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Abstract: In the aftermath of a natural hazard, rapid and accurate building damage assessment from
remote sensing imagery is crucial for disaster response and rescue operations. Although recent deep
learning-based studies have made considerable improvements in assessing building damage, most
state-of-the-art works focus on pixel-based, multi-stage approaches, which are more complicated and
suffer from partial damage recognition issues at the building-instance level. In the meantime, it is
usually time-consuming to acquire sufficient labeled samples for deep learning applications, making
a conventional supervised learning pipeline with vast annotation data unsuitable in time-critical
disaster cases. In this study, we present an end-to-end building damage assessment framework
integrating multitask semantic segmentation with semi-supervised learning to tackle these issues.
Specifically, a multitask-based Siamese network followed by object-based post-processing is first
constructed to solve the semantic inconsistency problem by refining damage classification results with
building extraction results. Moreover, to alleviate labeled data scarcity, a consistency regularization-
based semi-supervised semantic segmentation scheme with iteratively perturbed dual mean teachers
is specially designed, which can significantly reinforce the network perturbations to improve model
performance while maintaining high training efficiency. Furthermore, a confidence weighting strategy
is embedded into the semi-supervised pipeline to focus on convincing samples and reduce the
influence of noisy pseudo-labels. The comprehensive experiments on three benchmark datasets
suggest that the proposed method is competitive and effective in building damage assessment under
the circumstance of insufficient labels, which offers a potential artificial intelligence-based solution to
respond to the urgent need for timeliness and accuracy in disaster events.

Keywords: building damage assessment; semi-supervised; dual mean teachers; consistency regularization

1. Introduction

Natural hazards, such as earthquakes, hurricanes, fires, and tsunamis, can cause
serious damage to buildings in urban areas. When a disaster strikes, rapid and accurate
building damage assessment (e.g., the location and amount of damage, the ratio of collapsed
buildings, and the type of damage for each building) is critical for emergency response
and humanitarian assistance [1,2]. Recently, remote sensing technology has become an
efficient way to rapidly retrieve ground information at a low cost due to its capability
of covering large areas rapidly [3]. Generally, building damage assessment from remote
sensing data could be seen as a combination of two sub-tasks: building localization and
damage classification [4]. The former segments the buildings at the pixel level, while the
latter determines the damage degree of each building instance [5]. As shown in Figure 1d,
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although building damages can be detected from post-disaster images, building outlines
may not be precise due to the lack of prior information from pre-disaster images [6].
Therefore, bi-temporal remote sensing images are more widely employed in practice,
despite existing image registration problems, and we also focus on bi-temporal applications
for building damage assessment in this study. Moreover, it is worth noting that building
damage assessment based on paired images is similar to building change detection, as
both tasks need to identify the changed status of buildings. Nevertheless, the former
remains much more challenging than the latter since more damage levels (minor, major,
and destroyed) and undamaged buildings need to be recognized simultaneously.
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disaster image, (b) post-disaster image, (c) ground truth, (d) results based on post-disaster image,
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post-processing.

Different from the traditional building damage assessment workflow with a large
amount of manual work on satellite imagery analysis [7], machine learning approaches
can automatically retrieve building damage information, despite the difficulty of satis-
fying the needs of large-scale and high-precision applications due to heavily relying on
handcrafted features [8]. Recently, deep learning (DL) has significantly surpassed con-
ventional machine learning algorithms in various remote sensing applications due to its
powerful capability of hierarchical feature representation [9]. Regarding the DL-based
approaches using bi-temporal images for building damage assessment, there are two major
pipelines: (1) semantic segmentation for building localization followed by patch-based
damage classification; (2) semantic segmentation for building localization and damage
classification both. The first one is a two-step pipeline, which first segments the building
pixels and then performs patch-level damage classification based on previous building
segmentation results. For instance, as a baseline of the study [5], a modified U-Net model
and a two-branch ResNet-50 model were used for pixel-based building localization and
image-level damage classification, respectively. This method can achieve an instance-level
assessment result via patch-level classification. However, these two procedures have differ-
ent objectives and employ different model architectures, such that the model performance
is suppressed due to the lack of knowledge shared between tasks. In comparison, the
other pipeline applies semantic segmentation for both tasks, which can share knowledge
from building localization to damage classification by means of model weight transfer. For
instance, a convolutional neural network with cross-directional attention for building dam-
age assessment (BDANet) [6] performed a two-stage training strategy based on semantic
segmentation, where a building extraction model was first trained with only pre-disaster
data, and then the model weights were shared with the subsequent damage classification
model. Although this can address the knowledge-sharing problem to some degree, a partial
damage recognition problem can still be found in Figure 1e due to the purely pixel-based
segmentation scheme [4]. Furthermore, the two-stage scheme is more complex for model
training due to its separate procedures. Hence, it is worthwhile to investigate integrating
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building localization and damage classification into a unified end-to-end training process
while considering the object-level post-processing.

Another challenge of DL-based building damage assessment lies in the lack of anno-
tated data. Generally, supervised learning (SL) has become the mainstream pipeline in
a range of DL-based studies for building damage assessment [6], and sufficient labeled
data has been treated as a crucial prerequisite in DL algorithms. However, it is costly and
time-consuming to create vast, accurate ground truth labels for model training, which
is particularly problematic under a time-critical disaster situation [10]. To alleviate the
related issues, recent studies have incorporated semi-supervised learning (SSL) with a
large amount of unlabeled data to improve the model generalization ability by injecting
some forms of prior knowledge [11]. The core idea of SSL is to extract additional training
signals from a large set of unlabeled data to obtain a more generalized model beyond
the small labeled dataset [12]. Particularly, recent consistency regularization (CR)-based
SSL approaches have achieved remarkable performance by enforcing agreement between
the predictions from diverse views of unlabeled samples [13]. As illustrated in Figure 2,
several prominent CR-based schemes, for example, Π-model [14], mean teacher [15], dual
students [16], and cross-consistency training (CCT) [17] have been extensively investigated
in a range of semantic segmentation applications of natural images [8,12,13,17–20] and re-
mote sensing images [21–30]. Typically, Π-model performs data-level CR between multiple
augmented unlabeled samples, while the mean teacher enforces model-level consistency
between the original student model and its mean teacher model. However, the pertur-
bations in these approaches might not be strong enough to train powerful models. To
further increase the perturbation level, CCT shares the weights of the encoder and conducts
training by maintaining consistency between the main decoder and multiple auxiliary
decoders with different perturbations. Impressively, the dual student-based approach like
cross pseudo supervision (CPS) [8] has demonstrated encouraging performance over most
state-of-the-art semi-supervised semantic segmentation approaches by adopting two identi-
cal models to supervise each other with cross pseudo-labels. However, a huge computation
cost is still required to optimize more parameters in these methods. Meanwhile, to our best
knowledge, few studies have explored these state-of-the-art SSL algorithms in the task of
building damage assessment, which is still a research area to be exploited.

To perform building damage assessment for disaster response with limited labeled
samples, we design an SSL framework by integrating multitask semantic segmentation
and perturbed dual mean teachers. Concretely, a multitask model framework is intro-
duced to unify the building localization and damage classification, where object-based
post-processing operations are carried out in the model inference stage to further refine
the damage results at the building instance level. Moreover, we adopt two iteratively
updated mean teachers to reinforce the perturbations in SSL and produce more distin-
guishing features, thus, improving the model generalization capability under insufficient
labels. Due to adopting multiple teachers with single-time backpropagation, the proposed
semi-supervised method possesses the advantage of strong perturbation and high train-
ing efficiency. Furthermore, a confidence weighting strategy is introduced into the SSL
pipeline to reduce the influence of noisy pseudo-labels in consistency learning. Noteworthy,
unlike most building damage assessment studies that focus on designing novel model
architectures, we are dedicated to developing an efficient assessment pipeline to retrieve
building damage information in consideration of timeliness and accuracy. Moreover, from
the operational perspective, training a tailored model towards a specific case with limited
annotation data may be a practical alternative for quick building damage assessment while
ensuring accuracy. The contributions of this work are summarized in four aspects:
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(1) We introduce a simple yet effective multitask-based segmentation framework
and combine it with object-based post-processing to ensure the semantic consistency
between buildings and their instance-level damages, reducing the impact of partial damage
recognition.

(2) To alleviate the issue of insufficient labeled samples for building damage assess-
ment in emergency contexts, we present a novel consistency regularization-based semi-
supervised semantic segmentation framework based on perturbed dual mean teachers.
In comparison to other related state-of-the-art SSL approaches, the proposed framework
possesses the advantages: (1) stronger perturbations with iteratively updated dual mean
teachers and (2) higher training efficiency with single-time backpropagation.

(3) Instead of using a fixed confidence threshold for pseudo-labeling, a confidence
weighting strategy is embedded into the semi-supervised pipeline, which pays attention to
the more convinced pseudo-labels and decreases the influence of the noises caused by the
pseudo-labeling process.

(4) Extensive experiments on three benchmark datasets demonstrate the effectiveness
of the proposed approach under insufficient labeled samples, which helps facilitate the
workflow of DL-based building damage assessment in terms of timeliness and accuracy for
disaster response. The codes will be made publicly available at (https://github.com/YJ-
He/MS4D-Net-Building-Damage-Assessment (accessed on 10 January 2023)).

This study is organized as follows. Section 2 reviews the related work. Section 3
presents the methodology. The experiment setup is set in Section 4, and Section 5 details
the experimental results. Section 6 is the discussion part. Finally, some key findings are
drawn in Section 7.

https://github.com/YJ-He/MS4D-Net-Building-Damage-Assessment
https://github.com/YJ-He/MS4D-Net-Building-Damage-Assessment
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2. Related Work
2.1. Building Damage Assessment

Traditionally, the ground field survey is the most accurate method to evaluate building
damage, but this method is time-consuming, labor-intensive, and costly [31]. With the
development of remote sensing technology, satellite and aerial imagery can provide timely
and large-coverage information on the disaster area [1]. Visual interpretation of damage
from high-resolution satellite data has been widely employed for some time [32]. Despite
being very precise, visual interpretation requires a high level of expertise with low efficiency.
To improve the automation level in building damage detection and assessment, researchers
have proposed various machine-vision-based methods, depending on manually designed
features such as shape, spectrum, and texture [33]. Thereafter, supervised machine learning
methods, for example, random forest [34] and support vector machine [35], have been
extensively investigated and shown effectiveness in damage detection. However, the
arbitrarily selected and designed features may not be enough for accurate damage detection,
especially when facing complex scenarios after severe disasters. Thanks to the remarkable
performance on feature extraction and representation, DL-based methods have been widely
applied to building damage detection based on bi-temporal imagery. For instance, a CNN-
based hierarchical building damage assessment workflow [36] was proposed to classify
buildings into two categories: undamaged and damaged. Moreover, a two-stage pipeline
with a semantic segmentation network named BDANet [6] was designed to perform a
building damage assessment, which classified the building pixels into four levels: no
damage, minor damage, major damage, and destroyed buildings. Further, to address the
semantic inconsistency issue within building instances, an object-based semantic change
detection framework (ChangeOS) was designed for building damage assessment, which
integrated the building localization and damage classification into a unified framework [4].

2.2. Semi-Supervised Semantic Segmentation

Currently, most DL-based studies are more focused on training models using a large
number of labeled samples based on the SL pipeline. However, it remains challenging
to create sufficient ground truth data, especially for pixel-level semantic segmentation
tasks [21]. Hence, SSL is favored due to its outstanding capability to exploit the discrimina-
tive features from massive unlabeled samples. In general, recent SSL approaches are major
focused on the design of pseudo-labeling and CR framework [12]. The former usually
demonstrates worse accuracy than the latter, as the pseudo-labeling pipeline intentionally
discards part of unlabeled data with relatively low confidence during training [13]. In
contrast, the CR-based strategy performs better by encouraging the model to produce
consistent predictions under the condition of imposing slight perturbations on input data,
output predictions, latent features, or networks [8]. Recently, due to the easy implementa-
tion and good performance, a growing number of remote sensing applications leverage
CR-based SSL schemes, such as Π-model [22,26], mean teacher [25], CCT [24,30], and dual
students [21,23,29]. Following the Π-model structure, PiCoCo [22] and SemiSANet [26]
were proposed for building extraction and building change detection, respectively, which
both perform SSL by enforcing the consistency between the predictions of two augmented
images. In the study of [25], the perturbation of the network with the mean teacher was
employed to segment high-resolution remote sensing imagery. Additionally, hybrid per-
turbations of input data, features, and networks adopting CCT demonstrated remarkable
performance in land-use/land-cover classification [24] and building extraction [30]. In
particular, the perturbation scheme between dual students exhibits impressively promising
results in building/road extraction [21,29] and flood mapping [23]. Nevertheless, these
prominent frameworks still suffer from weak perturbation levels, heavy training workloads,
and low-quality pseudo-labels. To tackle the limitations, we present a novel SSL framework
integrating perturbed dual mean teachers and a confidence weighting strategy, which aims
to conduct high-efficient training while maintaining better accuracy.
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2.3. Semi-Supervised Learning for Building Damage Recognition

Encouraged by the strong generalization ability of SSL in a variety of applications,
increasing studies of building damage recognition started to focus on this promising
strategy. For example, an autoencoder-based method was used to perform semi-supervised
classification of building damage on post-hurricane aerial imagery [31]. In the study
of [37], two semi-supervised classification approaches, for example, MixMatch [38] and
FixMatch [39], were investigated for building damage recognition after disasters using
only a small number of labels. Although these works explored the performance of SSL on
damage detection, they only obtained the results of image-level damage classification yet
could not locate the buildings. To tackle the limitations, pixel-level semantic segmentation
is introduced. For instance, a combination of self-training and pseudo-label refinement
strategy was utilized to classify pixel-level building damages in work [10], despite limited
accuracy improvement. To our best knowledge, there is still a lack of exploitation in current
studies on incorporating the latest CR-based SSL scheme with the task of building damage
assessment, and we wish to investigate to fill up this research gap to some extent.

3. Methodology

In this section, we first describe the designed multitask-based model architecture with
post-processing in Section 3.1; then, the overall framework combining the semi-supervised
semantic segmentation with perturbed dual mean teachers is discussed in Section 3.2.

3.1. Basic Model Architecture with Post-Processing

Most existing studies [5,6] implement building damage assessment with a two-step
pipeline, which means building localization and damage classification are carried out
separately. It is not concise for the data-driven DL paradigm and suffers from the knowl-
edge gap problem between two different but related tasks. In this study, we introduce an
end-to-end Siamese network to perform two tasks simultaneously. Figure 3 demonstrates
the suggested model framework, which consists of a Siamese fully convolutional network
(FCN) for segmenting the binary building masks and multiclass damage masks in the
training stage and an object-based post-processing step for obtaining instance-level damage
classification results in the inference stage.
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Figure 3. Illustration of multitask-based Siamese network for building damage assessment. In the
training stage, pre- and post-disaster images are used to train the model for building localization and
damage classification. In the inference stage, a connected component labeling (CCL) algorithm and
an object-wise voting operation are adopted for object-based post-processing to refine the damage
classification results.
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3.1.1. Multitask-Based SIAMESE Network

In this study, we regard the building damage assessment as a semantic segmentation
task. However, this task is different from typical semantic segmentation applications due
to involving two input images from pre- and post-disaster in training. Therefore, to better
extract features from bi-temporal images, we use a two-branch structure, which is composed
of two encoders (E1 and E2) and two decoders (D1 and D2). The encoders aim at abstracting
features from input images, while the decoders are to restore the spatial dimension and
details through deconvolution operation. Concretely, the pre-disaster image is fed into the
first branch (E1 and D1) to produce the building mask Ŷloc. Meanwhile, the post-disaster
image is input to E2 for feature extraction; then, the extracted features are fused with the
features obtained from the pre-disaster image via E1 after each pooling stage of the encoder.
Finally, the fused multi-scale features with skip connections pass through D2 to achieve the
damage classification mask Ŷdam. Unlike the model architecture in [4,6] that shares weights
between two encoders, we adopt two encoders without weight sharing in the model to
capture richer feature representations from different ranges due to existing significantly
heterogeneous characteristics between pre- and post-disaster images when there is severe
destruction in the image. Moreover, it is worth noting that our suggested model framework
is scalable and can be integrated with various FCN-family model structures.

3.1.2. Loss Function

The input bi-temporal image pairs and corresponding ground truth labels are used to
train the model by minimizing the building localization loss Lloc and damage classification
loss Ldam. The corresponding loss functions are formulated as follows:

Lloc = 1
|D| ∑

{
Xpre

Yloc }∈D

1
W×H

W×H
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i=1
`bce

(
f
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)
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i

)

= 1
|D| ∑

{
Xpre

Yloc }∈D

1
W×H

W×H
∑

i=1
`bce

(
Ploc

i , Yloc
i

) (1)

Ldam = 1
|D| ∑

{
Xpre, Xpost

Ydam }∈D

1
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(
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i
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Xpre, Xpost
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i , Ydam
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where D is the training dataset containing pre- and post-disaster image pairs
(
Xpre, Xpost)

and corresponding ground truth labels Yloc ∈ {0: background, 1: building} for localization,
Ydam ∈ {0: background, 1: no damage, 2: minor, 3: major, 4: destroyed} for damage classifi-
cation; f (•) denotes the deep neural network; θE1, θE2, θD1, θD2 represent the parameters of
Encoder 1, 2, and Decoder 1, 2, respectively. Ploc and Pdam indicate the predicted probability
maps of building localization and damage classification, respectively; W and H represent
the width and height of the input image; `bce and `ce denote the standard pixel-wise bi-
nary cross-entropy loss and multiclass cross-entropy loss, respectively. Accordingly, the
integrated supervised loss of two tasks is represented as:

LS = Lloc + Ldam (3)
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3.1.3. Object-Based Post-Processing

The multitask-based Siamese network can produce building localization and damage
classification results simultaneously. However, due to the limitation of the pixel-level seg-
mentation scheme, the semantic inconsistency between building localization and damage
classification always exists. Furthermore, building localization results are usually much
better than building damage classification results due to their simplicity. To keep the
object-wise semantic consistency between these two tasks, we introduce an object-based
post-processing approach [4]. Specifically, building proposals are first generated based
on the binary building localization results through a connected component labeling (CCL)
algorithm [40]:

Ŷloc
obj = CCL(Ŷloc) (4)

Next, the damage level for each building object is determined with a weighted voting
algorithm by calculating the ratio of each damage degree within an object and voting the
majority category, which can reduce the semantic inconsistency through the ensemble of
pixel results within the building instances:

Ŷdam
obj = ObjectVoting

(
Ŷdam, Ŷloc

obj

)
(5)

3.2. Semi-Supervised Semantic Segmentation Framework

For building damage assessment, given a small set DL =
{(

X1
L, Y1

L
)
, . . . ,

(
XN

L , YN
L
)}

of N labeled image pairs and a larger set DU =
{

X1
U , . . . , XQ

U

}
of Q unlabeled image pairs

(Q >> N), Xi
U represents the i-th unlabeled image pair (Xpre

U , Xpost
U ) (i);

(
X j

L, Y j
L

)
denote

the j-th labeled image pair X j
L = (Xpre

L , Xpost
L ) (j) and the corresponding ground truth label

Y j
L = (Yloc

L , Ydam
L ) (j), respectively. fθ denotes the deep neural network with parameters θ,

which maps the input image pairs X to pixel-level buildings Ŷloc and their damage levels
Ŷdam. The SSL is to train a more generalized model over the one with only labeled data
from DL by combining a large amount of unlabeled data from DU .

3.2.1. Perturbed Dual Mean Teachers

The aim of the presented SSL framework is to produce strong perturbations while
keeping high training efficiency. As shown in Figure 4, the proposed framework consists of
one student model fθs and two mean teacher models fθt1 and fθt2 , which adopts the identical
model structure but with different parameters θs, θt1, and θt2. In the training process, the
student model is trained by minimizing the loss function of supervised learning and
consistency learning, while the parameters of two teacher models are iteratively updated
with the exponential moving average (EMA) [15] of the student model parameters:

θk
t = αθk

t−1 + (1− α)θs
t (6)

where k ∈ {t1, t2} denotes one of two teacher models; α ∈ [0, 1] is a smoothing coefficient,
which is set to 0.99; θk

t and θs
t represent the parameters of the student and teacher models

in training step t, respectively. To ensure the model diversity between two teacher models
for stronger perturbations in training, we alternately update one of two teachers at each
training iteration.
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For supervised learning, labeled image pairs XL are input to the student model,
and the ground truth labels YL impose supervision on their predicted probability maps
Ps

L =
(

Ploc
L , Pdam

L

)
, thus, constructing the supervised loss:

LS =
1
|DL| ∑

{
XL
YL
}∈D

1
W × H

W×H

∑
i=1

(
`bce

(
Ploc

iL , Yloc
iL

)
+ `ce

(
Pdam

iL , Ydam
iL

))
(7)

For unsupervised learning, two unlabeled image pairs X1
U , X2

U are input into two
teacher models fθt1 and fθt2 , respectively; then the probability maps Pt1

U1, Pt2
U2, and pseudo-

labels Yt1
U1, Yt2

U2 are obtained. As suggested by previous studies [8,19], the perturbation
level of consistency learning is critical to the model performance. Therefore, to enhance
the perturbation between student and teacher models, CutMix [41] strategy is lever-
aged such that more attention can be paid to training difficult samples and learning
robust representations [6]. Specifically, the mixed probability maps of student models
PM

U =
(

PM, loc
U , PM,dam

U

)
are generated by cutting part of Pt1

U1 and pasting to Pt2
U2 based on a

mask M:
PM

U = CutMix
(

M, Pt1
U1, Pt2

U2
)

= M� Pt1
U1 + (1−M)� Pt2

U2
(8)

where � is the element-wise multiplication; 1 denotes a mask that is filled with ones; M is
a binary mask that indicates where to cut out and fill in.
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On the basis of PM
U , the pseudo-labels ŶM

U =
(

ŶM,loc
U , ŶM,dam

U

)
are calculated using the

Argmax function, which is an operation that finds the indices of the maximum value along
a specified axis of the multi-dimensional tensor:

ŶM
U = Argmax

(
PM

U

)
(9)

At the same time, a mixed image pairs XM
U are generated based on unlabeled image

pairs XU
1 , XU

2 and the same mask M:

XM
U = CutMix

(
M, X1

U , X2
U
)

= M� X1
U + (1−M)� X2

U
(10)

Then, XM
U is fed into the student model fθs to obtain the mixed predictions

Ps
U =

(
Ps,loc

U , Ps,dam
U

)
. Finally, let the mixed pseudo-label ŶM

U from teacher models su-
pervise Ps

U , the consistency loss LCons is formulated as:

LCons =
1
|DU | ∑

X1
U ,X2

U∈DU

1
W × H

W×H

∑
i=1

(
`bce

(
Ps,loc

iU , ŶM,loc
iU

)
+ `ce

(
Ps,dam

iU , ŶM,dam
iU

))
(11)

The overall loss integrating supervised and consistency losses can be represented as:

Loverall = LS + LCons (12)

3.2.2. Confidence Weighting

Generally, the performance of CR relies on the quality of pseudo-labels. A few SSL
methods [17,19] used a higher threshold to filter out the pixels with a low confidence value.
Although this strategy can reduce the influence of noisy pseudo-labels, the strict criteria
also result in an inferior learning effect on underperforming categories. In contrast, some
studies [8,18] adopted all pseudo-labeled pixels in training, which introduced more noise
despite involving more training data. Instead of falling into two extreme situations, we
employ a simple yet effective confidence weighting strategy, which dynamically considers
the confidence of predictions in training and attaches an adjustment factor to the consistency
loss. In this way, more pixels can be involved in consistency learning, and the noise effects
from pseudo-labeling will be alleviated at the same time. The weighted consistency loss is
formulated as follows:

LCons =
1
|DU | ∑

X1
U ,X2

U∈DU

1
W×H

W×H
∑

i=1
ωi

(
`bce

(
Ps,loc

iU , ŶM,loc
iU

)
+ `ce

(
Ps,dam

iU , ŶM,dam
iU

))
(13)

ωi = max
c∈{1,...,C}

(
PM

iU(c)
)

(14)

where ωi ∈ [0, 1] is the confidence of predictions at an i-th pixel from the ensemble of
mean teacher models; C denotes the number of categories. This strategy can allocate more
contributions to the convincing samples and set the confidence threshold automatically in
the training process instead of manual determination.

4. Experiment Setting

This section describes the related datasets, evaluation metrics, and implementation
details involved in the experiments.

4.1. Datasets

To assess the proposed approach, we employ the xBD dataset [5] in the experiments,
which is an open-source and large-scale satellite dataset for humanitarian assistance and
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disaster response. It is composed of satellite image pairs of 19 disaster events with a patch
size of 1024 × 1024 pixels across over 45,000 km2 around the world. It also contains the
building polygons and four damage-level labels (i.e., no damage, minor damage, major
damage, destroyed), as shown in Figure 5. To involve more buildings containing four dam-
age levels, we choose three typical disaster events in the later experiments: Joplin Tornado,
Moore Tornado, and Hurricane Michael. The image pairs and labels are seamlessly cropped
into 512 × 512-pixel tiles without overlapping. After removing some tiles containing blank
areas, they are split into training, validation, and testing subsets, as listed in Table 1.
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Table 1. Overview information of datasets in the study.

Dataset Image Pairs
Split Patch Size

(Pixels) Sensor Band
Train Validation Test

Joplin
Tornado 554 368 56 111 512 × 512 Pre: QuickBird

Post: WorldView-2 RGB

Moore
Tornado 767 509 77 154 512 × 512 Pre: WorldView-2

Post: GeoEye-1 RGB

Hurricane
Michael 2065 1235 351 414 512 × 512 Pre: WorldView-2

Post: GeoEye-1 RGB

4.2. Evaluation Metrics

Following the previous studies [4,6], we use the F1 score (Floc
1 ) for building localization

and harmonic mean of category-wise damage classification F1 score (Fdam
1 ) for building

damage classification, which is given as

Floc
1 =

2TP
2TP + FP + FN

(15)

Fdam
1 =

4

∑4
i=1

1
FCi

1

(16)

where TP, FP, and FN indicate the number of true positive, false positive, and false negative
pixels of building segmentation results, respectively; FCi

1 denotes the F1 score of each



Remote Sens. 2023, 15, 478 12 of 22

damage level Ci, including no damage, minor damage, major damage, and destroyed. The
overall F1 score (Foverall

1 ) is formulated by a weighted average of Floc
1 and Fdam

1 :

Foverall
1 = 0.3× Floc

1 + 0.7× Fdam
1 (17)

4.3. Implementation Details

We implement experiments on the PyTorch framework with a single NVIDIA GeForce
RTX 1080Ti GPU. AdamW optimizer [42] and one-cycle learning rate policy [43] are adopted
to optimize the network with an initial learning rate of 0.0001, a momentum of 0.9, and a
weight decay of 0.0002. Basic data augmentations such as horizontal and vertical flips are
performed for all methods. The batch size is set to two. Regarding CutMix, three rectangles
occupying 50% of the image area with a random aspect ratio and position are used to
generate the masks. Moreover, we employ the early stopping strategy to avoid overfitting,
which guides that training stops when maximum accuracy does not improve for a few
epochs. All SL experiments are trained for 100 epochs with 20-epoch early stopping, while
SSL experiments are trained for 40 epochs with 15-epoch early stopping. Moreover, we
define an “epoch” in SSL experiments as going through the unlabeled data once, whereas
the labeled subset is repeated several times to match the number of unlabeled samples
within an epoch.

5. Experimental Results

To demonstrate the superiority of the presented approach, we comprehensively com-
pare it with some recent SL and SSL competitors in this section.

5.1. Comparison with SL Competitors

To evaluate the proposed multitask-based Siamese network in Section 3.1, we compare
it with two recent Siamese structures: Siamese U-Net [44] and BDANet [6]. Siamese
U-Net is one of four models as the first-place solution of the xView2 challenge (https:
//github.com/DIUx-xView/xView2_first_place (accessed on 10 December 2022)), which
adopts U-Net model architecture as the base structure of the Siamese network. On the basis
of Siamese U-Net, multi-scale feature fusion and cross-directional attention modules are
introduced into BDANet, which enhances the model performance further. It should be
noted that these two methods both belong to the two-stage pipeline. For a fair comparison
with these two methods, only the results of the second stage are compared since our
approach is an end-to-end framework. Moreover, we adopt VGG-16 as the backbone while
the other two methods with ResNet-50 as the backbone, which is to keep the number of
parameters at a close size.

Table 2 shows the comparison results. MT represents our presented multitask learning
framework, and PP denotes the object-based post-processing operation. The proposed
multitask framework can achieve better accuracy than Siamese U-Net and BDANet in terms
of the F1 score of damage classification on all three datasets, which reveals the effectiveness
of the presented method. Furthermore, with object-based post-processing, the results can
be further optimized by integrating the building localization results. Additionally, from the
qualitative perspective, the presented approach generates more accurate results, as shown
in Figure 6. Especially with object-based post-processing, semantic consistency within
building instances is guaranteed, which greatly improves visual performance. To sum up,
our approach demonstrates considerable improvements over the other two comparison
methods. It is beneficial to the rapid disaster response by simplifying the complicated
two-stage pipeline to the end-to-end pipeline. In the later SSL experiments, we take the MT
framework with post-processing as the base model for further comparison.

https://github.com/DIUx-xView/xView2_first_place
https://github.com/DIUx-xView/xView2_first_place
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Table 2. Quantitative comparison of different SL methods on three datasets (%).

Dataset Method Foverall
1 Floc

1 Fdam
1

Damage F1 per Class

No Dmg. Minor Dmg. Major Dmg. Destroyed

Joplin
Tornado

Siamese U-Net - - 62.35 80.46 56.72 35.71 76.51
BDANet - - 64.29 82.92 59.43 38.03 76.78

Ours (MT) 74.25 90.22 67.40 83.23 60.13 44.54 81.71
Ours (MT + PP) 75.53 90.22 69.24 83.01 62.47 48.50 82.98

Moore
Tornado

Siamese U-Net - - 68.74 91.33 48.48 53.06 82.07
BDANet - - 69.31 90.78 47.95 55.48 83.02

Ours (MT) 77.46 92.46 71.03 91.41 54.64 56.27 81.79
Ours (MT + PP) 80.11 92.46 74.82 91.37 62.63 59.76 85.53

Hurricane
Michael

Siamese U-Net - - 49.31 69.78 40.06 44.04 43.37
BDANet - - 49.59 67.75 44.75 48.30 37.58

Ours (MT) 60.09 83.85 49.90 71.04 41.77 48.41 38.39
Ours (MT + PP) 61.09 83.85 51.34 70.13 46.50 48.81 39.91
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5.2. Comparison with SSL Competitors

To verify the effectiveness of the presented SSL framework, we employ several state-
of-the-art CR-based methods, i.e., CutMix-Seg [19], PseudoSeg [18], CCT [17], CPS [8],
for quantitative and qualitative comparison on three benchmark datasets. All these SSL
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methods are integrated with the proposed multitask-based Siamese network. To compre-
hensively compare these SSL methods, we set the labeled data as a ratio of 5%, 10%, and
20% to the total training data, respectively. It should be noted that the labeled data needs to
involve the training data with all damage levels to ensure that the training process is stable.
SL denotes our proposed MT method based on the SL pipeline as the baseline approach. An
FCN with VGG-16 as the backbone is used as the basic model of the proposed framework,
and object-based post-processing is applied to all involved methods.

Tables 3–5 demonstrate the comparison results on three datasets. It can be seen that
all SSL methods can perform better than the SL baseline with partial annotation data.
When only using 5% labeled data, our approach is superior to other competitors and gains
significant improvements of 11.31%, 5.07%, and 4.70% in overall F1 score than the SL
baseline for the Joplin, Moore, and Michael datasets, respectively. With the increasing
number of labeled data, the accuracy of all methods is improved, and our method can still
achieve the best performance, exhibiting the effectiveness of the presented SSL approach
for building damage assessment under insufficient labeled samples. In addition, the
accuracy of building damage assessment on three datasets has a large gap, which is
influenced by the heterogeneous image quality and different labeling accuracy. Figure 7
displays the visual comparison results of these methods on the benchmark datasets. We
can observe that all methods can exhibit better visual results by virtue of object-based
post-processing. In addition, the presented method has fewer misclassified pixels, such
as false positives and false negatives, which suggests the better model capability of our
method over other competitors.

Table 3. Quantitative comparison of different SSL methods on the Joplin dataset (%).

Method
5% (19) 10% (38) 20% (76) 100% (387)

Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1 Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1

SL 59.71 82.48 49.95 63.34 84.78 54.15 69.57 86.65 62.25 75.53 90.22 69.24
CutMix-Seg 66.87 87.99 57.82 69.66 88.10 61.75 72.23 89.28 64.92 - - -
PseudoSeg 67.17 83.06 60.36 69.13 87.20 61.39 71.98 88.68 64.82 - - -

CCT 67.83 87.38 59.45 68.98 88.22 60.74 72.62 89.63 65.33 - - -
CPS 68.17 87.10 60.05 70.62 88.14 63.11 72.84 89.16 65.85 - - -
Ours 70.30 88.73 62.40 71.48 88.54 64.17 73.55 89.37 66.77 - - -

Table 4. Quantitative comparison of different SSL methods on the Moore dataset (%).

Method
5% (27) 10% (54) 20% (108) 100% (536)

Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1 Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1

SL 72.39 88.76 65.38 74.34 90.37 67.46 75.81 91.59 69.04 80.11 92.46 74.82
CutMix-Seg 76.14 90.46 70.00 76.93 91.29 70.77 77.88 92.17 71.76 - - -
PseudoSeg 76.84 88.87 71.69 77.25 91.00 71.36 78.41 91.78 72.67 - - -

CCT 74.43 91.01 67.33 76.59 91.32 70.28 77.92 92.01 71.88 - - -
CPS 76.69 89.94 71.02 77.60 90.79 71.95 78.51 91.37 72.99 - - -
Ours 77.46 91.57 71.42 78.91 91.76 73.41 79.88 92.25 74.58 - - -

Table 5. Quantitative comparison of different SSL methods on the Michael dataset (%).

Method
5% (65) 10% (130) 20% (260) 100% (1300)

Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1 Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1

SL 51.82 79.81 39.82 53.94 81.36 42.19 56.17 82.93 44.71 61.09 83.85 51.34
CutMix-Seg 55.35 82.20 43.84 57.09 82.08 46.37 58.17 82.93 47.56 - - -
PseudoSeg 54.00 80.82 42.51 56.49 81.56 45.74 58.35 83.39 47.62 - - -

CCT 54.18 82.29 42.14 55.61 81.47 44.52 57.78 83.02 46.96 - - -
CPS 55.55 82.24 44.11 56.31 83.13 44.81 57.34 83.63 46.08 - - -
Ours 56.52 81.94 45.62 58.06 83.45 47.18 59.43 83.87 48.96 - - -
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6. Discussion

In this section, we first carry out the ablation study in Section 6.1, which is to prove the
effectiveness of designing multiple components. Time analysis is conducted in Section 6.2
to exhibit the advantages of the SSL pipeline in model training. After that, we perform
the damage assessment in a real case of the 2011 Tornado Joplin in Section 6.3. Finally, we
discuss the potential limitations and prospects of the proposed framework in Section 6.4.

6.1. Ablation Study

To investigate the contribution of multiple improvements of the proposed framework,
i.e., MT, SSL, confidence weighting (CW), and object-based post-processing (PP), we con-
duct ablation experiments with 5% labeled samples based on three datasets, as reported
in Table 6. The baseline denotes the method with only a single task, i.e., building damage
classification. Some conclusions can be drawn as below: (1) Compared to the Baseline,
the MT method produces better damage classification results than the single task baseline
on the two datasets. In the meantime, it can obtain building localization results with a
one-time training pipeline, which is more efficient than the ones with the multiple-stage
training pipeline. (2) By utilizing a large amount of unlabeled data, SSL can greatly increase
the overall F1 score whether PP is applied, which is cost-effective without attaching more
labels. (3) The combination of CW and SSL can improve the model accuracy, which lies
in the fact that more samples from all categories are involved in the consistency training
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process, and the influence of noisy pseudo-labels is reduced at the same time. (4) PP is a
simple but effective strategy to boost the model performance further.

Table 6. Ablation experiments for different components of the proposed framework on three datasets (%).

Baseline MT SSL CW PP
Joplin Tornado Moore Tornado Hurricane Michael

Foverall
1 Floc

1 Fdam
1 Foverall

1 Floc
1 Fdam

1 Foverall
1 Floc

1 Fdam
1√

- - 46.44 - - 61.50 - - 39.45√
57.39 82.48 46.64 70.04 88.76 62.01 51.27 79.81 39.04√ √
59.71 82.48 49.95 72.39 88.76 65.38 51.82 79.81 39.82√ √
68.60 88.01 60.27 74.43 91.01 67.33 52.56 79.77 40.89√ √ √
70.00 88.01 62.27 77.03 91.01 71.03 55.23 79.77 44.72√ √ √
69.04 88.62 60.64 76.00 91.57 69.32 53.90 81.94 41.88√ √ √ √
71.02 88.62 63.47 77.46 91.57 71.42 56.52 81.94 45.62

Figure 8 illustrates the visual results accordingly, and we can see that the refined
damage classification results are much better than before by ensuring semantic consistency
within building instances. On the other hand, it should be noted that the results of building
localization can significantly influence the final damage assessment results since the object
proposals are generated from them. Luckily, as reported in Tables 3–6, the performance of
building localization is far more accurate than damage classification, which also ensures
this strategy is effective.
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6.2. Time Analysis

To analyze the time efficiency of the proposed framework, we make a statistic of the
training time cost of the SL and SSL pipelines on three datasets in Table 7. It can be found
that the SSL pipeline with only 5% labeled samples can achieve even better results than the
SL pipeline with 20% labeled data. We can see that the SSL pipeline needs to consume more
training time than the SL counterpart since a large amount of unlabeled data is involved
in training. Based on the SSL pipeline, an extra 28, 41, and 116 min are required to reach
the same accuracy level of the SL pipeline for the Joplin, Moore, and Michael datasets,
respectively. However, from the perspective of data labeling, this extra time is far from
sufficient to annotate 57, 81, and 195 more image pairs in the task of dense-pixel semantic
segmentation. Given that manual work cannot yet be fully replaced by machines so far,
we argue that the SSL pipeline is more cost-effective than the SL pipeline in a time-critical
event since the solution spent more time on training with machines is better than that
spending more time on labeling with lots of manpower in real-world cases.

Table 7. Comparison of time cost between two training pipelines on three datasets.

Dataset Pipeline Labeled Data Foverall
1 (%) Floc

1 (%) Fdam
1 (%) Training Time (min)

Joplin Tornado SL 20% (76) 69.57 86.65 62.25 39
SSL 5% (19) 70.30 88.73 62.40 67

Moore Tornado
SL 20% (108) 75.81 91.59 69.04 44

SSL 5% (27) 77.46 91.57 71.42 85

Hurricane
Michael

SL 20% (260) 56.17 82.93 44.71 79
SSL 5% (65) 56.52 81.94 45.62 195

6.3. Damage Assessment of an Example Region

To demonstrate the assessment results from a macro view, we choose a representative
region from the Joplin Tornado event, which involves 12,889 buildings in an area of around
19.4 km2. The corresponding bi-temporal satellite images are acquired from Maxar through
the Open Data Program (https://www.maxar.com/open-data (accessed on 10 December
2022)), which both have a size of 7398 × 10,487-pixels with a spatial resolution of 0.6 m.
Based on the model trained with 5% labeled data, building damage assessment is conducted
based on the proposed method. Figure 9a shows the building extraction results across the
region. Figure 9c,d exhibit the building detection details of a sub-region. It can be seen
that most buildings have been detected, revealing the good performance of our method on
building localization tasks. Moreover, as illustrated in Figure 9b, the damages are mainly
distributed in the central region along the west-east direction, which is in accordance with
the moving path of the tornado. Figure 9e,f detail the damaged state of buildings in a
sub-region. The destroyed buildings can be recognized easily, but it remains challenging
to distinguish the major and minor damages due to their highly complex characteristics.
Furthermore, we make the statistics of the damage status of the whole region in Figure 9g,h
for ground truth data and our assessment results, respectively. It shows that our results can
provide a similar damage profile compared to ground truth, exhibiting the effectiveness of
the proposed method for quick assessment under insufficient labels.

https://www.maxar.com/open-data
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building damage classification results, (g) statistics of ground truth data, and (h) statistics of our
assessment results.

6.4. Limitations and Prospects

Although the presented framework can achieve encouraging results on building
damage assessment with relatively few labeled data, some limitations need to be noted.
As shown in the first row of Figure 10, multiclass damage assessment is a challenging task
due to the ambiguity of intermediate damage degrees, such as minor and major damage,
which are extremely difficult even for domain experts. Therefore, how to construct a more
robust assessment criterion and define a better building damage assessment scale [7] still
needs to be further explored. Furthermore, some unexpected label errors in the dataset (the
second row of Figure 10) also cause an inferior learning effect. Hence, it is necessary to
improve the labeling accuracy when only using a few annotated samples. Moreover, some
building pixels cannot be fully extracted due to the occlusions by trees (the third row of
Figure 10) and cannot be separated from each other due to the limited image resolution
(the fourth row of Figure 10). It should be noted that high-quality optical images during
disasters are critical to the success of building damage assessment. To this end, recent
flexible UAV-based images can make contributions [9]. Additionally, registration problems
usually exist in the application using bi-temporal data, and the off-nadir phenomenon
can cause the wrong extraction results. Hence, ensuring similar imaging conditions may
alleviate this issue to some extent. Furthermore, our study is focused on building roof areas,



Remote Sens. 2023, 15, 478 19 of 22

as the damage to the facade or height direction could not be considered only with overhead
satellite images. The integration of oblique images for building damage assessment [45] is
another potential direction to enhance the model’s capability.
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7. Conclusions

In this study, to respond to the urgent need for timeliness and accuracy in building
damage assessment, we propose a novel consistency regularization-based semi-supervised
framework combining multitask semantic segmentation with perturbed dual mean teach-
ers. In the presented approach, multitask learning model architecture can benefit the
object-based post-processing operation, such that instance-level building damages can be
generated. Moreover, the leverage of a large amount of unlabeled data through perturbed
dual mean teachers can boost assessment accuracy with high training efficiency in the
situation of few labeled data. Furthermore, embedding a confidence weighting strategy
into the semi-supervised pipeline can involve more convincing samples for consistency
constraints while decreasing the impact of noisy pseudo-labels. The performance of the
presented framework is evaluated on three disaster datasets and compared with several
state-of-the-art SL and SSL approaches. Comprehensive experiment results reveal that the
proposed method can yield considerable improvements in building damage assessment
even with a small fraction of labeled samples, potentially offering a DL-based solution for
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timely disaster response and humanitarian assistance in emergencies. In the future, we
will exploit more datasets with different disaster scenarios (e.g., earthquakes and tsunamis)
and data sources (e.g., aerial and UAV data) to verify the effectiveness of this method.
Moreover, we are still dedicating ourselves to improving computing efficiency when facing
large amounts of unlabeled samples to satisfy emergency needs in disaster situations.

Author Contributions: Y.H. contributed to the design and the implementation of the methodology,
ran experiments, and wrote and revised the paper. J.W. and C.L. contributed to the discussion of the
methodology and revised the paper; B.S. and X.Z. contributed to the editing and formal analysis of
the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a Natural Science and Engineering Research Council of
Canada (NSERC) Discovery Grant (grant number: RGPIN-2022-05051) awarded to Jinfei Wang and
an Ontario Graduate Scholarship awarded to Yongjun He.

Data Availability Statement: The datasets used in this study are all openly available.

Acknowledgments: We acknowledge the Geographic Information Technology and Applications
(GITA) Lab to provide computational resources for experiments. The authors also would like to
thank the groups that offer open-public datasets. In addition, the authors acknowledge the editor
and anonymous reviewers for their valuable comments and suggestions, which helped improve this
work significantly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ci, T.; Liu, Z.; Wang, Y. Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks

in Combination with Ordinal Regression. Remote Sens. 2019, 11, 2858. [CrossRef]
2. Schweier, C.; Markus, M. Classification of Collapsed Buildings for Fast Damage and Loss Assessment. Bull. Earthq. Eng. 2006, 4,

177–192. [CrossRef]
3. Liao, C.; Wang, J.; Xie, Q.; Baz, A.A.; Huang, X.; Shang, J.; He, Y. Synergistic Use of Multi-Temporal RADARSAT-2 and VENµS

Data for Crop Classification Based on 1D Convolutional Neural Network. Remote Sens. 2020, 12, 832. [CrossRef]
4. Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. Building Damage Assessment for Rapid Disaster Response with a Deep

Object-Based Semantic Change Detection Framework: From Natural Disasters to Man-Made Disasters. Remote Sens. Environ.
2021, 265, 112636. [CrossRef]

5. Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating XBD: A
Dataset for Assessing Building Damage from Satellite Imagery. In Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 10–17.

6. Shen, Y.; Zhu, S.; Yang, T.; Chen, C.; Pan, D.; Chen, J.; Xiao, L.; Du, Q. BDANet: Multiscale Convolutional Neural Network with
Cross-Directional Attention for Building Damage Assessment from Satellite Images. IEEE Trans. Geosci. Remote Sens. 2022, 60,
1–14. [CrossRef]

7. Cotrufo, S.; Sandu, C.; Giulio Tonolo, F.; Boccardo, P. Building Damage Assessment Scale Tailored to Remote Sensing Vertical
Imagery. Eur. J. Remote Sens. 2018, 51, 991–1005. [CrossRef]

8. Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision. In Proceed-
ings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 2613–2622.

9. Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.;
Pistori, H.; Gonçalves, W.N.; Li, J. A Review on Deep Learning in UAV Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021,
102, 102456. [CrossRef]

10. Oludare, V.; Kezebou, L.; Panetta, K.; Agaian, S. Semi-Supervised Learning for Improved Post-Disaster Damage Assessment from
Satellite Imagery. In Proceedings of the Multimodal Image Exploitation and Learning 2021, SPIE Conference Proceedings, Online,
12–16 April 2021; Volume 11734, pp. 172–182.

11. Reddy, Y.C.A.P.; Viswanath, P.; Reddy, B.E. Semi-Supervised Learning: A Brief Review. Int. J. Eng. Technol. 2018, 7, 81–85.
[CrossRef]

12. Hu, H.; Wei, F.; Hu, H.; Ye, Q.; Cui, J.; Wang, L. Semi-Supervised Semantic Segmentation via Adaptive Equalization Learn-
ing. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Volume 34,
pp. 22106–22118.

13. Liu, Y.; Tian, Y.; Chen, Y.; Liu, F.; Belagiannis, V.; Carneiro, G. Perturbed and Strict Mean Teachers for Semi-Supervised Semantic
Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 19–24 June 2022; pp. 4248–4257.

http://doi.org/10.3390/rs11232858
http://doi.org/10.1007/s10518-006-9005-2
http://doi.org/10.3390/rs12050832
http://doi.org/10.1016/j.rse.2021.112636
http://doi.org/10.1109/TGRS.2021.3080580
http://doi.org/10.1080/22797254.2018.1527662
http://doi.org/10.1016/j.jag.2021.102456
http://doi.org/10.14419/ijet.v7i1.8.9977


Remote Sens. 2023, 15, 478 21 of 22

14. Laine, S.; Aila, T. Temporal Ensembling for Semi-Supervised Learning. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

15. Tarvainen, A.; Valpola, H. Mean Teachers Are Better Role Models: Weight-Averaged Consistency Targets Improve Semi-
Supervised Deep Learning Results. In Proceedings of the 31 Annual Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017.

16. Ke, Z.; Wang, D.; Yan, Q.; Ren, J.; Lau, R. Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 6727–6735.

17. Ouali, Y.; Hudelot, C.; Tami, M. Semi-Supervised Semantic Segmentation With Cross-Consistency Training. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12671–12681.

18. Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.-L.; Bian, X.; Huang, J.-B.; Pfister, T. PseudoSeg: Designing Pseudo Labels for Semantic
Segmentation. In Proceedings of the International Conference on Learning Representations, Online, 3–7 May 2021; pp. 1–18.

19. French, G.; Laine, S.; Aila, T.; Mackiewicz, M.; Finlayson, G. Semi-Supervised Semantic Segmentation Needs Strong, Varied
Perturbations. In Proceedings of the 31st British Machine Vision Conference, Online, 7–10 September 2020; pp. 1–21.

20. Ke, Z.; Qiu, D.; Li, K.; Yan, Q.; Lau, R.W.H. Guided Collaborative Training for Pixel-Wise Semi-Supervised Learning. In
Proceedings of the 16th IEEE European Conference Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 429–445.

21. He, Y.; Wang, J.; Liao, C.; Shan, B.; Zhou, X. ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised
Semantic Segmentation of Remote Sensing Imagery. Remote Sens. 2022, 14, 879. [CrossRef]

22. Kang, J.; Wang, Z.; Zhu, R.; Sun, X.; Fernandez-Beltran, R.; Plaza, A. PiCoCo: Pixelwise Contrast and Consistency Learning for
Semisupervised Building Footprint Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10548–10559. [CrossRef]

23. He, Y.; Wang, J.; Zhang, Y.; Liao, C. Enhancement of Urban Floodwater Mapping From Aerial Imagery With Dense Shadows via
Semi-Supervised Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9086–9101. [CrossRef]

24. Chen, J.; Sun, B.; Wang, L.; Fang, B.; Chang, Y.; Li, Y.; Zhang, J.; Lyu, X.; Chen, G. Semi-Supervised Semantic Segmentation
Framework with Pseudo Supervisions for Land-Use/Land-Cover Mapping in Coastal Areas. Int. J. Appl. Earth Obs. Geoinf. 2022,
112, 102881. [CrossRef]

25. Zhang, B.; Zhang, Y.; Li, Y.; Wan, Y.; Guo, H.; Zheng, Z.; Yang, K. Semi-Supervised Deep Learning via Transformation Consistency
Regularization for Remote Sensing Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 1–15.
[CrossRef]

26. Sun, C.; Wu, J.; Chen, H.; Du, C. SemiSANet: A Semi-Supervised High-Resolution Remote Sensing Image Change Detection
Model Using Siamese Networks with Graph Attention. Remote Sens. 2022, 14, 2801. [CrossRef]

27. Guo, H.; Shi, Q.; Marinoni, A.; Du, B.; Zhang, L. Deep Building Footprint Update Network: A Semi-Supervised Method for
Updating Existing Building Footprint from Bi-Temporal Remote Sensing Images. Remote Sens. Environ. 2021, 264, 112589.
[CrossRef]

28. Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; Ding, H.; Huang, X. SemiCDNet: A Semisupervised Convolutional Neural Network
for Change Detection in High Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5891–5906. [CrossRef]

29. You, Z.-H.; Wang, J.-X.; Chen, S.-B.; Tang, J.; Luo, B. FMWDCT: Foreground Mixup Into Weighted Dual-Network Cross Training
for Semisupervised Remote Sensing Road Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5570–5579.
[CrossRef]

30. Li, Q.; Shi, Y.; Zhu, X.X. Semi-Supervised Building Footprint Generation With Feature and Output Consistency Training. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 5623217. [CrossRef]

31. Li, Y.; Ye, S.; Bartoli, I. Semisupervised Classification of Hurricane Damage from Postevent Aerial Imagery Using Deep Learning.
J. Appl. Remote Sens. 2018, 12, 045008. [CrossRef]

32. Saito, K.; Spence, R.J.S.; Going, C.; Markus, M. Using High-Resolution Satellite Images for Post-Earthquake Building Damage
Assessment: A Study Following the 26 January 2001 Gujarat Earthquake. Earthq. Spectra 2004, 20, 145–169. [CrossRef]

33. Dong, L.; Shan, J. A Comprehensive Review of Earthquake-Induced Building Damage Detection with Remote Sensing Techniques.
ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [CrossRef]

34. Lucks, L.; Bulatov, D.; Thönnessen, U.; Böge, M. Superpixel-Wise Assessment of Building Damage from Aerial Images. In
Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Prague, Czech Republic, 25–27 February 2019; pp. 211–220.

35. Li, P.; Xu, H.; Liu, S.; Guo, J. Urban Building Damage Detection from Very High Resolution Imagery Using One-Class SVM and
Spatial Relations. Int. Geosci. Remote Sens. Symp. (IGARSS) 2009, 5, V-112–V-114. [CrossRef]

36. Qing, Y.; Ming, D.; Wen, Q.; Weng, Q.; Xu, L.; Chen, Y.; Zhang, Y.; Zeng, B. Operational Earthquake-Induced Building Damage
Assessment Using CNN-Based Direct Remote Sensing Change Detection on Superpixel Level. Int. J. Appl. Earth Obs. Geoinf. 2022,
112, 102899. [CrossRef]

37. Lee, J.; Xu, J.Z.; Sohn, K.; Lu, W.; Berthelot, D.; Gur, I.; Khaitan, P.; Ke-Wei, H.; Koupparis, K.; Kowatsch, B. Assessing Post-Disaster
Damage from Satellite Imagery Using Semi-Supervised Learning Techniques. arXiv 2020, arXiv:2011.14004.

38. Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C. MixMatch: A Holistic Approach to Semi-Supervised
Learning. arXiv 2019, arXiv:1905.02249.

http://doi.org/10.3390/rs14040879
http://doi.org/10.1109/JSTARS.2021.3119286
http://doi.org/10.1109/JSTARS.2022.3215730
http://doi.org/10.1016/j.jag.2022.102881
http://doi.org/10.1109/JSTARS.2022.3203750
http://doi.org/10.3390/rs14122801
http://doi.org/10.1016/j.rse.2021.112589
http://doi.org/10.1109/TGRS.2020.3011913
http://doi.org/10.1109/JSTARS.2022.3188025
http://doi.org/10.1109/TGRS.2022.3174636
http://doi.org/10.1117/1.JRS.12.045008
http://doi.org/10.1193/1.1650865
http://doi.org/10.1016/j.isprsjprs.2013.06.011
http://doi.org/10.1109/IGARSS.2009.5417719
http://doi.org/10.1016/j.jag.2022.102899


Remote Sens. 2023, 15, 478 22 of 22

39. Sohn, K.; Berthelot, D.; Li, C.-L.; Zhang, Z.; Carlini, N.; Cubuk, E.D.; Kurakin, A.; Zhang, H.; Raffel, C. FixMatch: Simplifying
Semi-Supervised Learning with Consistency and Confidence. In Proceedings of the Advances in Neural Information Processing
Systems, Online, 6–12 December 2020; Volume 33, pp. 596–608.

40. Wu, K.; Otoo, E.; Shoshani, A. Optimizing Connected Component Labeling Algorithms. In Proceedings of the Medical Imaging
2005: Image Processing, San Diego, CA, USA, 12–17 February 2005; Volume 5747, pp. 1965–1976.

41. Yun, S.; Han, D.; Chun, S.; Oh, S.J.; Yoo, Y.; Choe, J. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable
Features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 6022–6031.

42. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–18.

43. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the IEEE Winter Conference on Applications
of Computer Vision, Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472.

44. Dunnhofer, M.; Antico, M.; Sasazawa, F.; Takeda, Y.; Camps, S.; Martinel, N.; Micheloni, C.; Carneiro, G.; Fontanarosa, D.
Siam-U-Net: Encoder-Decoder Siamese Network for Knee Cartilage Tracking in Ultrasound Images. Med. Image Anal. 2020,
60, 101631. [CrossRef]

45. Vetrivel, A.; Gerke, M.; Kerle, N.; Nex, F.; Vosselman, G. Disaster Damage Detection through Synergistic Use of Deep Learning
and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning. ISPRS J.
Photogramm. Remote Sens. 2018, 140, 45–59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.media.2019.101631
http://doi.org/10.1016/j.isprsjprs.2017.03.001

	Introduction 
	Related Work 
	Building Damage Assessment 
	Semi-Supervised Semantic Segmentation 
	Semi-Supervised Learning for Building Damage Recognition 

	Methodology 
	Basic Model Architecture with Post-Processing 
	Multitask-Based SIAMESE Network 
	Loss Function 
	Object-Based Post-Processing 

	Semi-Supervised Semantic Segmentation Framework 
	Perturbed Dual Mean Teachers 
	Confidence Weighting 


	Experiment Setting 
	Datasets 
	Evaluation Metrics 
	Implementation Details 

	Experimental Results 
	Comparison with SL Competitors 
	Comparison with SSL Competitors 

	Discussion 
	Ablation Study 
	Time Analysis 
	Damage Assessment of an Example Region 
	Limitations and Prospects 

	Conclusions 
	References

