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Abstract: The occurrence of natural disasters as a consequence of accidental hazardous chemical
spills remains a concern. The inadequate, or delayed, initial response may fail to mitigate their
impact; hence, imminent monitoring of responses in the initial stage is critical. Classical contact-type
measurement methods, however, sometimes miss solvent chemicals and invoke risks for operators
during field operation. Remote sensing methods are an alternative method as non-contact, spatially
distributable, efficient and continuously operatable features. Herein, we tackle challenges posed by
the increasingly available UAV-based hyperspect ral images in riverine environments to identify the
presence of hazardous chemical solvents in rivers, which are less investigated in the absence of direct
measurement strategies. We propose a referable standard procedure for a unique spectral library
based on pre-scanning hyperspectral sensors with respect to representative hazardous chemicals
registered on the national hazardous chemical list. We utilized the hyperspectral images to identify
18 types of hazardous chemicals injected into the river in an outdoor environment, where a dedicated
hyperspectral ground imaging system mounted with a hyperspectral camera was designed and
applied. Finally, we tested the efficiency of the library to recognize unknown chemicals, which
showed >70% success rate.

Keywords: hyperspectral; hazardous chemicals; spectral library; chemical accident; recognition test

1. Introduction

There are increasing social concerns regarding water pollution and natural disaster
attributed to hazardous chemicals spills. With industrialization, accidental hazardous
chemical spills in riverine environments occur more frequently, which has adverse effects on
humans and the ecological environment [1]. The inadequate or delayed initial response may
lead to serious environmental disasters and fail to mitigate their impact; thus, appropriate
actions and responses in the initial stages are critical. However, the leakage of chemicals
into rivers is particularly challenging to detect as they are mostly transparent solvents. For
example, when transparent sodium hypochlorite was leaked after an accidental damage
to a storage tank filled with a detergent on 11 May 2018, the leaked chemical flowed into
Gam stream and caused significant harm to aquatic life, such as fish [2]. Local authorities
were able to recognize the type of chemical and its leaked location by indirectly tracking
a fire in a nearby factory. No detecting protocol worked, while the chemical was never
detected in the middle of the spilling accident. The imminent sensing of solvent chemical
leaked in the river has been difficult to perform since identifying the chemical occurred
only after detecting the certain suspicious spill in rivers where “direct” and “contact”
in-situ detectors were conventionally applied as subsequent sensing devices, such as pH
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paper, simple identification and detection kits or detector tube devices, as well as electronic
detectors, such as a portable ion spectrometer or portable Fourier transform infrared (FT-IR)
spectroscope. These contact-type measurement methods, however, may not be able to
detect the presence of chemicals due to sensor’s local positioning and contact nature when
spilled chemicals are disseminated spatially biased on opposite sides of a river cross-section.
Also, this type of direct sensing invokes risks for field operators while performing system
installation, measurement and checking status of toxic chemicals. Therefore, there have
been increasing needs for the development of alternatively efficient, spatially distributable
and safe technologies enabling seamless monitoring against hazardous chemicals spilled in
river water. Among various alternative ways, remote sensing is a potential candidate when
considering its advantages such as minimal contact, spatial distribution, efficiency and ease
of operation. Recent advances in platforms, such as CCTV and UAV, made remote sensing
more plausible for this kind of river monitoring.

From such a perspective, the present study specifically proposes a remote sensing
method of using hyperspectral images to identify the type of hazardous chemicals, where
spectral images are continuously monitored along a cross-section of river. More specifically,
we developed a dedicated spectral library of solvent hazardous chemicals that helped to
characterize specific features of a given spectrum. Already, hyperspectral images have been
increasingly applied for assessing the hydraulic and ecological characteristics of rivers.
For example, monitoring river water quality (e.g., Chl-a, TSS and turbidity) using aerial
and satellite-based hyperspectral images has been developed [3–7]. River depth measure-
ments based on drone-based hyperspectral images are being actively investigated [8]. The
present study expands their applications for detecting and identifying dissolved or floating
chemicals spilled in a river using a hyperspectral image [9–11]. The motivation for using
hyperspectral images for chemical identification is to construct a unique spectral library
for each chemical. In fact, spectral libraries have played a key role in the identification of
terrain objects, such as minerals, soils, vegetation, artifacts and liquids [12], when spectral
images began to be available following the era of satellites. However, there have been very
few spectral libraries researched for substances based on solvents, such as chemicals mixed
in river water, mainly due to the fact that spatial resolution of conventional spectral image
from conventional satellites supporting spectral images (i.e., 30 m) is not suitable to detect
chemicals spilled in relatively small rivers. Furthermore, existing spectral libraries for
identification of substances mixed in water, such as those developed by USGS [13], Johns
Hopkins University [14], NASA [14] and the ECOSTRESS spectral library version 1.0, are
mostly unable to detect non-chemical materials, such as frost, ice, distilled water, seafoam,
seawater, coarse granular snow and red-coated algae water [15]. Additionally, these studies
have mainly constructed spectral libraries based on indoor spectrometers while missing
critical signatures for water solvent, light-transmittable substances applicable to natural
rivers under sunlight.

Considering that a reliable spectral library is enough to utilize hyperspectral images
acquired from river environment for monitoring hazardous chemicals, very few prior
studied spectral libraries are available. In this context, this study helps to derive a spectral
library for identifying various hazardous chemicals floating in or mixed in river water.
Several issues must be prioritized before newly streamlining a spectral library, where
the hyperspectral images acquired from platforms, such as UAVs, raise new issues in
contrast to those obtained from former spectral investigations conducted in controlled
indoor conditions. First, when building a unique chemical spectral library, the spectral
characteristics of river water must be removed as it exhibits higher reflective properties than
the dissolved chemicals. Also, the spectral characteristics for each river water may differ.
The spectral impact from the surrounding solvent should be discriminated and eliminated
to isolate pure spectrum from the chemicals. Second, unlike with point spectroradiometer,
when building a standard spectral library from hyperspectral images recorded in-plane
units, post-processing and averaging of multiple spectral signatures are required.
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Thus, outlining the procedure for averaging multiple spectral information for targeted
chemicals with outlier removal to obtain a representative spectrum as the unique spectral
trend for further versatile usages is essential. Third, chemicals dissolved in river water with
the same properties exhibit, to some extent, different spectral characteristics depending on
field observation conditions, i.e., solar intensity and angle. Thus, conversion to reflectance
requires standard quantification through radiometric calibration using multiple reflection
tarps with known absolute reflectance. Fourth, despite similar spectral patterns, the same
chemicals may show different reflectance levels depending on the chemical concentration
and solar intensity. Hence, the reflectance levels must be standardized to avoid challenges
in future identification. Consequently, in addition to the existing method for building
a spectral library, a new standard procedure for building a unique spectral library for
each chemical should be established. This spectral library will allow the identification
of dissolved chemicals, in river water, from UAV-based hyperspectral images. The core
contribution of this study is the proposed standard procedure and method for building a
spectral library.

From the above perspective, we tackle the challenges posed by the increasingly avail-
able UAV-based hyperspectral images in riverine environments to identify the presence
of hazardous chemical solvents in rivers which have been less investigated in the absence
of direct measurement. We propose a referable standard procedure for constructing a
unique spectral library based on pre-scanning hyperspectral sensors mounted on a drone
with respect to representative hazardous chemicals registered on the national hazardous
chemical list. The spectral library for the chemicals was built on the condition that the
chemicals are basically mixed with natural rivers in the form of dissolved or floating ions
on river water. We utilized the hyperspectral images for 18 types of hazardous chemicals
injected into river water in an outdoor environment, where a dedicated hyperspectral
ground imaging system mounted with a hyperspectral camera was designed and applied.

2. Materials and Methods
2.1. Target River and Hazardous Chemicals

The hazardous chemicals supplied to build a unique spectral library are close to undi-
luted solutions of high concentrations. To build a spectral library of hazardous chemicals
mixed in river water, we collected water from Gam Stream of the Nakdong River water
system located in the southern part of South Korea. There are industrial complexes located
upstream of the Gam Stream, where several former spill incidents of hazardous chemicals
occurred, such as the detection of perchlorate at major water intake sites on the Nakdong
River in July 2006; a phenol spill due to a fire accident in the Gimcheon site of Kolon
Industries in March 2008; and the temporary suspension of water intake due to phenol
detection in Gumi Metropolitan Water Treatment Plant. Thus, the Gam Stream was selected
as a testing subject in this study since there is a real concern regarding water quality due to
chemical spills in this area.

As mentioned, 18 types of chemicals were selected as hazardous chemicals, consisting
of five types of organic matter and 13 types of inorganic matter (Table 1). By pH, the
hazardous chemical samples of 3000 ppm consisted of 8 types of acidic chemicals, seven
types of neutral chemicals and 3 types of basic chemicals. The hazardous chemicals were
turned into 0.5 M stoke solutions by diluting in distilled water, considering the molecular
weight and purity of each chemical. Samples were produced by diluting these 0.5 M stoke
solutions in river water. The samples prepared to capture hyperspectral images were
placed in a wide shallow container with a glass cover to secure stability and minimize light
diffraction that occurs on a spherical surface. Handling hazardous chemicals that have
no cover is challenging; therefore, 250 mL samples were collected in covered crystallizing
dishes with a diameter of 80 mm and a height of 45 mm. Hyperspectral images of samples
in these containers were captured.



Remote Sens. 2023, 15, 477 4 of 20

Table 1. Hazardous chemicals used to build a spectral library.

No. CAS No. Name Chemical Formula Color Organic pH

1 107-07-3 2-Chloroethanol C2H5ClO Colorless Organic 7.42
2 556-52-5 Glycidol C3H8O2 Colorless Organic 8.29
3 78-93-3 Methyl ethyl ketone C4H8O Colorless Organic 8.22
4 7664-39-3 Hydrogen fluoride HF Colorless Inorganic 2.18
5 7726-95-6 Bromine Br2 Dark reddish-brown, Dark red Inorganic 5.8
6 7784-34-1 Arsenic trichloride AsCl3 Colorless, Yellow oily fuming liquid Inorganic 6.69
7 7719-12-2 Phosphorus trichloride PCl3 Colorless, Yellow oily fuming liquid Inorganic 1.53
8 143-33-9 Sodium cyanide NaCN White crystalline solid, Colorless liquid Inorganic 10.90
9 7664-41-7 Ammonia NH3 Colorless liquid Inorganic 10.47

10 7647-01-0 Hydrogen chloride HCl Colorless Inorganic 1.05
11 869-24-9 2-Chloroethyldiethylammonium chloride C6H14ClN·HCl Colorless liquid Organic 6.50
12 7719-09-7 Thionyl chloride SOCl2 Colorless to yellow to reddish liquid Inorganic 1.41
13 10025-87-3 Phosphorus oxychloride POCl3 Colorless to yellow, oily liquid Inorganic 1.46
14 1341-49-7 Ammonium bifluoride (NH4)HF2 White crystals, Colorless liquid Inorganic 3.49
15 108-88-3 Toluene C7H8 Colorless Organic (basic)

16 7681-49-4 Sodium fluoride NaF White powder or colorless crystals,
colorless liquid Inorganic 6.85

17 7789-23-3 Potassium fluoride KF White crystalline, colorless liquid Inorganic 7.27
18 7664-93-9 Sulfuric acid H2SO4 Colorless to dark-brown, oily liquid Inorganic 1.34

2.2. Hyperspectral Image Collection

The hyperspectral sensors are generally passive types that collect light reflected from
objects after they absorb sunlight. The hyperspectral sensor used in this study was Corn-
ing’s microHSI 410 SHARK, as shown in Figure 1a [16]. This hyperspectral sensor has a
wavelength range of VNIR, i.e., 400–1000 nm, a spectral resolution of 4 nm, and provides a
total of 150 spectral bands. The sensor size, including the lens, is 13.6 cm × 8.7 cm × 7.0 cm,
with a weight of 0.68 kg. Since the sensor is lightweight, it can be easily mounted on
UAVs. The sensor collects the spectral information using the line scanning method with a
push-broom that spatially records the light passing through a prism [17]. Basically, spectral
outliers were removed using a Kalman filter. The observation angle is 29.5◦, while 682 pixels
are collected per scanning line at a frequency of 300 Hz. Hyperspectral images captured
using the line scanning technology enable the measurement of space as the spectral char-
acteristics collected at each observation are stored linearly. The linearly stored spectral
characteristics along the traveling path of the platform were recorded (Figure 1b).
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Figure 1. Hyperspectral image sensor and its ground-based outdoor portable holder to obtain spectral
images for various hazardous chemicals. (a) Hyperspectral sensor used for building spectral image;
(b) a drone system with hyperspectral sensor, GPS and gimbal supposed to monitor hazardous
chemicals in riverine environments; (c) a portable holder mounted with hyperspectral sensor on the
ground and chemical samples to be photographed; (d) manual mobile operation of the portable holder
on top of biker containing chemicals; (e) resultant hyperspectral image where prepared samples of
hazardous chemical were monitored concurrently.
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As seen in Figure 1c, the hazardous chemical samples were captured with a hyper-
spectral camera mounted on a portable holder at a height of approximately 1.4 m to enable
portable photography according to the line scanning method for collecting various samples
concurrently. By slowly migrating the holder with a hyperspectral camera at a constant
speed, various chemical samples could be collected almost simultaneously under natural
light conditions (Figure 1d,e). Due to the pre-scanning method, the hyperspectral cam-
era mounted on a UAV or a ground holder is sensitive to wind, flight vibrations and
observation angle. The vibration of the mounted drone and its portable holder should
be considered, which occurs when the flight path is changed compared to a relatively
stable manned airplane. Thus, it was challenging to generate hyperspectral images without
proper post-processing since line scanned images could not be properly combined. Conse-
quently, clear hyperspectral images were often not obtained due to the failure of proper
image registration. To cope with this issue, the installation of a gimbal was indispensable
to minimize and correct shaking mathematically. In this study, hyperspectral raw data with
minimal shaking could be obtained by applying DJI’s RONIN-MX (Figure 1b,c); the results
are shown in Figure 1e. Further, white A4 sheets were placed below the samples to be
captured, for minimizing the effects of the floor material.

The hyperspectral image depicted in Figure 1e was captured at 1:30 pm on 16 October
2019, when the solar angle elevation was very high. The temperature was 15.3 ◦C, and the
relative humidity was 72.6%. The solar azimuth was 215◦53′18.25′′, and its altitude was
38◦5 4′12.9′′.

Notably, the reflectance, a normalized spectral signal, mainly utilized to build a
library or to conduct further analysis, is obtained by dividing the intensity of the light
source and the intensity of the reflected light from objects. A conventional ground-based
spectrometer and spectroradiometer can calculate relatively accurate reflectance without
further processing.

However, the line scan-based hyperspectral sensor stores the light intensity in the
form of a radiance and, hence, should be converted into reflectance in the post-process
with respect to an absolute reference, such as a white plate (i.e., a standard reference panel
(Spectralon (Labsphere, North Sutton, NH, USA)) with 99.9% reflectance applied where the
reflectance derived from radiance can be expressed in Equation (1). When single reference
like white plate is not sufficient, a couple of reference plates with different reflectance
values can be alternatively applied. This study applied the latter approach that will be
explained later on.

Reflectance (λ) =
Radiance (λ)

Radiancewhite plate (λ)
× 100 (1)

Figure 2b shows the raw spectral signature expressed as radiance extracted from 100
pixels at the center of the container in the photographed chemicals (Figure 2a). Although
there are subtle differences between all chemicals, the differences between chemicals mixed
in river water are insignificant (Figure 2b–d). Furthermore, the usual spectral library
acquired from the spectrometer (i.e., point and time-averaged) through artificial lights in
the existing laboratory can be used to distinguish between chemicals without a separate
standard processing procedure since it provides one spectral signature. However, as with
the approach adopted here, multiple spectral signatures (e.g., 100 spectrums) could be
acquired from one material using the line-scan hyperspectral imaging system. If the solvent,
such as the river water, has a strong reflectance compared to the chemical, the utility of such
a library, based on raw spectral signature (Figure 2), can be limited in future identification.
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3. Results and Discussion
3.1. Procedure for Building a Spectral Library
3.1.1. Deriving Radiometric Calibration Equation

Radiometric calibration must be performed for the obtained hyperspectral images in
order to remove the atmospheric absorption and scattering effect. Generally, this process
involves the conversion of radiance to the reflectance as well as removing the atmospheric
effects [18]. It is desirable to collect the coincident spectral radiation measurements (i.e., to
the hyperspectral image acquisition) using a field spectroradiometer [19]. However, it may
be challenging to approach the site during image acquisition or to operate the hyperspectral
sensor and spectroradiometer concurrently. Therefore, we concluded that the collected
spectral data (i.e., radiance) can be better converted into reflectance using a standard
reference panel (Spectralon (Labsphere, North Sutton, NH, USA)) or calibration panel.
Furthermore, since different signatures may be derived from the same chemical depending
on the optical and equipment conditions at the time of hyperspectral imaging, reference
values for converting the measurements (i.e., DN and radiance) to reflectance are required.
For this purpose, the so called “reflectance tarps” made of specific materials maintaining
standard stepwise reflectance values of 55, 44, 22 and 5% (Figure 3a) were applied using
a calibration panel together with the hyperspectral images of hazardous chemicals. The
stepwise reflectance tarps would guarantee better performance in conversion of radiance
to reflectance rather than using a single white plate of 99%. Since the accurate reflectance
values of the reflectance tarps are known and mostly fixed for any spectral bands as seen
in Figure 3b, a reflectance-radiance relationship for each spectral band (Figure 3e) can be
established by constructing a relational equation and standardizing imaging conditions
for both the reflectance tarps and chemicals. Notably, the hyperspectral sensor (microHSI
(Corning Advanced Optics, Corning, NY, USA)) provides raw data as DN (or radiance),
which is the light intensity, for a total of 150 spectral bands in 4 nm intervals in the spectral
range of 400–1000 nm. The actual reflectance values of the reflectance tarps are already set
in all the 150 bands. For example, the 55% reflectance tarp shows 55% reflectance in all
the wavelengths. In this study, we verified the reflectance values of the reflectance tarps
using a spectroradiometer (PSR-2500 (Spectral Evolution Inc., Haverhill, MA, USA)). The
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PSR-2500 spectroradiometer is a well-established and highly reliable passive device for
collecting spectral information (Figure 3b). The results were highly similar to the values of
reflectance tarps in most wavelengths except 400–420 nm. However, the spectral data of
the reflectance tarps, collected using a hyperspectral sensor (microHSI (Corning Advanced
Optics, Corning, NY, USA)) and used to build a library, started at 520 nm, unlike the
spectroradiometer data shown in Figure 3c. Also, constant reflectance was not observed
from 700 nm.
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tarps. (a) The reflectance tarps; (b) spectrometer data from reflectance tarps; (c) hyperspectral sensor
data from reflectance tarps; (d) concept of radiometric calibration; (e) radiance to reflectance rating at
597.66 nm; (f) calibrated reflectance tarps from hyperspectral sensor.

Therefore, reflectance modeling at 400–420 nm was based on the normal distribution
(Equation (2)), by assuming the spectroradiometer data as the truth, so that similar trends
are shown. For wavelengths above 420 nm, radiometric calibration was performed so that
constant reflectance would be shown (Figure 3d).

N
(

xvertµ,σ2
)
=

1

(2πσ2)1/2 exp− 1
2σ2 (x− µ)2 (2)

where µ is the mean and σ2 is the variance. Since it must have the R-value at λt,
1√

2πσ2 exp(σ) = R must be satisfied. In this study, σ was calculated using the spectral



Remote Sens. 2023, 15, 477 8 of 20

information of an actual spectrometer and applied to radiometric calibration, as shown in
Figure 3d and Equation (3). {

N
(
xvertλt, σ2) if) λ < λt

R if) λ ≥ λt
(3)

The above radiometric calibration, by building a specified radiance-reflectance relation,
was performed for each individual 150 spectral bands collected from the hyperspectral
sensor, respectively. The results are summarized in Table 2. Figure 3e shows an example of
deriving the equation for converting radiance to reflectance at the wavelength 597.66 nm
(No. 45, Table 2).

Table 2. The correlation coefficients between each 18 spectral samples and characteristic spectral libraries.

No. Chemicals Correlation
Coefficient No. Chemicals Correlation

Coefficient

1 2-Chloroethanol 0.871 10 Hydrogen chloride 0.910

2 Glycidol 0.926 11 2-Chloroethyldiethylammonium
chloride 0.934

3 Methyl ethyl ketone 0.989 12 Thionyl chloride 0.977
4 Hydrogen fluoride 0.948 13 Phosphorus oxychloride 0.912
5 Bromine 0.994 14 Ammonium bifluoride 0.861
6 Arsenic trichloride 0.814 15 Toluene 0.717
7 Phosphorus trichloride 0.881 16 Sodium fluoride 0.906
8 Sodium cyanide 0.948 17 Potassium fluoride 0.881
9 Ammonia 0.962 18 Sulfuric acid 0.977

Based on the radiometric calibration method presented aforehand, radiometric cali-
bration was performed by applying radiance-reflectance relation established for each of the
150 bands in the entire captured collection of hyperspectral images (pixels). The complete
process of the radiometric calibration was scripted using a dedicated software application
for future use.

3.1.2. Extraction of Spectral Signatures

After applying the aforementioned radiometric calibration, spectral signatures rated
as reflectance were extracted from the radiometrically calibrated hyperspectral images
based on multiple pixels of the beaker holding the hazardous chemicals. Considering
the outlier removal at a later step, more than 100 pixels were selected for the extraction
of spectral information in the parts that are not affected by the scattered light due to the
curved surface of the glass container (Figure 4a). This bundle of spectral signals will be
averaged afterward to build a representative spectral signature for a given hazardous
chemical. The extracted reflectance data pertained to the mixed samples (i.e., river water
and chemicals), which has 2.5 cm depth of water in common. Herein, the spectral response
could be differentiated to be commensurate with water depth. In this regard, we accordingly
proposed and maintained a specified water depth for each container mentioned above to
build a standardized spectral library. This way of consideration should be taken plausibly
when certain soluble objects in liquid should be spectrally liberalized. In this study, a
bundle of the spectral signatures derived from 100 pixels of the river water mixed with
hydrofluoric acid image is shown in Figure 4b. As mentioned, we attempted to build a
spectral library for overall 19 hazardous chemical samples, which were taken concurrently
as shown in Figure 1e and enabled pulling out of the spectral signatures in an analogous
environment. To facilitate this process, a dedicated in-house tool was developed to deal
with a hyperspectral image, which basically allows the building of radiance-reflectance
relations for each spectral band (Figure 4c,d) and simultaneously applies the relationships
to the collected hyperspectral image. Subsequently, the software enabled the selection of
multiple locations (i.e., 100 pixels) for each chemical container and the extraction of the
spectral bundles (Figure 4a,b). The software was designed to efficiently load the heavy size
of the hyperspectral image (2.4 GB); however, such large size tends to substantially slow
down the conventional memory size of a personal computer. We resolved this by partially
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loading specific bands or pulling out all band information for some designated pixels for a
targeted analysis.
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characteristics that exist inevitably for solvent materials and will differ for other cases ac-
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result shown in Figure 5a,b indicated that the background river impact was dominant to 
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Figure 4. Extraction of spectral signatures from a hyperspectral image containing 19 chemicals
using a mobile portable holder. (a) selection of specified pixels within a chemical container used as
ingredient for building a spectral library for that chemical; (b) a bundle of hyperspectral signature
extracted from selected pixels, where radiometric calibration was previously applied; (c) building
radiance-reflectance relation using various reflectance tarps, where crossing point indicates a selected
pixel corresponding to each reflectance percentile as well as raw radiance by the present hyperspectral
camera (Corning microHSI); (d) a developed in-house software to make radiance-reflectance relation
based on the previous step for conducting radiometric calibration and to apply the relations to entire
bands and pixels.

3.1.3. Spectral Subtraction of Backgrounded Impacts

The radiance data of liquid collected through hyperspectral imaging includes base
reflection, absorption by a water column, water surface reflection and absorption by the
atmosphere. The equation for the total radiance is as follows:

LT(λ) = Lb(λ) + Lc(λ) + Ls(λ) + Lp(λ) ' Lb(λ) (4)

where LT is the radiance; λ is the wavelength; Lb is the base reflection; Lc is the water column
absorption; Ls is the water surface reflection; and Lp is the atmospheric absorption. Bearing
in mind that raw reflectance for chemical solvent river water encompassed several other
backgrounded factors, spectral signatures were derived following the procedure described
in Figure 3, which showed a considerably similar pattern irrespective of different types
of chemicals. This output addresses the background impacts on spectral characteristics
that exist inevitably for solvent materials and will differ for other cases accordingly with
the specific spectral characteristics of river water. More specifically, the result shown in
Figure 5a,b indicated that the background river impact was dominant to a much higher
degree, rather than the chemicals. Consequently, the spectral signature of pure river
water was eliminated in order to characterize the impact solely from solvent chemicals;
otherwise the original spectral pattern would be inappropriate as the library was supposed
to identify individual chemicals afterward. We assumed that the spectral signature for
individual chemical will be differentiated to play a librarian role. In this regard, pure
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river water without chemicals was also spectrally photographed and used to subtract from
raw reflectance for each solvent chemical. Figure 5a,b exemplified a spectral signature of
hydrogen fluoride in both conditions of mixed and pure river water, respectively, denoting
that their spectral pattern looks remarkably analogous. When the spectra of pure water
were subtracted from the mixed water, the residual spectral pattern became pronounced as
shown in Figure 5c; this sort of residual spectral signature was identifiable and differentiable
for each solvent chemical. The residual spectra can be negative when reflection of pure
river water in certain spectral bands is higher than the solvent chemical. Collectively,
the subtraction of backgrounded spectral impacts driven by river water was necessitated;
subsequently, we adapted this background subtraction as a standardized step to build the
spectral library of solvent chemicals.
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Figure 5. Derivation of spectral signature characterizing hazardous chemicals mixed with river
water in terms of residual spectral pattern for solvent chemicals subtracted from a given pure river
water. (a) Raw spectral signature exemplified for a solvent chemical mixed river water and hydrogen
fluoride; (b) spectral signature of pure river water without any solvent chemicals; (c) residual spectral
pattern for solvent hydrogen fluoride subtracting impact by pure river water.

3.1.4. Delineation of Mean Spectral Signature

A bundle of spectral signature using approximately 100 locations was taken from a
spatially adjacent region as illustrated in Figure 6a. Interestingly, their resultant spectral
patterns stemming from the identical chemical and monitoring environment demonstrated
slightly different fluctuations, despite a similar main trend as described in Figure 6. Also,
there exists spikes or outliers in spectral information, whose elimination is recommended.
Therefore, it was necessary to select a method to eliminate outlier and then decompose a
representative and mean spectral signature among a bundle of spectral signatures. There
will be several useful methods to accomplish such a purpose. In this study, we applied
a classic filtering algorithm to remove the spectral signatures, including the reflectance
corresponding to outliers that leaves only the data within ±3σ(λ), i.e., a 99.73% confidence
interval of the reflectance values. To obtain the mean spectral value corresponding to
each band, the Super Smoother method [20] was applied as one of the non-parametric
regression methods as likely as loess or lowess [21,22]. The Super Smoother [23] computes
the most probable value by applying weighted linear regression in each section after
dividing bivariate data into elastic bandwidths and then determines a smoothed trend
curve by estimating the most probable values, repeatedly in a given span, and connects
them. Bandwidth is used to estimate the local pattern. If the bandwidth is too large,
a flat curve close to a straight line is obtained (i.e., under-fitting); if it is too small, a
curve with considerable bending of the regression function is obtained (i.e., overfitting).
Therefore, a small bandwidth (i.e., optimal width size) was set to remove variations due
to random behaviors and to reflect a local trend while maintaining the reflectance of each
wavelength as much as possible. Such filtering and finding mean path algorithm of the
super smoother was iterated, and finally, the overall trend after removing variations due to
random behaviors of the collected data was obtained as shown in Figure 6b.
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Figure 6. Derivation of a mean and filtered spectral signature for a hazardous chemical (bromine)
using the super smoother. (a) A bundle of residual reflectance for bromine; (b) a derived spectral
signature after applying filter and the super smoother.

3.1.5. Normalization of Mean Residual Reflectance

Spectral intensity responding to individual spectral band could differ according to
in-situ conditions for the same solvent chemical, such as concentration of chemical, sun-
light strength and type of hyperspectral camera. Although a major spectral factor of
backgrounded river water was eliminated by the forced subtraction, the presence of such
other remaining variants should be considered to build a generalized spectral library. This
aspect is essential to diagnose an unknown solvent chemical based on the established
library, but the new one could be possibly taken in different conditions. To address this, we
normalized the residual spectral information using vector normalization with respect to
total magnitude (I) cumulated by all residual reflectance as denoted in Equation (5).

R′(λ) =
R(λ)

I
, I =

√∫ λmax

λmin

R(λ)2 (5)

R′(λ) is the vector-normalized residual reflectance; R(λ) is a raw residual reflectance; I
is the magnitude cumulated for the vectorized residual reflectance; and λmax and λmin
are the maximum and minimum wavelength of residual spectral signature, respectively.
Figure 7 lists normalized residual spectral signatures for the designated 18 hazardous
solvent chemicals. There could be distinctive features between chemicals, yet some are
similar. For example, methyl ethyl ketone showed similar trend with Hydrogen fluoride
but completely opposite compared with bromine. Hydrogen fluoride looks similar to
Arsenic trichloride in the pattern, but their details in higher spectral band are different.
On the other hand, sodium cyanide showed a unique feature that is very distinctive from
other chemicals.

Remote Sens. 2023, 14, x FOR PEER REVIEW 12 of 22 
 

 

  
(a) (b) 

Figure 6. Derivation of a mean and filtered spectral signature for a hazardous chemical (bromine) 
using the super smoother. (a) A bundle of residual reflectance for bromine; (b) a derived spectral 
signature after applying filter and the super smoother. 

3.1.5. Normalization of Mean Residual Reflectance 
Spectral intensity responding to individual spectral band could differ according to 

in-situ conditions for the same solvent chemical, such as concentration of chemical, sun-
light strength and type of hyperspectral camera. Although a major spectral factor of back-
grounded river water was eliminated by the forced subtraction, the presence of such other 
remaining variants should be considered to build a generalized spectral library. This as-
pect is essential to diagnose an unknown solvent chemical based on the established li-
brary, but the new one could be possibly taken in different conditions. To address this, we 
normalized the residual spectral information using vector normalization with respect to 
total magnitude (I) cumulated by all residual reflectance as denoted in Equation (5). 

R′(λ) =
( ), I = ∫ R(λ)  (5)

R′(λ) is the vector-normalized residual reflectance;  R(λ) is a raw residual reflectance; I 
is the magnitude cumulated for the vectorized residual reflectance; and λ  and λ  
are the maximum and minimum wavelength of residual spectral signature, respectively. 
Figure 7 lists normalized residual spectral signatures for the designated 18 hazardous sol-
vent chemicals. There could be distinctive features between chemicals, yet some are sim-
ilar. For example, methyl ethyl ketone showed similar trend with Hydrogen fluoride but 
completely opposite compared with bromine. Hydrogen fluoride looks similar to Arsenic 
trichloride in the pattern, but their details in higher spectral band are different. On the 
other hand, sodium cyanide showed a unique feature that is very distinctive from other 
chemicals. 

  
(a) (b) 

Figure 7. Cont.



Remote Sens. 2023, 15, 477 12 of 20Remote Sens. 2023, 14, x FOR PEER REVIEW 13 of 22 
 

 

  
(c) (d) 

Figure 7. Exemplified comparison of the spectral spectrum between the spectral library and the HSI 
(Hyperspectral Image). (a) Hydrogen fluoride; (b) bromine; (c) phosphorus oxychloride; (d) ammo-
nium bifluoride. 

Spectral signature, such as that observed in normalized residual spectra in Figure 6, 
could have been immediately streamlined in a spectral library for identifying solvent 
chemicals, whereas full spectral signature has been generally used to identify and classify 
surface materials such as land cover [18–20]. Beyond using raw spectral information, we 
expected that various aforementioned steps to make raw spectral data more distinctive 
could be further augmented with the addition of backgrounded water spectra subtraction 
and normalization. However, the resultant normalized residual spectra can be prone to 
other submerged factors, like sunlight intensity; hence, this tentative spectral library 
should be validated to determine whether additional modification is necessary. In this 
regard, we conducted a preliminary diagnosis test, where the derived spectral library rep-
resented in Figure 7 was compared with newly captured hyperspectral signatures for 18 
hazardous chemicals lagged with 2 h intervals where only sunlight strength was changed. 
Figure 7 demonstrates the feasibility of the developed library (Lib) in terms of sampled 
comparison for hydrogen fluoride, bromine, phosphorus oxychloride and ammonium 
bifluoride, respectively, where their spectral signatures were extracted from the new hy-
perspectral images (New HSI) in exactly the same way as described above. 

The comparative results however indicated that, whereas bromine clearly showed 
highly analogous pattern and spectral value with new sample from qualitative perspec-
tive, hydrogen fluoride and ammonium bifluoride revealed less similarity in terms of 
spectral value, despite overall similar feature. Moreover, phosphorus oxychloride was 
hardly acceptable in terms of strong similarity. In fact, review of remaining chemicals did 
not show feasible agreement between developed library and new input. To evaluate quan-
titative comparison, the correlation coefficient between the two spectral spectrums was 
assessed. The correlation coefficient between the spectral library and the new HSI spec-
trum of each group was calculated for all the wavelength groups as follows: 

r , =
∑ { R(λ , ) − R(λ )}{R(λ , ) − R(λ )}

(n − 1)s s
 (6)

where R(λ ) and R(λ ) are the mean reflectance of the spectral library and the new 
HSI spectrum, respectively; s  and s  are the standard deviations of reflectance of 
the spectral library and the new HSI spectrum, respectively. In conjunction with prior 
qualitative view, bromine stood out with a high correlation coefficient of 0.979; however, 
correlation for most of the 17 hazardous chemicals showed highly poor performance of < 
0.6 and negatively correlated in other cases. For example, correlations for ammonium 
bifluoride and hydrogen fluoride were 0.63 and 0.26, respectively. Phosphorus oxychlo-
ride resulted in a negative correlation of −0.44. This may be attributed to the fact that only 
bromine has chromaticity, while other chemicals were mostly invisible, which can prom-
inently account for the superior performance of bromine. The results suggested further 
modification of the spectral library. 

Figure 7. Exemplified comparison of the spectral spectrum between the spectral library and the HSI
(Hyperspectral Image). (a) Hydrogen fluoride; (b) bromine; (c) phosphorus oxychloride; (d) ammo-
nium bifluoride.

Spectral signature, such as that observed in normalized residual spectra in Figure 6,
could have been immediately streamlined in a spectral library for identifying solvent
chemicals, whereas full spectral signature has been generally used to identify and classify
surface materials such as land cover [18–20]. Beyond using raw spectral information, we
expected that various aforementioned steps to make raw spectral data more distinctive
could be further augmented with the addition of backgrounded water spectra subtraction
and normalization. However, the resultant normalized residual spectra can be prone
to other submerged factors, like sunlight intensity; hence, this tentative spectral library
should be validated to determine whether additional modification is necessary. In this
regard, we conducted a preliminary diagnosis test, where the derived spectral library
represented in Figure 7 was compared with newly captured hyperspectral signatures
for 18 hazardous chemicals lagged with 2 h intervals where only sunlight strength was
changed. Figure 7 demonstrates the feasibility of the developed library (Lib) in terms
of sampled comparison for hydrogen fluoride, bromine, phosphorus oxychloride and
ammonium bifluoride, respectively, where their spectral signatures were extracted from
the new hyperspectral images (New HSI) in exactly the same way as described above.

The comparative results however indicated that, whereas bromine clearly showed
highly analogous pattern and spectral value with new sample from qualitative perspective,
hydrogen fluoride and ammonium bifluoride revealed less similarity in terms of spectral
value, despite overall similar feature. Moreover, phosphorus oxychloride was hardly
acceptable in terms of strong similarity. In fact, review of remaining chemicals did not show
feasible agreement between developed library and new input. To evaluate quantitative
comparison, the correlation coefficient between the two spectral spectrums was assessed.
The correlation coefficient between the spectral library and the new HSI spectrum of each
group was calculated for all the wavelength groups as follows:

rlib,new =
∑n

i=1

{
R(λlib,i)− R(λlib)

}{
R(λnew,i)− R(λnew)

}
(n− 1)slibsnew

(6)

where R(λlib) and R(λnew) are the mean reflectance of the spectral library and the new HSI
spectrum, respectively; slib and snew are the standard deviations of reflectance of the spectral
library and the new HSI spectrum, respectively. In conjunction with prior qualitative
view, bromine stood out with a high correlation coefficient of 0.979; however, correlation
for most of the 17 hazardous chemicals showed highly poor performance of <0.6 and
negatively correlated in other cases. For example, correlations for ammonium bifluoride
and hydrogen fluoride were 0.63 and 0.26, respectively. Phosphorus oxychloride resulted
in a negative correlation of −0.44. This may be attributed to the fact that only bromine has
chromaticity, while other chemicals were mostly invisible, which can prominently account
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for the superior performance of bromine. The results suggested further modification of the
spectral library.

3.1.6. Characteristics of Spectral Library

When the whole spectrum was applied as a library, as shown in Figure 7, we found
that the spectral bands irrelevant to reflective characteristics of chemical could be randomly
different according to spectral nature and ambient measurement conditions. These irrele-
vant spectral bands negatively affected the correlation assessment against reference in high
degree, thus should be better excluded from the spectral library. Subsequently, it would be
optimal to identify unique bands that enable to characterize specific chemicals. In fact, the
approach of solely using optimal bands (not whole) has been widely accepted in various
hyperspectral applications, such as NDVI for vegetation [24], NDWI for water [25] and
optimal band ratio analysis (OBRA) for submerged bathymetry [8]. In this study, however,
we did not develop a specialized index or finding optimal band ratio similarly with former
studies. Rather, we selected specific band groups among whole spectrum to characterize
a specific chemical as likely as a signature. We presume that such signatures should dis-
criminate each other within the targeted chemicals. This is an important perspective and
also a limitation since our objective was to only identify a chemical among the given pool
of hazardous chemicals, where concept of ranking was adapted to prioritize candidates.
We referred to this specific signature of chemical as “characteristic spectral library for haz-
ardous chemicals”, which was built on top of a previously processed spectrum following
the aforementioned procedure.

To derive such characteristic library, various plausible ways can be used for further
manipulation of the given processed library. As a top principle, it is necessary to extract
common and unique parts from multiple spectrums acquired on various measurement
conditions. In this way, the greater number of spectrums will better pull-out uniqueness
of the spectral reflectance, where data mining techniques, such as machine learning, will
work in certain degree to delineate specific patterns. Nevertheless, spectral samples in
the presence of hazardous chemicals in the natural rivers are especially hard to obtain
compared with other conventional natural objects. The safe way of handling chemicals was
to bring such river water and artificially dissolve and mix them in a controlled experiment.

In this study, therefore, we followed a simple correlation defined in Equation (6) and
preliminarily applied available only two different spectrums to manually pull-out common
characteristics, though it would not be sufficiently generic and automated.

More specifically, in the two spectrums captured per each chemical, we defined
146 pairs, each having approximately 20 nm of coverage and applied the entire wavelength
range of 400–1000 nm with 150 spectral bands. Then the correlation coefficient was assessed
for each pair and ranked in order of highest value. For example, phosphorus trichloride
was sorted in top five highly correlated pairs of 689.76–709.79, 633.7–653.72, 469.52–485.54,
509.56–525.58 and 733.81–785.87 nm, where the correlation coefficients in those pairs were
0.932, 0.909, 0.881, 0.834 and 0.711, respectively (Figure 8a). In addition, we attempted to
further move the average cascadedly starting from the first two (i.e., 0.932 and 0.909) down
to the fifth rank until the highest mean correlation coefficient was acquired.

As a result, phosphorus revealed that the first two bands had the highest moving
average (Figure 9b), which characterized phosphorus in the spectral library. Herein, the
number of characteristic coverages can be 2–5. Given that the number of maximum charac-
teristic coverage of 5 was arbitrarily chosen, it is sufficient to characterize the uniqueness
and similarity but can be more. Figure 9 shows signatured coverage to represent spectral
characteristic of all 18 solvent chemicals, where multiple spans of bands were adapted to
characterize the chemicals. For example, glycidol pertained five coverages as a character-
istic spectral signature. An examination of the characteristic spectral libraries indicated
that all 18 chemicals exhibited different characterized spectral properties. In particular,
bromine, light brown in color, revealed significantly lower reflectance than other chemicals
until 500 nm at which it turned blue. Interestingly, the overall shape of the spectrum of
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bromine was similar to that of sodium cyanide, having no chromaticity cyanide especially
in the lower reflectance. Similarly, fluorine compounds, i.e., sodium fluoride and potassium
fluoride, showed similar overall spectral patterns. In addition, 2-chloroethyl, glycidol,
hydrogen fluoride, bromine, phosphorous trichloride, 2-chloroethyl-diethyl ammonium
chloride, thionyl chloride, sodium fluoride and potassium fluoride showed similar patterns
in the wavelength range of 749.83–773.86 nm.
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Figure 9. Characteristic spectral library. (a) 2-Chloroethanol; (b) glycidol; (c) methyl ethyl ketone;
(d) hydrogen fluoride; (e) bromine; (f) arsenic trichloride; (g) phosphorus trichloride; (h) sodium
cyanide; (i) ammonia; (j) hydrogen chloride; (k) 2-chloroethyldiethylammonium chloride; (l) thionyl
chloride; (m) phosphorus oxychloride; (n) ammonium bifluoride; (o) toluene; (p) sodium fluoride;
(q) potassium fluoride; (r) sulfuric acid.

Basically, the strategy of present study imposed several characteristic coverages as sig-
nature in case certain chemicals have different overall patterns, which is anticipated to better
characterize and recognize a specified one. For the chemicals with similar patterns after ap-



Remote Sens. 2023, 15, 477 16 of 20

plying steps of vector normalization, however, this strategy does not consistently guarantee
high recognition between them. For example, the characteristic library of bromine can work
suitably with that similar spectral coverage of sodium cyanide; thus, recognition process
will yield to sodium cyanide as the best match rather than bromine that can be a secondary
feasible match. We postulated that above drawback is unavoidable. Consequently, we sug-
gested further recognition guideline to recommend more candidates (e.g., within ranking 3)
in addition to the most similar one, where correlation coefficient between new and library
account for the plausible criteria as a sort of probability. In fact, this approach is also useful
in practice since we can substantially narrow down and specify the type of chemicals and
track nearby spilling locations, such as chemical factory if chemical database was priorly
established (e.g., among chemical factories located in upstream of Gam Stream in this
study). Despite the different number of coverages for each chemical and certain degree of
similarity, the resulted characteristic spectral library in Figure 9 is useful to identify and
classify the type of leaked chemical.

Noting that only two spectral resources in an analogous environment (e.g., 2 h differ-
ence) were ingested, these characteristic spectral libraries are not certainly conclusive, thus
limitedly applicable for identifying a new unknown chemical. Nevertheless, the results
demonstrated that the derived spectral library well documented their distinctive features,
and proof and good example of applying proposed procedure, indicating that the more
spectral resources from various environment and variable are added, the better consoli-
dated spectral characteristics of chemicals will be obtainable. In Figure 10, we summarized
an end-to-end step to build a characteristic spectral library.
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Figure 10. A flow chart to describe an end-to-end step for building characteristic spectral library for
hazardous chemicals proposed solvent in rivers.

3.2. Recognition Process

Given that a spectral library for 18 solvent hazardous chemicals was established, we
demonstrated how the library reliably recognizes a new unknown chemical (Figure 11).
The unknown spectral information will be compared with the librarized chemicals one by
one and ranked accordingly with the computed correlation. Note that whole recognition
process only occurs among the given spectral library and mandatorily suggests suitable
candidates within ranking 3 by referencing correlation coefficient, rather than assertively
designating a single one. We herein exemplified chemical recognition process using newly
photographed hyperspectral images for each hazardous chemical. For each chemical,
spectral information was extracted and normalized after excluding ambient water as
illustrated so far. Such manipulated spectral information was partially utilized up to
characteristic spectral coverages specific to librarized chemicals. We prepared the same
18 samples of chemicals as in the library and took hyperspectral images in the slightly
different environment when used during library construction. The unknown chemicals
were hyperspectrally imaged at around 6 pm with the other conditions being identical.
During sampling, the light intensity was lower than when imaging for constructing the
spectral library. Then we individually applied the recognition procedure for 18 unknown
chemicals and tested how feasibly the library yielded right candidates.
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The correlation coefficients between each of 18 spectral samples and characteristic
spectral libraries were assessed in Table 2 and ranked accordingly with correlation and
simultaneously provided the rank to fit with each sample in Table 3. For example, the library
recognized 2-chloroethanol correctly as first rank, but arsenic trichloride was ranked thirdly.
In particular, bromine was firstly ranked in spite of having significantly lower reflectance
than chemicals until 500 nm at which it turned blue. Low concentrations of chemicals with
chromaticity could be better ranked though most chemicals in the library were transparent.
We proposed that, when the rank of a chemical was within third, it became conceded as
the library worked by narrowing down candidates for the unknown chemical. The greater
number of chemicals in the library corresponds to higher accuracy of capturing the type of
chemicals. Overall, the recognition rate showed that the developed library gave precisely
correct answers for more than one-half of the samples (10 samples) as first ranked, and a
total of 13 chemicals were among the top three chemicals (i.e., the recognition rate of 72.2%).
Table 2 demonstrated the correlations between 18 spectral samples and a spectral library,
which led to more than 0.8 except one sample (e.g., Toluene), implying an analogous nature
of the derived library. In low rank cases, Table 3 imposed that practitioners narrow down
possible candidates of leaked chemicals. This recognition rate indicated that our efforts to
adapt a characterizing process substantially enhanced the success rate, considering that
prior to using the characteristic library (meaning that full spectrum was used as signature
to assess correlation), the recognition rate was approximately 53.3%. Nevertheless, five
chemicals could not reach within the third rank, such that a characteristic library missed
matching them. They were mostly transparent solvent subordinate of sodium and hydrogen
type. In particular, toluene was completely out of ranking scope (ranked tenth), though this
chemical was slightly visible as floating texture when it was mixed with water like spilled
oil. The score of unmatched 27.8% of samples (i.e., beyond third rank) implied that, though
we considered and standardized all different environmental conditions and furthermore
adapted the characteristic concept, there might be other factors that were not considered.
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Table 3. Evaluation of recognition rate—Example identification using a characteristic spectral library.

Rank Number Chemicals

1 10
2-Chloroethanol, glycidol, methyl ethyl ketone, hydrogen
fluoride, bromine, ammonia, thionyl chloride, ammonium

bifluoride, potassium fluoride, and sulfuric acid

2 2 2-Chloroethyldiethylammonium chloride and
phosphorus oxychloride

3 1 Arsenic trichloride
4 2 Hydrogen chloride and Sodium fluoride
5 1 Sodium cyanide
6 1 Phosphorus trichloride
10 1 Toluene

In addition, the present chemical samples were only taken at difference in light inten-
sity. In general, chemical samples can be measured in other higher order of difference in
the measurement equipment (i.e., spectroradiometer or hyperspectral sensor), platform
(terrestrial or airborne), weather, chemical concentration, different type of ambient river
water, the bed materials (sand, gravel, mud, vegetated) and the container for holding
samples. In those cases, the recognition success rate can be lower. Unfortunately, given
the difficulties of securing hazardous chemicals in those conditions, it was not possible
to obtain diverse cases of samples and was limited to developing a more solid spectral
library for sampling chemicals, which was an unavoidable limitation of handling haz-
ardous chemicals. Nevertheless, given such limited conditions, we suggest that the derived
characteristic library work in certain acceptable range and can enhance the recognition
rate. Also, considering previous similar studies, the developed library in this study was
measured on condition where air correction was ignored; thus, those spectral images from
low altitude UAV and terrestrial hyperspectral system can be eligible.

4. Conclusions

In this study, we developed a strategy for building a standard spectral library by
characterizing hazardous chemicals using a hyperspectral sensor. Upon recognizing that
various limitations occur when the spectral library is directly applied to the identification
of chemical, the characteristic spectral library reflected several distinctive characteristic
wavelength bands for each chemical and used them to better recognize an unknown
chemical. Summarized procedures for building a characteristic spectral library are outlined
here: (a) assuming that hazardous chemical samples have the analogous concentration,
hyperspectral images are captured per container with identical hyperspectral sensor in
operation and surrounding imaging conditions; (b) the collected spectral information is
converted into reflectance through radiometric calibration where the spectral signatures of
the sampled chemicals are extracted from the calibrated hyperspectral images; (c) spectral
subtraction of backgrounded impact stemmed particularly from ambient river water;
(d) outliers are removed from the extracted data and checked for validity, then mean
spectral signature is delineated using a smoothing method (e.g., super smoother); (e) each
spectrum per chemical is normalized for further standardized correlation assessment;
(f) characteristic features from the normalized full spectrum are extracted to uniquely
distinguish the spectral signature of a chemical. Based on the above procedure, we have
developed a characteristic library for 18 hazardous chemicals assuming a scenario of leaking
them into rivers and tested the feasibility of the library to recognize unknown chemicals,
which meaningfully worked with >70% success rate.

Throughout developing a standardized procedure to develop a spectral library and perform
a recognition test, we have the following conclusions and suggestions for future research:

(1) Hyperspectral-based detection of solvent hazardous chemicals in the riverine envi-
ronment was scarce, thus very little former research was referable. In this regard,
though our initial effort proposed in this study is preliminary and should be more
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verified, such a library will be referenceable for further research. Practically, the
library can be useful for the real-time detection and distinction between hazardous
chemicals by facilitating a response to the occurrence of chemical accidents. We highly
anticipate that more subtle aspects of enhancing performance of the spectral library
will continue to be investigated. From this perspective, further research efforts as well
as appropriate guidelines to synthesize various water environment indices such as the
concentration of organic matters, concentration of algae, turbidity and water depth
are required.

(2) At the initial stages of this study, we considered more than 100 hazardous chemicals,
but only covering a small portion of them given the danger of handling them since
several of them were forbidden to be treated without permission from national security.
In addition, practical abundance to fulfill a solid library even for available chemicals
was therefore limited, because it was impossible to obtain sufficient in-situ samples.
Instead, the mobile carrier mounting hyperspectral camera was useful for mimicking
line-scanning hyperspectral imaging process in outdoor hyperspectral sampling of
very low concentration of hazardous chemical samples.

(3) We arbitrarily assigned a criterion for the maximum number of characteristic bands
(or coverage) as five. Similarly, ranking criteria to define recognition success was set
up as less than third rank. Though we verified that these criteria are suitable to build
and utilize a spectral library, such ambiguity in properly defining the optimal criteria
remained and should be resolved. For example, we speculate that spectral libraries
can better work if developed with the greater number of spectral images, reflecting
diverse measurement environments with applying advanced AI techniques to train
the capacity to recognize chemicals’ signature. Also, the rank in the recognition
process was provided in this study as correlation coefficient, rather than considered
to suggest probability.

(4) Characterizing distinctive features among the full spectrum was effective in addition
to excluding the ambient spectral impact, such as river water, and normalizing to
reduce the impacts from concentration. However, other factors influencing spectral
signature should be considered.

(5) Beyond identifying hazardous chemicals, the approach proposed herein for building
a characteristic spectral library can also be applied for recognizing other types of
solvent materials.

(6) For the better recognition rate and practical uses, various water environment indices,
such as the concentration, weather conditions, turbidity, water depth and water color,
should be considered ensuring they contain a great number of in-situ spectral images.
In those cases, artificial intelligence techniques might be a good solution.
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