which is not
conducive to the stability of AVs. The clothoid curve is employed to generate the
trajectory from state A to state B. As discussed in Section 3.2, the clothoid curve is a G1
continuous curve generated using the Fresnel integral. Unlike the curvature disconti-
nuities of the Dubins curve, the curvature of the clothoid curve varies linearly with
the arc. Studies have shown that the clothoid curve is highly consistent with vehicle
driving [45]. In calculating the clothoid curve, it is easy to obtain the curvature of the
starting point and goal point, and the curvature rate. By limiting the curve curvature,
the trajectory quality can be controlled effectively and fit the vehicle steering model.

(2) Detour constraint: In actual traffic scenes, roads are directional. When driving a
vehicle on the road, it must comply with the traffic rules’ constraints and cannot be
turned around at will. Therefore, we added a circuitous constraint here. It is required
that the sampling point should not select a node whose relative direction is opposite
to the road direction. The schematic diagram is shown in Figure 11.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 31 
 

 

𝛿௖௥ and 𝛿௟ are the weights of the CR-Cost and trajectory length cost, respectively. The 
cost function to select the optimal trajectory is described in Equation (6): 𝑛𝑒𝑤𝑐𝑜𝑠𝑡_𝑡(𝑡ଵ) = 𝛿௖௥ ∗ 𝐶𝑅_𝑐𝑜𝑠𝑡(𝑡ଵ) ൅ 𝛿௟ ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡ଵ) ൅ 𝛿௞ ∗ 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑡ଵ) (6) 

where, after normalization, 𝐶𝑅_𝑐𝑜𝑠𝑡(𝑡ଵ)  is the CR-Map coefficient of trajectory 𝑡ଵ , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡ଵ) is the travel distance of trajectory 𝑡ଵ, 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑡ଵ) is the curvature index of 
trajectory 𝑡ଵ, and 𝛿௖௥, 𝛿௟ and 𝛿௞ are the weights of the CR-Cost, trajectory length cost 
and curvature cost, respectively. 

4.2.3. Constraints and Filters 
HDM-RRT is designed for autonomous vehicles, so the vehicle kinematic model and 

traffic constraints have to be considered to filter out some unqualified nodes in the algo-
rithm. The vector layer of the HD-Map and vehicle parameters are used as a basis for the 
constraints. These include the curvature, detour and turning radius constraints. 

1) Curvature constraint: The Dubins curve is one of the most widely used trajec-
tory methods in autonomous driving, but its curvature is not continuous, which is not 
conducive to the stability of AVs. The clothoid curve is employed to generate the trajec-
tory from state A to state B. As discussed in Section 3.2, the clothoid curve is a G1 contin-
uous curve generated using the Fresnel integral. Unlike the curvature discontinuities of 
the Dubins curve, the curvature of the clothoid curve varies linearly with the arc. Studies 
have shown that the clothoid curve is highly consistent with vehicle driving [45]. In cal-
culating the clothoid curve, it is easy to obtain the curvature of the starting point and goal 
point, and the curvature rate. By limiting the curve curvature, the trajectory quality can 
be controlled effectively and fit the vehicle steering model. 

2) Detour constraint: In actual traffic scenes, roads are directional. When driving 
a vehicle on the road, it must comply with the traffic rules’ constraints and cannot be 
turned around at will. Therefore, we added a circuitous constraint here. It is required that 
the sampling point should not select a node whose relative direction is opposite to the 
road direction. The schematic diagram is shown in Figure 11. 

 
Figure 11. Detour constraint. 

As shown in Figure 11, the black points are our sampling points, and the nodes con-
nected by the green and red dotted lines are the parent nodes to be selected. The red parent 
node is disabled because it is opposite to the sampling point direction of the road. 

3) Turning radius constraint: The trajectory needs to meet the kinodynamic con-
straints of the vehicle when driving, and each vehicle has its turning radius. Therefore, it 
is necessary to add the constraint of the vehicle’s turning radius to the curve so that the 
vehicle can pursue the planned trajectory better, as shown in Equation (7): Δ𝑆 > Δ𝜃𝑘௠௔௫ (7) 

Figure 11. Detour constraint.

As shown in Figure 11, the black points are our sampling points, and the nodes
connected by the green and red dotted lines are the parent nodes to be selected. The red
parent node is disabled because it is opposite to the sampling point direction of the road.

(3) Turning radius constraint: The trajectory needs to meet the kinodynamic constraints
of the vehicle when driving, and each vehicle has its turning radius. Therefore, it is
necessary to add the constraint of the vehicle’s turning radius to the curve so that the
vehicle can pursue the planned trajectory better, as shown in Equation (7):



Remote Sens. 2023, 15, 487 17 of 29

∆S >
∆θ

kmax
(7)

In Equation (7), we set the angle difference between the sampling point and parent
node as ∆θ, their arc length as ∆S and the maximum curve curvature as kmax. An example
of the turning radius constraint is shown in Figure 12.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 31 
 

 

In Equation (7), we set the angle difference between the sampling point and parent 
node as 𝛥𝜃, their arc length as 𝛥𝑆 and the maximum curve curvature as 𝑘௠௔௫. An exam-
ple of the turning radius constraint is shown in Figure 12. 

 
Figure 12. Turning radius constraint. 

In Figure 12, the red node connected by the red dotted line does not satisfy the vehi-
cle’s turning radius requirements, so it is removed. On the contrary, the node connected 
by the green dotted line satisfies the requirements and can be selected as the parent node. 

5. Experiments and Analysis 
5.1. Experimental Design 
5.1.1. Experimental Purpose 

The purpose of the experiments was to verify the effectiveness of the proposed algo-
rithm in improving the sampling efficiency, accelerating the convergence rate and reduc-
ing the number of iterations of the sampling-based algorithm. Moreover, the experiments 
also verified that the proposed algorithm is competent for autonomous driving in campus 
scenes. In order to achieve these experimental purposes, we designed three experiments. 
First, we obtained vector layer and perception layer data of the campus road. We com-
pared the sampling efficiency of the original random-distribution sampling method, the 
improved Gaussian-distribution sampling method and the proposed sampling method 
based on the combination of the CR-Map and Gaussian distribution. Second, we ran three 
motion planning methods on the road for 100 times, namely, the original RRT* algorithm, 
the improved DT-RRT* algorithm and the algorithm proposed in this paper, and com-
pared the average number of iterations, the number of nodes and the number of trajecto-
ries of these three algorithms. Third, we ran an autonomous vehicle on the road and com-
pared the average time taken by the four motion planning algorithms. 

5.1.2. Experimental Environment 
We chose a campus road in Wuhan University as the experimental environment, as 

shown in Figure 13. Figure 13a shows the HD-Map of Wuhan University, and Figure 13b 
shows a vector map of our experimental environment. The main driving parameters of 
the road in this experimental environment are shown in Table 4. 

Figure 12. Turning radius constraint.

In Figure 12, the red node connected by the red dotted line does not satisfy the vehicle’s
turning radius requirements, so it is removed. On the contrary, the node connected by the
green dotted line satisfies the requirements and can be selected as the parent node.

5. Experiments and Analysis
5.1. Experimental Design
5.1.1. Experimental Purpose

The purpose of the experiments was to verify the effectiveness of the proposed algo-
rithm in improving the sampling efficiency, accelerating the convergence rate and reducing
the number of iterations of the sampling-based algorithm. Moreover, the experiments
also verified that the proposed algorithm is competent for autonomous driving in campus
scenes. In order to achieve these experimental purposes, we designed three experiments.
First, we obtained vector layer and perception layer data of the campus road. We com-
pared the sampling efficiency of the original random-distribution sampling method, the
improved Gaussian-distribution sampling method and the proposed sampling method
based on the combination of the CR-Map and Gaussian distribution. Second, we ran three
motion planning methods on the road for 100 times, namely, the original RRT* algorithm,
the improved DT-RRT* algorithm and the algorithm proposed in this paper, and compared
the average number of iterations, the number of nodes and the number of trajectories of
these three algorithms. Third, we ran an autonomous vehicle on the road and compared
the average time taken by the four motion planning algorithms.

5.1.2. Experimental Environment

We chose a campus road in Wuhan University as the experimental environment, as
shown in Figure 13. Figure 13a shows the HD-Map of Wuhan University, and Figure 13b
shows a vector map of our experimental environment. The main driving parameters of the
road in this experimental environment are shown in Table 4.



Remote Sens. 2023, 15, 487 18 of 29Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 31 
 

 

 
Figure 13. The experimental environment in this paper(a, b). 

Table 4. The main driving parameters of the road. 

Item Attributes 
Number of lanes 2 

Lane width 2.3–3 m 
Speed <30 km/h 

Intersections 2 
T-junctions 6 

The environment has a variety of traffic participants such as moving vehicles, electric 
bicycles, pedestrians and static obstacles. The traffic rules on campus are less restrictive; 
for example, pedestrians and bicycles do not necessarily cross the street using the side-
walks, and vehicles may stop at the side of the road. There are two intersections, six T-
junctions and several irregular roads. The speed limit on campus is 30 km/h; therefore, 
our AV drove at medium and low speed in the experiment, with a speed of less than 30 
km/s. The roads in our experiments were all two-lane, with lane widths between 2.3 and 
3 m. 

5.1.3. Experimental Platform 
We used the AV independently developed by the 3 S team of the State Key Labora-

tory of Information Engineering in Surveying, Mapping, and Remote Sensing of Wuhan 
University to conduct the experiments. Our experimental AV is shown in Figure 14, the 
main sensors and configurations on it are shown in Table 5, and programming languages, 
platforms and visualizations used for the three experiments are shown in Table 6. 

Figure 13. The experimental environment in this paper (a,b).

Table 4. The main driving parameters of the road.

Item Attributes

Number of lanes 2
Lane width 2.3–3 m

Speed <30 km/h
Intersections 2
T-junctions 6

The environment has a variety of traffic participants such as moving vehicles, electric
bicycles, pedestrians and static obstacles. The traffic rules on campus are less restrictive; for
example, pedestrians and bicycles do not necessarily cross the street using the sidewalks,
and vehicles may stop at the side of the road. There are two intersections, six T-junctions
and several irregular roads. The speed limit on campus is 30 km/h; therefore, our AV drove
at medium and low speed in the experiment, with a speed of less than 30 km/s. The roads
in our experiments were all two-lane, with lane widths between 2.3 and 3 m.

5.1.3. Experimental Platform

We used the AV independently developed by the 3 S team of the State Key Labora-
tory of Information Engineering in Surveying, Mapping, and Remote Sensing of Wuhan
University to conduct the experiments. Our experimental AV is shown in Figure 14, the
main sensors and configurations on it are shown in Table 5, and programming languages,
platforms and visualizations used for the three experiments are shown in Table 6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 31 
 

 

 

Figure 14. The AV used in our study. 

Table 5. The main configurations and sensors on our autonomous vehicles. 

Sensors Attributes 

Vehicle parameters 
4.3 m long, 1.7 m wide and 2.2 m high (in-

cluding sensors) 

Navigation system 
Integrated IMU, Beidou and wheel speedom-

eter 

LIDAR 32-Line LIDAR 

Radar Two millimeter-wave radars 

Camera Four cameras, including a depth camera 

Table 6. The programming languages, platforms and visualizations used for the three experiments. 

Experiments Programming Languages Platforms Visualizations 

Experiment 1 Python Pycharm Pygame Library 

Experiment 2 Python Pycharm Pygame Library 

Experiment 3 C++ ROS Matplotlib Library 

Our AV is 4.3 m long, 1.7 m wide and 2.2 m high (with sensors). The sensors used on 

our experimental vehicle include a LIDAR, millimeter-wave radars, cameras and naviga-

tion systems. We used a navigation system that integrates inertial navigation, Beidou sat-

ellite navigation and a wheel speedometer. The 32-line LIDAR is on the top of the AV, and 

the millimeter-wave radars are on the front and rear of the AV. Four cameras, including 

a depth camera, are positioned on the front of the car. 

5.1.4. Experimental Steps 

In order to achieve the above experimental objectives, we designed the following ex-

perimental steps: 

Step 1: The campus road of Wuhan University was selected as the experimental en-

vironment, and the HD-Map data and perceptual layer data were processed in advance. 

Step 2: The sensors such as IMU, GNSS and LIDAR on the AV were calibrated first. 

Then, the AV was driven to the specified location to conduct the sampling experiment of 

the three sampling strategies, namely, random distribution sampling, Gaussian distribu-

tion sampling and the proposed CR-Map and Gaussian combination sampling. 

Step 3: RRT*, DT-RRT* and the proposed algorithm were run on the AV in three typ-

ical scenes for 100 times. The number of iterations, the number of nodes and the number 

of trajectories of each algorithm were counted and compared. 

Step 4: The four motion planning algorithms mentioned were run on campus, and 

the computation time of each algorithm was counted to analyze the algorithmic efficiency. 

Figure 14. The AV used in our study.



Remote Sens. 2023, 15, 487 19 of 29

Table 5. The main configurations and sensors on our autonomous vehicles.

Sensors Attributes

Vehicle parameters 4.3 m long, 1.7 m wide and 2.2 m high (including sensors)
Navigation system Integrated IMU, Beidou and wheel speedometer

LIDAR 32-Line LIDAR
Radar Two millimeter-wave radars

Camera Four cameras, including a depth camera

Table 6. The programming languages, platforms and visualizations used for the three experiments.

Experiments Programming
Languages Platforms Visualizations

Experiment 1 Python Pycharm Pygame Library
Experiment 2 Python Pycharm Pygame Library
Experiment 3 C++ ROS Matplotlib Library

Our AV is 4.3 m long, 1.7 m wide and 2.2 m high (with sensors). The sensors used on
our experimental vehicle include a LIDAR, millimeter-wave radars, cameras and navigation
systems. We used a navigation system that integrates inertial navigation, Beidou satellite
navigation and a wheel speedometer. The 32-line LIDAR is on the top of the AV, and the
millimeter-wave radars are on the front and rear of the AV. Four cameras, including a depth
camera, are positioned on the front of the car.

5.1.4. Experimental Steps

In order to achieve the above experimental objectives, we designed the following
experimental steps:

Step 1: The campus road of Wuhan University was selected as the experimental
environment, and the HD-Map data and perceptual layer data were processed in advance.

Step 2: The sensors such as IMU, GNSS and LIDAR on the AV were calibrated first.
Then, the AV was driven to the specified location to conduct the sampling experiment of
the three sampling strategies, namely, random distribution sampling, Gaussian distribution
sampling and the proposed CR-Map and Gaussian combination sampling.

Step 3: RRT*, DT-RRT* and the proposed algorithm were run on the AV in three typical
scenes for 100 times. The number of iterations, the number of nodes and the number of
trajectories of each algorithm were counted and compared.

Step 4: The four motion planning algorithms mentioned were run on campus, and the
computation time of each algorithm was counted to analyze the algorithmic efficiency.

5.2. Sampling Efficiency Analysis

We selected a typical scene to conduct the sampling experiment. The random distribu-
tion sampling, the Gaussian distribution sampling and the proposed CR-Map and Gaussian
combination sampling method were run to generate 10,000 samples in this scenario, and
the results are shown in Figure 15.

This scenario has two lanes in the same direction, separated by a dashed yellow line. In
Figure 15, the blue vehicle represents the starting position of the AV, the white vehicles are
stationary obstacles, the red points are the sampling points and the blue curve is the optimal
trajectory. The area around the obstacles is our area of interest (AOI), which is the green
dotted box area. In sampling-based motion planning algorithms, avoiding obstacles is the
key process. When the sampling points are concentrated around the obstacles, the feasible
trajectory can be obtained faster, and the iteration times of the algorithm can be reduced.
Figure 15a shows that the sampling points obtained by the random distribution sampling
method are uniformly distributed in the configuration space. This random approach is very
inefficient. The points sampled using the Gaussian method in Figure 15b are distributed
near the center line of the two lanes, but there are few points in the obstacle area. Different



Remote Sens. 2023, 15, 487 20 of 29

from the two methods, the proposed sampling method in Figure 15c significantly increases
the number of samples in the key area near the obstacles. This is achieved by increasing
the probability of sampling in the gradient descent regions on the CR-Map. The CR-Map
is a grid map reflecting the collision risk coefficient on the road, and the gradient descent
regions cover the surrounding areas of the obstacles.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 31 
 

 

5.2. Sampling Efficiency Analysis 
We selected a typical scene to conduct the sampling experiment. The random distri-

bution sampling, the Gaussian distribution sampling and the proposed CR-Map and 
Gaussian combination sampling method were run to generate 10,000 samples in this sce-
nario, and the results are shown in Figure 15. 

 
Figure 15. Results of the sampling experiment, where (a) is the result of the random distribution 
sampling method, (b) is the result of the Gaussian distribution sampling method and (c) is the result 
of the proposed sampling method. 

This scenario has two lanes in the same direction, separated by a dashed yellow line. 
In Figure 15, the blue vehicle represents the starting position of the AV, the white vehicles 
are stationary obstacles, the red points are the sampling points and the blue curve is the 
optimal trajectory. The area around the obstacles is our area of interest (AOI), which is the 
green dotted box area. In sampling-based motion planning algorithms, avoiding obstacles 
is the key process. When the sampling points are concentrated around the obstacles, the 
feasible trajectory can be obtained faster, and the iteration times of the algorithm can be 
reduced. Figure 15a shows that the sampling points obtained by the random distribution 
sampling method are uniformly distributed in the configuration space. This random ap-
proach is very inefficient. The points sampled using the Gaussian method in Figure 15b 
are distributed near the center line of the two lanes, but there are few points in the obstacle 
area. Different from the two methods, the proposed sampling method in Figure 15c sig-
nificantly increases the number of samples in the key area near the obstacles. This is 
achieved by increasing the probability of sampling in the gradient descent regions on the 
CR-Map. The CR-Map is a grid map reflecting the collision risk coefficient on the road, 
and the gradient descent regions cover the surrounding areas of the obstacles. 

Figure 15. Results of the sampling experiment, where (a) is the result of the random distribution
sampling method, (b) is the result of the Gaussian distribution sampling method and (c) is the result
of the proposed sampling method.

In this paper, two indexes are set up to evaluate the sampling efficiency. One is the
probability that the sampling points fall in the obstacle intersection area (AOI, green box),
and the other is the probability that the sampling points fall near the optimal trajectory
(blue curve). Table 7 shows the sampling efficiency analysis results of the three methods.

Table 7. The sampling efficiency analysis results of the three methods.

Item (10,000 Samples) Probability (Points in AOI) Probability (Points Near the
Trajectory (<0.5 m))

Random distribution
sampling 1522/10,000 935/10,000

Gaussian distribution
sampling 2038/10,000 2852/10,000

The proposed sampling 8013/10,000 3648/10,000

As can be seen in Table 7, the probability that the sampling points obtained using the
proposed method fall in the AOI is 8013/10,000, which is much higher than that of the



Remote Sens. 2023, 15, 487 21 of 29

other two methods. The probability that the sampling points of the proposed method fall
near the optimal trajectory is 3648/10,000, which is also significantly higher than that of the
other two methods. The higher the probability that the sampling point falls in the area of
interest, the fewer iterations needed to pass the obstacle. The number of iterations required
for the three different algorithms will be analyzed in the node optimization experiment in
the next section.

5.3. Node Optimization Analysis

We set up three typical scenes to carry out the node optimization experiments of the
three algorithms: RRT*, DT-RRT* and the proposed algorithm. For the sake of experimental
rigor, we used the same vehicle kinematic model and collision detection methods in the
three algorithms. In addition, a fast clothoid fitting method was used to compute the
steering procedure. The RRT* [19] algorithm uses the original framework described in
Algorithm 1 and a Gaussian distribution sampling method. The DT-RRT* [21] algorithm
proposed by Chen and Shan was also from our team. It uses a double-tree structure to
improve the efficiency of the algorithm. The proposed algorithm uses the novel algorithm
framework and the CR-Map and Gaussian combination sampling introduced in Section 4.2.
The three experimental scenes are all on the campus road of Wuhan University, as shown
in Figure 16.

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 31 
 

 

 
Figure 16. The scenes of the node optimization experiment. 

Scene 1 is a simple lane-changing overtaking scenario. Scene 2 is a narrow corridor 
formed by two obstacles, with a longitudinal distance of less than 4 m and horizontal dis-
tances of less than 1 m. This scenario requires the AV to drive a smooth curve to avoid 
obstacles along the way, which is used to verify the abilities of the algorithms in narrow 
corridors. Scene 3 is a trapping experiment with two completely different solutions. One 
is wide and easy to find, but over a longer distance. The other is narrow and difficult to 
find, but over a shorter distance. This scene can be used to verify whether the algorithm 
can jump out of the trap and find an optimal solution. Each algorithm was run 100 times 
in three scenarios to analyze the node optimization efficiency. The results are shown in 
Figure 17. 

Figure 16. The scenes of the node optimization experiment.

Scene 1 is a simple lane-changing overtaking scenario. Scene 2 is a narrow corridor
formed by two obstacles, with a longitudinal distance of less than 4 m and horizontal



Remote Sens. 2023, 15, 487 22 of 29

distances of less than 1 m. This scenario requires the AV to drive a smooth curve to avoid
obstacles along the way, which is used to verify the abilities of the algorithms in narrow
corridors. Scene 3 is a trapping experiment with two completely different solutions. One
is wide and easy to find, but over a longer distance. The other is narrow and difficult to
find, but over a shorter distance. This scene can be used to verify whether the algorithm
can jump out of the trap and find an optimal solution. Each algorithm was run 100 times
in three scenarios to analyze the node optimization efficiency. The results are shown in
Figure 17.

Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 31 
 

 

 
Figure 17. Results of node optimization experiments, where (a–c) are Scene 1, (d–f) are Scene 2, and 
(g–i) are Scene 3; (a,d,g) are the results of the RRT* algorithm; (b,e,h) are the results of the DT-RRT* 
algorithm; and (c,f,i) are the results of the proposed algorithm. 

In each result of Figure 17, the light-blue car on the left represents the starting posi-
tion of the vehicle, the white vehicles represent the obstacles and the direction is from left 
to right. The green curves are the tree, the blue curves are the trajectories and the red 
curves are the optimal trajectories. In Figure 17b,e,h, the yellow polylines are the reference 
trajectories generated using the DT-RRT algorithm. The light-blue points outside the road 
boundary are the projection points of the LIDAR point cloud. 

From Figure 17, we can see that the tree of the DT-RRT* algorithm and the proposed 
algorithm is more convergent and concentrated than that of the RRT* algorithm. The DT-
RRT* algorithm has the most concentrated tree, because it calculates the reference trajec-
tory first and then the samples near the reference trajectory (the yellow polyline). The 
convergence rate can be improved in this way, but the feasible trajectories cannot jump 
out of the range of the reference trajectory. Therefore, in Figure 17h, there is a certain 
probability that the DT-RRT* algorithm cannot get out of the trap and can only find the 
suboptimal trajectories. When the reference trajectory obtained by the first tree of the DT-
RRT* algorithm is non-optimal, the whole algorithm cannot find the optimal solution. Dif-
ferent from the DT-RRT* algorithm, the proposed algorithm can not only improve the 
convergence rate but also ensure the exploratory and optimal solution. Next, we will an-
alyze the node optimization efficiency of the three algorithms from the perspective of sta-
tistical data, as shown in Table 8. 

Table 8. The sampling efficiency analysis results of the three methods. 

Item Scene RRT* [19] DT-RRT* [21] Proposed Algorithm 
Iterations of the first tra-

jectory (number of 
times) 

Scene 1 52 41 9 
Scene 2 259 108 24 
Scene 3 55 13 11 

Iterations of the optimal 
trajectory (number of 

times) 

Scene 1 245 134 81 
Scene 2 358 198 114 
Scene 3 469 132 120 

Frequency of failures (in 
1000 iterations) 

Scene 1 0 0 0 
Scene 2 11/100 0 0 

Figure 17. Results of node optimization experiments, where (a–c) are Scene 1, (d–f) are Scene 2, and
(g–i) are Scene 3; (a,d,g) are the results of the RRT* algorithm; (b,e,h) are the results of the DT-RRT*
algorithm; and (c,f,i) are the results of the proposed algorithm.

In each result of Figure 17, the light-blue car on the left represents the starting position
of the vehicle, the white vehicles represent the obstacles and the direction is from left
to right. The green curves are the tree, the blue curves are the trajectories and the red
curves are the optimal trajectories. In Figure 17b,e,h, the yellow polylines are the reference
trajectories generated using the DT-RRT algorithm. The light-blue points outside the road
boundary are the projection points of the LIDAR point cloud.

From Figure 17, we can see that the tree of the DT-RRT* algorithm and the proposed
algorithm is more convergent and concentrated than that of the RRT* algorithm. The
DT-RRT* algorithm has the most concentrated tree, because it calculates the reference
trajectory first and then the samples near the reference trajectory (the yellow polyline). The
convergence rate can be improved in this way, but the feasible trajectories cannot jump
out of the range of the reference trajectory. Therefore, in Figure 17h, there is a certain
probability that the DT-RRT* algorithm cannot get out of the trap and can only find the
suboptimal trajectories. When the reference trajectory obtained by the first tree of the
DT-RRT* algorithm is non-optimal, the whole algorithm cannot find the optimal solution.
Different from the DT-RRT* algorithm, the proposed algorithm can not only improve the
convergence rate but also ensure the exploratory and optimal solution. Next, we will
analyze the node optimization efficiency of the three algorithms from the perspective of
statistical data, as shown in Table 8.



Remote Sens. 2023, 15, 487 23 of 29

Table 8. The sampling efficiency analysis results of the three methods.

Item Scene RRT* [19] DT-RRT* [21] Proposed
Algorithm

Iterations of the first
trajectory (number of times)

Scene 1 52 41 9
Scene 2 259 108 24
Scene 3 55 13 11

Iterations of the optimal
trajectory (number of times)

Scene 1 245 134 81
Scene 2 358 198 114
Scene 3 469 132 120

Frequency of failures (in
1000 iterations)

Scene 1 0 0 0
Scene 2 11/100 0 0
Scene 3 0 0 0

Length of the optimal
trajectory (m)

Scene 1 40.36 40.36 40.38
Scene 2 40.76 40.71 40.60
Scene 3 40.78 42.65 40.61

In Table 8, four indexes are set up to evaluate the node optimization efficiency, which
are the iterations of the first trajectory, the iterations of the optimal trajectory, the frequency
of failures and the length of the optimal trajectory. In each column, the statistical results
of the three scenarios are arranged from top to bottom. It can be seen in Table 8 that
the number of iterations of the proposed algorithm to obtain the first trajectory and the
optimal trajectory in the three scenarios is significantly smaller than that of the other
two algorithms, and the optimal trajectory length obtained by the proposed algorithm is
basically the shortest. This indicates that the convergence rate of our approach is faster
than the existing two algorithms while ensuring the trajectory quality. The performance of
the three algorithms in different scenarios is described in detail below.

Scene 1 is a simple lane-changing overtaking scenario. The average number of itera-
tions of the first trajectory of the proposed method is nine, which is much lower than the
fifty-two and forty-one iterations of the RRT* and DT-RRT* algorithms. This shows that the
proposed algorithm finds the feasible trajectory much faster than the existing method. For
the iterations of the optimal trajectory, the proposed algorithm also significantly outper-
forms the other two algorithms. Our approach’s convergence rate to the optimal solution is
about 3 times faster than RRT* and 1.5 times faster than DT-RRT* in scene 1. The DT-RRT*
algorithm needs a large number of iterations even if its tree converges, because its reference
trajectory also needs to be obtained by sampling. The optimal trajectory length obtained by
the three algorithms is similar.

In Scene 2, there is a narrow corridor where feasible trajectories are more difficult to
find. Therefore, the three algorithms require more iterations than Scene 1. Similar to Scene
1, the proposed algorithm requires less iterations to obtain the first feasible trajectory and
the optimal trajectory than the other two algorithms. As can be seen in Figure 17d, the tree
of the original RRT* algorithm is very divergent, and it takes, on average, 259 iterations
to find a feasible trajectory. Moreover, the original RRT* algorithm fails to find a feasible
trajectory 11 times out of 100. The DT-RRT* algorithm also takes an average of 108 iterations
to find the first feasible trajectory, while the proposed algorithm only takes an average
of 24 iterations to find the first feasible trajectory. In summary, our proposed method
converges about 3 times faster than RRT* and 1.7 times faster than DT-RRT* in scene 2. It is
achieved by the heuristic information provided via the CR-Map, which can improve the
sampling and node optimization efficiency of the proposed algorithm and greatly accelerate
the convergence rate.

Scene 3 is a trap experiment, with a longer path that is easy to find, and a shorter path
that is less easy to find. As can be seen in Figure 17g–i, both the original RRT* and the
proposed algorithm jump out of the trap and find the optimal trajectory, but the DT-RRT
algorithm fails to jump out of the trap. Because the reference trajectory obtained using
DT-RRT* through the first tree fails to find the optimal solution, the whole algorithm is



Remote Sens. 2023, 15, 487 24 of 29

affected. Because the proposed algorithm preferentially samples in the gradient descent
region in the CR-Map, it is easier for it to find the corridor between the two obstacles. At
the same time, by optimizing the cost function of finding the optimal parent node, it is
easier for the algorithm to converge to the solution with the minimum comprehensive cost.
In Scene 3, the convergence rate of our approach is about 4 times faster than RRT* and
slightly faster than DT-RRT*.

Through the node optimization experiment, the proposed algorithm can improve
the convergence rate while ensuring the trajectory quality and strong exploration. The
convergence rate of the proposed algorithm in the three scenes are significantly faster than
the other two existing algorithms. In the next section, we will collect the computation
time of the three algorithms and analyze their algorithmic efficiency by conducting an
autonomous driving experiment without intervention.

5.4. Algorithm Efficiency Analysis

We selected the road in Wuhan University to conduct the autonomous driving experi-
ments without human intervention, in order to analyze the algorithmic efficiency of the
four motion planning methods. The body of our algorithm was written in C++, using a
computing module installed in our AV. The experiment scene is shown in Figure 18.

Remote Sens. 2023, 15, x FOR PEER REVIEW 26 of 31 
 

 

of the three algorithms and analyze their algorithmic efficiency by conducting an autono-
mous driving experiment without intervention. 

5.4. Algorithm Efficiency Analysis 
We selected the road in Wuhan University to conduct the autonomous driving ex-

periments without human intervention, in order to analyze the algorithmic efficiency of 
the four motion planning methods. The body of our algorithm was written in C++, using 
a computing module installed in our AV. The experiment scene is shown in Figure 18.  

 
Figure 18. The algorithm efficiency experiment scene(a, b). 

Figure 18a shows the experimental environment of the algorithm efficiency experi-
ment, the purple part of Figure 18b is the vector layer of the map and the blue points are 
the trajectory of this experiment. The trajectory is about one kilometer long, with one in-
tersection and three T-junctions. Several sensors were used including a map module, in-
tegrated navigation system, LIDAR module, vision module and the AV’s control system. 
In the motion planning system, the re-planning command would be triggered when the 
planned trajectory encounters obstacles, drives to the re-planning point or decides to 
change the trajectory. We set a motion planning process from the beginning to obtain the 
first feasible trajectory as one full-cycle re-planning process. Table 9 shows the statistical 
data of each planning after each algorithm completed the experiment. 

Table 9. Performance comparison with three motion planning algorithms in the algorithm efficiency 
experiment. 

Item RRT* [19] DT-RRT* [21] 
dynEFWA-

APF [33] Proposed Algorithm 

Failed times (manual 
intervention times) 4 0 1 0 

Average iterations of 
first trajectory 169 54 / 18 

Average iterations of 
optimal trajectory 421 142 / 111 

Average number of 
trajectories 35 51 1 78 

Figure 18. The algorithm efficiency experiment scene (a,b).

Figure 18a shows the experimental environment of the algorithm efficiency experi-
ment, the purple part of Figure 18b is the vector layer of the map and the blue points are the
trajectory of this experiment. The trajectory is about one kilometer long, with one intersec-
tion and three T-junctions. Several sensors were used including a map module, integrated
navigation system, LIDAR module, vision module and the AV’s control system. In the
motion planning system, the re-planning command would be triggered when the planned
trajectory encounters obstacles, drives to the re-planning point or decides to change the
trajectory. We set a motion planning process from the beginning to obtain the first feasible
trajectory as one full-cycle re-planning process. Table 9 shows the statistical data of each
planning after each algorithm completed the experiment.

As can be seen from the results in Table 9, the RRT* algorithm failed four times, and
the dynEFWA-APF algorithm failed once. The proposed algorithm and DT-RRT* algorithm
have no manual intervention for planning failure. The RRT* algorithm failed at the same
intersection where the right-turn road was narrowed due to construction. After four
manual adjustments to the vehicle’s position, the RRT* algorithm passed successfully. The
dynEFWA-APF algorithm failed between the playground gate and the T-junction. The
algorithm picked a road into the playground that cannot be backed out of. After manual



Remote Sens. 2023, 15, 487 25 of 29

intervention to adjust the position of the vehicle, the algorithm successfully passed. Since
the dynEFWA-APF algorithm is not a sampling-based algorithm and does not need to
throw sampling points to explore the environment, the indexes of average iterations of first
trajectory and average iterations of optimal trajectory are not evaluated.

Table 9. Performance comparison with three motion planning algorithms in the algorithm effi-
ciency experiment.

Item RRT* [19] DT-RRT* [21] dynEFWA-APF
[33]

Proposed
Algorithm

Failed times (manual
intervention times) 4 0 1 0

Average iterations of first
trajectory 169 54 / 18

Average iterations of
optimal trajectory 421 142 / 111

Average number of
trajectories 35 51 1 78

Average computation time
of first trajectory (ms) 104.79 24.10 42.24 15.98

In Table 9, the average number of iterations of the proposed algorithm on the first
trajectory is about nine times less than RRT* and three times less than DT-RRT*. The average
number of iterations of the proposed algorithm on the optimal trajectory is about four times
less than RRT* and slightly less than DT-RRT*. It means that the convergence rate of our
approach is faster than the RRT* and DT-RRT*, which is consistent with the conclusion in the
node optimization experiment. In terms of the number of feasible trajectories obtained, the
proposed algorithm also obtains more trajectories than the RRT* and DT-RRT* algorithms.
Because the sampling points of the proposed algorithm are concentrated in the AOI, more
effective nodes and trajectories can be obtained in the same number of iterations. The
average computation time of RRT*, DT-RRT*, dynEFWA-APF and the proposed algorithm
is 104.79 ms, 24.10 ms, 42.24 ms and 15.98 ms, respectively. It means that the proposed
algorithm also outperforms the other three algorithms in terms of the computational time
to obtain the first feasible trajectory. The computation time consumed by each re-planning
of the four algorithms in this experiment is shown in Figure 19.

In Figure 19, the brown curve in the XY plane is the driving trajectory of this exper-
iment. The coordinates of the X and Y axes are in meters. The Z axis is in milliseconds,
representing the computation time. A larger value of Z indicates that the algorithm is
more time-consuming and less efficient. The blue curve is the time of the RRT* algorithm,
the green curve is the time of the DT-RRT* algorithm, the pink curve is the time of the
dynEFWA-APF algorithm and the red curve is the time of the proposed algorithm. As
can be seen in Figure 19, the RRT* algorithm has the longest re-planning time, followed
by the DT-RRT* algorithm, and the proposed algorithm has the shortest re-planning time.
The computational time of the proposed algorithm is within 20 ms, that of the DT-RRT*
algorithm is also around 20 ms, that of the dynEFWA-APF algorithm is around 40 ms and
that of the original RRT* algorithm is around 100 ms. When it comes to the intersection, the
computational time of the four motion planning algorithms increases considerably. The
computation time of DT-RRT* at the intersection reaches 90 ms, and that of the original
RRT* algorithm reaches 150 ms. However, the proposed algorithm can still calculate the
first feasible trajectory within 30 ms at the intersection. The reason why the proposed
algorithm requires the least computation time will be analyzed next.



Remote Sens. 2023, 15, 487 26 of 29Remote Sens. 2023, 15, x FOR PEER REVIEW 28 of 31 
 

 

 
Figure 19. The computation time of the first trajectory of the four algorithms. 

In Figure 19, the brown curve in the XY plane is the driving trajectory of this experi-
ment. The coordinates of the X and Y axes are in meters. The Z axis is in milliseconds, 
representing the computation time. A larger value of Z indicates that the algorithm is 
more time-consuming and less efficient. The blue curve is the time of the RRT* algorithm, 
the green curve is the time of the DT-RRT* algorithm, the pink curve is the time of the 
dynEFWA-APF algorithm and the red curve is the time of the proposed algorithm. As can 
be seen in Figure 19, the RRT* algorithm has the longest re-planning time, followed by the 
DT-RRT* algorithm, and the proposed algorithm has the shortest re-planning time. The 
computational time of the proposed algorithm is within 20 ms, that of the DT-RRT* algo-
rithm is also around 20 ms, that of the dynEFWA-APF algorithm is around 40 ms and that 
of the original RRT* algorithm is around 100 ms. When it comes to the intersection, the 
computational time of the four motion planning algorithms increases considerably. The 
computation time of DT-RRT* at the intersection reaches 90 ms, and that of the original 
RRT* algorithm reaches 150 ms. However, the proposed algorithm can still calculate the 
first feasible trajectory within 30 ms at the intersection. The reason why the proposed al-
gorithm requires the least computation time will be analyzed next. 

The original RRT* algorithm needs to adjust the structure of the tree for each rewire 
process of the iteration, which results in it having the longest computation time. The DT-
RRT* algorithm can ensure high computational efficiency, but the calculation time will 
rise sharply at the intersection. Because DT-RRT* is a double-tree algorithm, its perfor-
mance depends on the reference path generated via the first RRT tree. When the environ-
ment becomes complicated, such as the intersection, the time for the RRT tree to find the 
optimal trajectory becomes longer, or it cannot even find the optimal solution. The calcu-
lation time of the dynEFWA-APF algorithm is relatively stable because it is not a random 

Figure 19. The computation time of the first trajectory of the four algorithms.

The original RRT* algorithm needs to adjust the structure of the tree for each rewire
process of the iteration, which results in it having the longest computation time. The DT-
RRT* algorithm can ensure high computational efficiency, but the calculation time will rise
sharply at the intersection. Because DT-RRT* is a double-tree algorithm, its performance
depends on the reference path generated via the first RRT tree. When the environment
becomes complicated, such as the intersection, the time for the RRT tree to find the optimal
trajectory becomes longer, or it cannot even find the optimal solution. The calculation time
of the dynEFWA-APF algorithm is relatively stable because it is not a random sampling
algorithm. Its computation time is limited by the complexity of the environment. The
proposed algorithm has the shortest computation time and can deal with the intersections
well, because the proposed algorithm combines the prior information of the HD-Map and
the fast exploration of the RRT algorithm. At the intersections, due to the guidance of the
HD-Map, the sampling points are concentrated in the effective areas, which greatly reduces
the planning time. After the first feasible trajectory is obtained, the proposed algorithm will
continue sampling to continuously optimize the trajectory until the next re-planning. This
experiment shows that the proposed algorithm outperforms the original RRT* algorithm,
dynEFWA-APF algorithm and DT-RRT* algorithm in terms of algorithm efficiency.

In general, through sampling efficiency experiments, node optimization experiments
and algorithm efficiency experiments, it can be seen that the proposed algorithm optimizes
the sampling efficiency, accelerates the convergence speed, reduces the number of iterations
and improves the algorithm efficiency. Moreover, the proposed algorithm can meet the
real-time requirements of autonomous driving in the complex campus environment while
ensuring the trajectory quality.



Remote Sens. 2023, 15, 487 27 of 29

6. Conclusions

In this paper, we proposed a fast HD-Map-guided motion planning algorithm, HDM-
RRT, to solve the autonomous driving problem in challenging campus environments. One
of the innovations is that we propose a CR-Map that quantifies the collision risk coefficient
on the road and combines it with the Gaussian distribution for sampling. Results of experi-
ments show that the sampling efficiency of our proposed method is four times higher than
that of Gaussian distribution sampling. Then, we deeply optimize the node optimization
strategy through the prior information of the CR-Map. It improves the convergence rate
of the algorithm and is beneficial to the stability of AVs in campus environments. In real
scenario experiments, the average computation time of the proposed algorithm is only
15.98 ms, which is much better than that of the three compared algorithms. It illustrates
that our approach is competent for autonomous driving in campus environments and has
significant implications for campus applications such as self-driving buses, autonomous
logistics and unmanned patrol vehicles. However, further improvements can also be made
to the proposed algorithm. A possible direction is to continue optimizing sampling meth-
ods to accommodate different road scenarios, such as intersections and U-turn scenarios.
Another direction is to continue mining HD-Map information to generate not only collision
risk maps but also safe driving areas to guide AVs.

Author Contributions: X.G. made contributions to the research conception, experimental design
and manuscript writing; Y.C. helped with the design and analysis of the experiments; J.Z. gave
instructions for the graphs, tables and structure of the paper; Y.H. contributed to the processing of
perception and map data; B.L. gave guidance to the conception and experimental design of the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China under Grant 2021YFB2501100.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control. Robot.

Auton. Syst. 2018, 1, 187–210. [CrossRef]
2. Pei, S.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in

perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 10 December 2019; pp. 2443–2451.

3. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards
fully autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), New
York, NY, USA, 5–9 June 2011; pp. 163–168.

4. Zhou, J.; Guo, Y.; Bian, Y.; Huang, Y.; Li, B. Lane Information Extraction for High Definition Maps Using Crowdsourced Data.
IEEE Trans. Intell. Transp. Syst. 2022, 1–11. [CrossRef]

5. Aldibaja, M.; Suganuma, N.; Yanase, R. 2.5D Layered Sub-Image LIDAR Maps for Autonomous Driving in Multilevel Environ-
ments. Remote Sensing 2022, 14, 5847. [CrossRef]

6. Xiao, J.; Guo, H.; Yao, Y.; Zhang, S.; Zhou, J.; Jiang, Z. Multi-Scale Object Detection with the Pixel Attention Mechanism in a
Complex Background. Remote Sens. 2022, 14, 3969. [CrossRef]

7. Zhang, H.; Li, W.; Qian, C.; Li, B. A real time localization system for vehicles using terrain-based time series subsequence
matching. Remote Sens. 2020, 12, 2607. [CrossRef]

8. Kang, M.-S.; Ahn, J.-H.; Im, J.-U.; Won, J.-H. Lidar- and V2X-Based Cooperative Localization Technique for Autonomous Driving
in a GNSS-Denied Environment. Remote Sens. 2022, 14, 5881. [CrossRef]

9. Shan, Y.; Zheng, B.; Chen, L.; Chen, L.; Chen, D. A reinforcement learning-based adaptive path tracking approach for autonomous
driving. IEEE Trans. Veh. Technol. 2020, 69, 10581–10595. [CrossRef]

10. Feng, G.; Han, Y.; Li, S.E.; Shaobing, X.; Dongfang, D. Accurate Pseudospectral Optimization of Nonlinear Model Predictive
Control for High-performance Motion Planning. IEEE Trans. Intell. Veh. 2022, 1. [CrossRef]

11. Latombe, J.C. Motion planning: A journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 1999,
18, 1119–1128. [CrossRef]

http://doi.org/10.1146/annurev-control-060117-105157
http://doi.org/10.1109/TITS.2022.3222504
http://doi.org/10.3390/rs14225847
http://doi.org/10.3390/rs14163969
http://doi.org/10.3390/rs12162607
http://doi.org/10.3390/rs14225881
http://doi.org/10.1109/TVT.2020.3014628
http://doi.org/10.1109/TIV.2022.3153633
http://doi.org/10.1177/02783649922067753


Remote Sens. 2023, 15, 487 28 of 29

12. Li, B.; Liu, S.; Tang, J.; Gaudiot, J.L.; Zhang, L.; Kong, Q. Autonomous last-mile delivery vehicles in complex traffic environments.
Computer 2020, 53, 26–35. [CrossRef]

13. Wu, Y.; Ding, Y.; Ding, S.; Savaria, Y.; Li, M. Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous
Unmanned Ground Vehicles. Math. Probl. Eng. 2021, 2021, 5546581. [CrossRef]

14. Wang, H.; Zhang, L.; Kong, Q.; Zhu, W.; Zheng, J.; Zhuang, L.; Xu, X. Motion planning in complex urban environments: An
industrial application on autonomous last-mile delivery vehicles. J. Field Robot. 2022, 39, 1258–1285. [CrossRef]

15. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

16. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468.
[CrossRef]

17. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

18. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; TR 98-11; Department of Computer Science, Iowa State
University: Ames, IA, USA, 1998.

19. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
20. Wang, J.; Li, B.; Meng, M.Q.H. Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning.

Expert Syst. Appl. 2021, 170, 114541. [CrossRef]
21. Chen, L.; Shan, Y.; Tian, W.; Li, B.; Cao, D. A fast and efficient double-tree RRT-like sampling-based planner applying on mobile

robotic systems. IEEE/ASME Trans. Mechatron. 2018, 23, 2568–2578. [CrossRef]
22. Zheng, L.; Song, H.; Li, B.; Zhang, H. Generation of lane-level road networks based on a trajectory-similarity-join pruning strategy.

ISPRS Int. J. Geo.-Inf. 2019, 8, 416. [CrossRef]
23. Zuo, X.; Zhou, J.; Yang, F.; Su, F.; Zhu, H.; Li, L. Real-time Global Action Planning for Unmanned Ground Vehicle Exploration in

Three-dimensional Spaces. Expert Syst. Appl. 2022, 215, 119264. [CrossRef]
24. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
25. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
26. Kathib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 490–496.
27. Min, H.; Xiong, X.; Wang, P.; Yu, Y. Autonomous driving path planning algorithm based on improved A algorithm in unstructured

environment. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 513–526. [CrossRef]
28. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-star algorithm. An improved A-star algorithm for AGV path

planning in a port environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]
29. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann.

Arbor. 2008, 1001, 18–80.
30. Koren, Y.; Borenstein, J. Potential field methods and their inherent limitations for mobile robot navigation. Icra 1991, 1398–1404.
31. Xinyu, W.; Xiaojuan, L.; Yong, G.; Jiadong, S.; Rui, W. Bidirectional potential guided rrt for motion planning. IEEE Access 2019,

7, 95046–95057. [CrossRef]
32. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle avoidance path planning design for autonomous driving vehicles based on an

improved artificial potential field algorithm. Energies 2019, 12, 2342. [CrossRef]
33. Li, H.; Liu, W.; Yang, C.; Wang, W.; Qie, T.; Xiang, T. An Optimization-based Path Planning Approach for Autonomous Vehicles

using dynEFWA-Artificial Potential Field. IEEE Trans. Intell. Veh. 2021, 7, 263–272. [CrossRef]
34. LaValle, S.M.; Kuffner Jr, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
35. Kuwata, Y.; Teo, J.; Fiore, G.; Karaman, S.; Frazzoli, E.; How, J.P. Real-time motion planning with applications to autonomous

urban driving. IEEE Trans. Control Syst. Technol. 2009, 17, 1105–1118. [CrossRef]
36. Jaillet, L.; Hoffman, J.; Van den Berg, J.; Abbeel, P.; Porta, J.M.; Goldberg, K. EG-RRT: Environment-guided random trees for

kinodynamic motion planning with uncertainty and obstacles. In Proceedings of the International Conference on Intelligent
Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2646–2652.

37. Perez, A.; Platt, R.; Konidaris, G.; Kaelbling, L.; Lozano-Perez, T. LQR-RRT: Optimal sampling-based motion planning with
automatically derived extension heuristics. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
St Paul, MN, USA, 14–18 May 2012; pp. 2537–2542.

38. Karaman, S.; Frazzoli, E. Incremental sampling-based algorithms for optimal motion planning. Robot. Sci. Syst. VI 2010, 104.
[CrossRef]

39. Gammell, J.D.; Strub, M.P. Asymptotically optimal sampling-based motion planning methods. Annu. Rev. Control. Robot. Auton.
Syst. 2021, 4, 295–318. [CrossRef]

40. Salzman, O.; Halperin, D. Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Robot. 2016,
32, 473–483. [CrossRef]

41. Littlefield, Z.; Bekris, K.E. Informed asymptotically near-optimal planning for field robots with dynamics. In Field and Service
Robotics; Springer: Cham, Switzerland, 2018; pp. 449–463.

42. Pareekutty, N.; James, F.; Ravindran, B.; Shah, S.V. qRRT: Quality-Biased Incremental RRT for Optimal Motion Planning in
Non-Holonomic Systems. arXiv 2021, arXiv:2101.02635, 2021.

http://doi.org/10.1109/MC.2020.2970924
http://doi.org/10.1155/2021/5546581
http://doi.org/10.1002/rob.22107
http://doi.org/10.1177/0278364909359210
http://doi.org/10.3390/vehicles3030027
http://doi.org/10.1109/TIV.2016.2578706
http://doi.org/10.1177/0278364911406761
http://doi.org/10.1016/j.eswa.2020.114541
http://doi.org/10.1109/TMECH.2018.2821767
http://doi.org/10.3390/ijgi8090416
http://doi.org/10.1016/j.eswa.2022.119264
http://doi.org/10.1007/BF01386390
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1177/0954407020959741
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.1109/ACCESS.2019.2928846
http://doi.org/10.3390/en12122342
http://doi.org/10.1109/TIV.2021.3123341
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/TCST.2008.2012116
http://doi.org/10.48550/arXiv.1005.0416
http://doi.org/10.1146/annurev-control-061920-093753
http://doi.org/10.1109/TRO.2016.2539377


Remote Sens. 2023, 15, 487 29 of 29

43. Gan, Y.; Zhang, B.; Ke, C.; Zhu, X.; He, W.; Ihara, T. Research on Robot Motion Planning Based on RRT Algorithm with
Nonholonomic Constraints. Neural Process. Lett. 2021, 53, 3011–3029. [CrossRef]

44. Yuncheng, L.; Jie, S. A revised Gaussian distribution sampling scheme based on RRT algorithms in robot motion planning. In
Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April
2017; pp. 22–26.

45. Xi, H. Obstacle avoidance trajectory planning of redundant robots based on improved Bi-RRT. Int. J. Syst. Assur. Eng. Manag.
2021, 1–10. [CrossRef]

46. Ge, Q.; Li, A.; Li, S.; Du, H.; Huang, X.; Niu, C. Improved Bidirectional RRT Path Planning Method for Smart Vehicle. Math. Probl.
Eng. 2021, 2021, 6669728. [CrossRef]

47. Qureshi, A.H.; Iqbal, K.F.; Qamar, S.M.; Islam, F.; Ayaz, Y.; Muhammad, N. Potential guided directional-RRT for accelerated
motion planning in cluttered environments. In Proceedings of the 2013 IEEE International Conference on Mechatronics and
Automation, Takamatsu, Japan, 4–7 August 2013; pp. 519–524.

48. Tang, X.; Chen, F. Robot path planning algorithm based on bi-rrt and potential field. In Proceedings of the 2020 IEEE International
Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020; pp. 1251–1256.

49. An, H.; Hu, J.; Lou, P. Obstacle Avoidance Path Planning Based on Improved APF and RRT. In Proceedings of the 2021 4th
International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China,
26–28 March 2021; pp. 1028–1032.

50. Polack, P.; Altché, F.; d’Andréa-Novel, B.; de La Fortelle, A. The kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles? In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA,
USA, 11–14 June 2017; pp. 812–818.

51. Bertolazzi, E.; Frego, M. Fast and accurate clothoid fitting. arXiv 2012, arXiv:1209.0910.
52. Shan, Y.; Yang, W.; Chen, C.; Zhou, J.; Zheng, L.; Li, B. CF-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller

for autonomous vehicles. Int. J. Adv. Robot. Syst. 2015, 12, 134. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11063-021-10536-4
http://doi.org/10.1007/s13198-021-01255-z
http://doi.org/10.1155/2021/6669728
http://doi.org/10.5772/61391

	Introduction 
	Related Work 
	Fundamentals of Algorithms 
	HD-Map of Wuhan University 
	Vehicle Kinematic Model and Steering 
	Sampling-Based Algorithms: RRT and RRT* 

	The Proposed HDM-RRT Algorithm 
	Collision Risk Map (CR-Map) 
	Structure of the Proposed HDM-RRT Algorithm 
	Sampling Strategy 
	Node Optimization Strategy 
	Constraints and Filters 


	Experiments and Analysis 
	Experimental Design 
	Experimental Purpose 
	Experimental Environment 
	Experimental Platform 
	Experimental Steps 

	Sampling Efficiency Analysis 
	Node Optimization Analysis 
	Algorithm Efficiency Analysis 

	Conclusions 
	References

