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Abstract: Forests play a critical role in global carbon cycling, and continuous forest destruction
together with other factors has accelerated global warming. Furthermore, continued decline of forest
areas will critically hinder the accomplishment of carbon neutrality goals. Although the geographical
location of deforestation can now be rapidly and accurately detected with remote sensing technology,
current forest change products are still not fine-grained, especially from the perspective of carbon
trading. Here, we used a deep learning method to detect deforestation in large regions based on 2 m
high-resolution optical remote sensing images. Firstly, we proposed a new deforestation detection
dataset, which was generated from 11 provincial regions in the Yangtze River Economic Zone of
China, containing a total number of 8330 samples (the size of each sample being 512 × 512 pixels).
Then, a new deforestation detection model, SiamHRnet-OCR, was designed, based on this dataset.
Compared with other deep learning models, SiamHRnet-OCR achieves better results in terms of
precision, F1-score, and OA indicator: 0.6482, 0.6892, and 0.9898, respectively. Finally, two large-scale
scenarios of deforestation experiments in Southern China were further tested; the deforestation
detection results demonstrate that SiamHRnet-OCR can not only detect deforestation effectively but
also capture the accurate boundary of the changing area.

Keywords: carbon neutrality; deep learning; deforestation detection; large-scale applications; change
detection

1. Introduction

In 2020, the United Nations released the Global Forest Resources Assessment report,
which stated that, since 1990, a staggering 178 million hectares of forest have been lost
worldwide, either legally or illegally [1]. Continued forest loss will have a major im-
pact on the global climate balance and hinder the achievement of the set goal of carbon
neutrality [2,3]. Developed countries around the world, such as Japan, the EU, the UK, and
Canada, have set their own carbon neutrality deadlines. Developing countries, such as
China, are also striving to reach the goal of carbon neutrality. Emission trading is now a
common practice to help cap carbon emissions in many countries [4]. Therefore, accurate
and timely information on forest change is essential for accurate carbon accounting and
carbon neutrality.

Deforestation is mainly caused by forest change, due to natural factors, or human
activities [5]. Natural factors include diseases of trees, forest fires, parasites, and extreme
weather such as floods or hurricanes [6]. Human activities also play an important role in
deforestation [7]—for example, farmland reclamation, infrastructure construction, mining
activities, and urbanization [8]. Remote sensing imagery has some important advantages,
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such as the free-use policy and longhistorical archives, which make it has become the
main data source to monitor forest change on the earth [9–15]. For example, the Landsat
images are the most widely used data source to monitor deforestation so far because of
their long historical archives (over 40 years) and especially their open-source and free-use
policy in place since 2008 [16]. Based on the Landsat images, some excellent forest change
research works have been carried out in tropical regions [17], temperate regions [11], and
even at the global scale [4], and many classic algorithms have been proposed [17–21]. For
instance, the CCDC algorithm (Continuous Change Detection and Classification) [22], can
detect landcover change by modeling the change of any pixel in the same area over a long
period. However, the limitation of CCDC is that the calculation cost is heavy and slow. A
further improved method, namely S-CCD (Stochastic Continuous Change Detection) [23],
was proposed to solve this problem. S-CCD relieves the computation burden by treating
seasonal forest changes as stochastic processes and then introducing a mathematical tool
called the “State Space Model” to detect changes. All the existing proposed methods have
excellent performance with 30 m or 10 m median spatial resolution imagery. However, after
analyzing the existing forest change products, researchers pointed out that forest change
areas counted by the existing methods show large uncertainty, the relatively coarse spatial
resolution of the remote sensing image being the main factor in this discrepancy [24].

Recently, using deep learning methods to monitor deforestation on median resolution
imagery, such as Landsat8 [25] or Sentinel2A/2B [26] images, has attracted much attention.
For example, [12] used a ResUnet model to monitor deforestation detection with Land-
sat8 and Sentinel2A/B, and demonstrated that the deep learning method outperforms
traditional machine learning methods such as the Random Forest classifier. Additionally,
high-resolution imagery, such as Planet (3.7 m) [27] and Komsat-3 (0.7 m) [28], has also
been used to monitor deforestation with deep learning methods, with good detection
accuracy. However, there is still a lack of high-quality deforestation training datasets for
the community to use in training deep learning models. It is well known that a high-quality
training dataset is very important for training good deep learning models, but the process
of generating a large-size training dataset is very time-consuming and expensive.

Another factor affecting the accuracy of deforestation detection is the structure of
deep learning models. Though there are some deforestation detection models that have
been proposed, such as Unet [13], DeepLabV3+ [29], improving the model structure still
has the potential to improve detection accuracy. For example, the attention Unet [15]
achieves better accuracy than Unet or other segmentation models. However, most of the
existing deforestation detection models cannot maintain high-resolution semantic features
forwarding during the whole training process, which will decrease the detection accuracy
on a narrow object or other complex regions [30]. In this manuscript, we proposed a new
high-resolution deep deforestation detection network, namely SiamHRnet-OCR, which
shows better detection accuracy than existing models. The main advantage of SiamHRnet-
OCR is that high-resolution features forwarding is always kept in the whole model layers.

The major contributions of this manuscript are as follows:
(1) A new deforestation training sample dataset was proposed, containing a total

of 8330 true color samples (512 × 512 pixels) of 2 m spatial resolution. This dataset was
generated by visual interpretation in 11 provinces of China’s Yangtze River Economic Zone,
and it will be open-sourced to the community to help researchers worldwide to conduct
deforestation detection studies.

(2) A new deforestation detection model, namely the SiamHRnet-OCR, can effectively
improve detection accuracy, especially for narrow objects or complex regions.

(3) The design principle of SiamHRnet-OCR can provide some new insights for other
research fields, for example, road or building change detection.

Related Work

Deforestation detection based on deep learning methods is a hot research topic. Both
optical-based and SAR-based deep learning methods have been proposed [13,14]. On
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the whole, most of the existing deforestation detection modules are encoder–decoder
structures, with the Unet style being the most commonly used structure. For example,
the ForestNet [14] was designed with an encoder–decoder structure to classify the drivers
of primary forest loss in Indonesia, and the results showed that it outperformed than
the Random Forest method [31]. To alleviate the cloud effect on optical remote sensing
images, the dense time series Sentinel-1 SAR imagery was used to map forest harvesting in
California, USA and Rondonia, Brazil [13], with a simple Unet module. In addition, the
Siamese CNN(S-CNN) [32], the Pyramid Feature Extraction Unet model (PFE-UNet) [33],
the DeepLabv3+ model [29], and the LSTM and CNN combined model [34] are also used
to detect deforestation. In order to extend the feature extraction ability of CNN, the
attention module [35] was also investigated and indicates better precision than the pure
CNN structure. For example, [15] proposed an attention-based Unet model to detect
deforestation, and the results show that the attention Unet has higher accuracy than the
Unet, Residual Unet, ResNet50-SegNet, and the FCN32-VGG16 models with Sentinel-2
optical remote sensing images.

Deforestation detection can be defined as a classical change detection task, and it can
also be understood as an extension of pixel-level image classification [9]. Therefore, other
excellent change detection models designed for building change detection or other domains
can provide some new insights for deforestation detection, such as the SiamFCN [36],
Unet++ [37], STAnet [38], DTCDSCN [39], ESCNet [40], and SNUNet [41]. In the afore-
mentioned models, the whole feature extraction process contains three main steps: firstly,
the backbones module is used to extract multi-scale low-level and high-level semantic
features, such as ResNet [42], MobileNet [43], etc. Secondly, multi-scale semantic features
are fused by concatenation and skip-connection operation [44–46]. Finally, a loss function
is used to optimize the feature extraction direction. In the whole process, a critical question
is to design a reasonable deep-learning model architecture; to acquire rich and effective
semantic features of objects. However, the downsampling operators in most deep learning
models lead to irreversible information loss [47], especially for pixel-level classification in
remote sensing imagery. As a result, the accuracy of change detection may be decreased,
especially in the boundary or pseudo-change regions. The HRnet (High-resolution network)
proposed by [30] has achieved state-of-the-art accuracy in semantic segmentation tasks on
naturalistic images. The main advantage of HRnet is that it can capture effective context
features of small targets, such as tree trunks and traffic lights, because it always delivers
deep semantic features in high resolution during the whole feature extraction process. In
remote sensing images, the clarity of objects is mainly determined by the spatial resolution
if high-resolution features can be kept in the entire semantic feature extraction process;
therefore, even insignificant spectral changes and slight texture changes in remote sensing
imagery can in theory be distinguished based on effective high-level semantic features.

2. Study Area

We conducted experiments in two large regions in southern China because a recent
study reported many deforestation hotspots there [48]. The bi-temporal images of the two
study areas are shown in Figure 1.

The first study area was Hengyang City in Hunan Province, China (chosen as the
main study area due to the diverse land cover types and lower urban area proportion in
this region). Hengyang city is located in the central-south of China, and the land area is
approximately 2621 km2. The region has a subtropical monsoon climate, and the terrain is
mainly hilly. The major forest types are evergreen broad-leaved forest, deciduous broad-
leaved forest, and evergreen coniferous forest; the majority of trees are planted forests with
few original forest coverages. The growth cycle of planted forests is fast, usually 5–10 years
before they can be cut down for making furniture and hand tools. From the relevant public
government’s statistical data, deforestation frequently occurs in this region.

The second study area is Qujing City in Yunnan Province. Qujing is located in the
southwestern China, with a subtropical plateau monsoon climate and a whole area of
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approximately 28,900 km2. The forest coverage type in this region is mainly primary forests.
In recent years, China’s policies of “Poverty Alleviation” and “Common Prosperity” have
increased investment in this region; consequently, more and more infrastructure such as
highways and railways have been built here. In addition, to improve the living conditions
of the original inhabitants, many cultivated lands were also developed in this region, and
as a result deforestation in the region become serious in recent years.
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3. Materials and Methods
3.1. Experimental Data

The metadata information, such as the image acquisition time, spatial resolution, data
source, and band information of the two study areas, can be seen in Table 1. It is worth
noting that the image acquisition time between Hengyang City and Qujing City is different.
Furthermore, the image quality of the two study areas in the latter period is not very good;
for example, some clouds or multiple image mosaicking footprints can be identified in
Figure 1.
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Table 1. The metadata information of remote sensing images in the study areas.

Study Area
Acquisition Time Spatial

Resolution (m) Data Source Bands
The Former Period The Latter Period

Hengyang City June, July, and August in 2018 June, July, and August in 2019 2 GF-1, GF-2, ZY-3 R, G, B
Qujing City June, July, and Augustin in 2020 From June to September in 2021 2 GF-1, GF-2, ZY-3 R, G, B

The bi-temporalremote sensing imageries of Hengyang City and Qujing City are
from different sources, including 2 m GF-1, 0.8 m GF-2, and a few 2.1 m ZY-3 images.
GF-1, GF-2, and ZY-3 are the optical remote sensing satellites launched by China; the
spatial resolution and other specifications can be seen in Table 2. This whole dataset can
be downloaded from https://www.cresda.com/zgzywxyyzx/index.html (accessed on
12 September 2021). All of the remote sensing imageries used are provided by the Land
Satellite Remote Sensing Application Center of China, and all of the images have been
preprocessed by the Pansharpenging and Geometric Correction module based on PCI
GXL software.

Table 2. The metadata information of remote sensing imagery.

Name Launched Year Spatial Resolution Swaths Band

GF-1 2013 2 m 60 km R, G, B, NIR
GF-2 2014 0.8 m 45 km R, G, B, NIR
ZY-3 2012 2.1 m 51 km R, G, B, NIR

In order to keep the spatial resolution consistent, the GF-2 and ZY-3 images are
resampled to 2 m with a nearest neighbor resampling method. In Qujing City, the latter
period images were taken in summer and autumn, because in this region there is always a
high probability of cloud cover in summer, and extending the observation period is the
only way to get higher-quality optical remote sensing images. Moreover, the image band of
the two study areas only have visible bands.

3.2. Deforestation Detection Sample Datasets

Samples are the most important part in developing deep learning models. To the best
of our knowledge, there is still a lack of a high-quality and high-resolution deforestation
detection sample datasets so far. In this manuscript, we have developed such a dataset for
the first time, generated from 2 m mosaic images produced by China Resources Satellite
Data and Application Center. The remote sensing imagery used in this study were obtained
from https://data.cresda.cn/#/2dMap (accessed on 1 July 2021). The meta-information
about this dataset can be seen in Table 3 (the 1 m GF-2 data were resampled to 2 m with the
nearest neighbor sampling method).

Table 3. The meta-information of the high-resolution deforestation detection dataset.

Acquisition Regions
Acquisition Time Spatial

Resolution (m)
Data

Source Bands Sample
Size Number

The Former Period The Latter Period

The Yangtze River
Economic Zone of China

From May to
September in 2019

From May to
October in 2020 2 GF-1, GF-2,

ZY-3, GF-6 R, G, B 512 × 512
Pixels 8330

The mosaicing image, which was used to generate training samples, was radiometri-
cally and geometrically corrected, and it only contained visible bands. To alleviate the cloud
effect and to improve data availability, most of the source remote sensing images were
acquired in the summer and autumn of the whole year. The most important advantage of
this deforestation detection dataset is that it was generated from a very large region (the
Yangtze River Economic Zone of China), including 11 provinces in China: Shanghai, Anhui,

https://www.cresda.com/zgzywxyyzx/index.html
https://data.cresda.cn/#/2dMap
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Zhejiang, Jiangxi, Jiangsu, Hunan, Hubei, Guizhou, Yunnan, Chongqing, Sichuan. Most
of these provinces are mainly located in the subtropical region, except for a few cities in
Yunnan Province that are in the tropical region, such as the Lincang city and the Tengchong
city. The Yangtze River Economic Zone hosts the majority of China’s population, and due to
the rapid development of China’s economy, deforestation has become more serious in this
region in recent years. Consequently, it is representative enough to construct a deforestation
detection sample dataset in such a large region with varying terrains and landscapes.

The production process of the deforestation detection sample datasets was carried out
in a commercial web-based system (a commercial webGIS system developed for internal
use), and the bi-temporal images were published as an image map through the WMTS
service. A staff member who has administrator access can work in this system, outlining
deforestation change regions and checking the sample quality, The whole process contains
four main steps (Figure 2): (1) the whole area of China Yangtze River Economic Belt
was divided into many 2 km × 2 km grids; (2) a staff member used the swipe tool to
compare differences between the two time-phase images (2019 and 2020) in a local area
(for example, 100 km2) and then outline the boundaries of deforestation in each grid;
(3) fixed-size samples (512 × 512 pixels) were output according to the requirements of
chunking; (4) finally a manual quality check was performed to ensure that the whole
China Yangtze River Economic Zone was covered by deforestation samples with accurate
boundaries. It is worth mentioning that our definition of forest refers to land covered
by trees, including deciduous broadleaf forest, evergreen broadleaf forest, deciduous
coniferous forest, evergreen coniferous forest, mixed forest, and sparse forest with 10–30%
canopy cover [49].
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A few samples from our deforestation detection datasets are shown in Figure 3.
We can see that this deforestation detection dataset contains various types of deforesta-
tion, including forest destruction due to human-induced development and construction
(such as road and building construction), natural fire, and other uncontrollable factors.
To facilitate researchers to conduct deforestation detection research, it can be down-
loaded from (https://drive.google.com/drive/folders/1LtgNjmDePqD6mJkAepO0GUEi1
uMwPRUQ?usp=sharing (accessed on 15 December 2022)).
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To reasonably evaluate the scientificity and rationality of the deforestation detection
dataset, we select some excellent change detection datasets for comparison, for example,
the SYSU-CD dataset [50], which was generated for multi-class change detection, including
roads, buildings, cropland, and water. The Google dataset [51] also provided a sample
dataset for waters, roads, bare land, and building change detection. Furthermore, in the
building change detection field, a few carefully generated datasets have been proposed,
such as the WHU building datasets [52], the LEVIR-CD dataset [38], and the S2Looking
dataset [53]. Detailed information about different datasets can be seen in Table 4.

Table 4. Change detection datasets comparison.

Dataset Types of Land
Surface Changes Data Description

SYSU-CD [50] roads, buildings,
cropland, water

20,000 pairs of 0.5-m aerial images (The size of each image is 256 × 256 pixels,
which were clipped from 5 large images. These large images were acquired in

Beijing, Chengdu, Shenzhen, Wuhan, Chongqing, and Xian, China.

LEVIR-CD [38] Buildings 637 pairs of 0.5 m google earth images (The size of each image is
1024 × 1024 pixels), Collected from Texas, American.

WHU building
datasets [52] Buildings

About 20,000 pairs of 2.7 m google earth images (The size of each image is
512 × 512 pixels), and 8000 pairs of 0.1 m aerial images (The size of each image is

512 × 512 pixels), Collected from Wuhan, Taiwan, New York, and other places
(1000 km2 in total).

Google datasets [51]
waters, roads,

farmland, bare land,
buildings

9 VHR image pairs of 0.55 m, the image size ranging from 1006 × 1168 pixels to
4936 × 5224 pixels, and this dataset was Collected from Guangzhou city, China.

S2Looking [53] buildings 5000 pairs of 0.5~0.8 m images (the size of each image is 1024 × 1024 pixels).

This study deforestation
8330 pairs of 2 m RGB images (the size of each image is 512 × 512 pixels, and this
dataset was collected from Hunan province, Hubei province, Guizhou province,
Jiangsu Province, and other places (11 provinces in total, 2,052,300 km2), China.

In the above table, the existing open-sourced change detection datasets include differ-
ent land cover change types; however, all of their training samples are generated from a
single large image by slicing it into small image blocks (for example, a 5000 × 5000 pixels
image are randomly cropped into small blocks with 512 × 512 pixels). The workflow of
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sample production is simple, but the model generalization ability of the trained model
is limited [38]. Unlike these existing training sample construction methods, we produce
training samples discretely over a very large region (11 provinces of China), which can
effectively improve model performance in real-world scenarios.

As we know, a high-quality sample dataset is the most important component of remote
sensing interpretation tasks. Although the number of our deforestation detection dataset
is not obvious, the acquisition region of this dataset is much larger than other existing
open-sourced datasets. Another advantage of this dataset is that each training sample
contained deforestation pixels (they can also be defined as positive pixels [9]), which will
increase the focus of the deep learning model on deforestation areas. In this deforestation
detection dataset, the ratio between changed pixels (positive samples) and unchanged
pixels (negative samples) is about 1:11.8. To train an effective deforestation detection model,
the whole deforestation detection dataset was split into three sub-datasets: train dataset,
validation dataset, and test dataset, as shown in Table 5.

Table 5. Deforestation detection dataset split.

Dataset The Number of Sample Images Usage

Train 6730 Train change detection model
Validation 800 Selecting the best model

Test 800 Accuracy assessment

3.3. Proposed SiamHRnet-OCR Change Detection Model

There are two major limitations to the existing deep learning-based change detection
methods [47]. First, existing models pay much attention to increasing the receptive field
to acquire richer contextual semantic features, such as the ASPP (Atrous Spatial Pyramid
Pooling) [44] and the PPM (Pyramid Pooling Module) [45], etc., but whether there is a strong
correlation between the contextual features acquired by these modules and object types
were rarely studied. Second, generally speaking, remote sensing images and naturalistic
images (real-life situations or scenarios) are different, and the sharpness of objects varying
greatly at different spatial resolutions, and thus simply applying the semantic segmentation
methods designed for naturalistic images to RS images [51,54] needs further investigation,
especially for deforestation detection, because the context features of some changed regions
are complex and the shape are also more irregular [15].

The HRnet semantic segmentation model [30] is a high-resolution semantic segmen-
tation network, enabling high-resolution feature forwarding on the whole model layers.
Therefore, HRnet is well suited for spatial-scale sensitive tasks, such as road extraction,
change detection, etc. The subsequently developed OCR (Object Context Representation)
module [47] mainly focuses on the feature correlation of the same object, constructing a
finer feature representation by modeling the global segmentation of the initial object; the
final segmentation result confirms its effectiveness. Inspired by HRnet [30] andOCR [47],
we proposed a new deforestation detection model, namely the SiamHRnet-OCR (see
Figure 4). The main architecture of the model is a Siamese structure [38], and the core idea
of SiamHRnet-OCR is that two weight-shared HRnets are used as the backbone to acquire
rich semantic features at different levels before an OCR module is used to refine the deep
semantic features to further focus on the change regions [47].

The whole architecture of the SiamHRnet-OCR can be divided into four parts. the deep
feature extraction module, the deep feature fusion module, the OCR refine module, and the
change result optimization module. As shown in Figure 4, the most important characteristic
of the SiamHRnet-OCR is that high-resolution features are always maintained during the
whole training process. In the SiamHRnet-OCR model, the deep feature fusion module is
used to locate the differences between the deep semantic features of the bi-temporal images.
Compared with ASPP [44], PPM [45] or other context feature extraction modules, the most
important advantage of the OCR refine module is that it uses object features for context
modeling, allowing it to extracted richer and finer features than other modules. The change
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result optimization module uses a loss function to optimize the feature learning direction,
which is the last important part of the SiamHRnet-OCR model.
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3.3.1. The Deep Feature Extraction Module

We use a Siamese network architecture to extract the deep semantic features of bi-
temporal images [50,54], and the weight parameters in different stages are shared. The
module is divided into four stages, and each stage uses the residual network connec-
tivity to deepen the model depth [42]. The architecture of the residual module and the
parameters of each layer can be seen in Figure 5. The reason we use residual network
connectivity [47,55,56] is that a residual network can relieve the gradient disappearance
problem as the network is deepening [57].Moreover, the residual network can also obtain
rich semantic features. In the whole “Deep feature extraction module”, high-resolution
semantic features are always retained, which is extremely important to improve model’s
performance in boundary regions or small object detection accuracy [47].
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In Figure 5, during the feature extraction process, we use a 3 × 3 convolution for fea-
ture forwarding and then use an additional operator to fuse semantic features with different
resolutions [43]. There are two cases for feature forwarding with different resolutions. In
the first case, for features from low-resolution to high-resolution ( Figure 5a), a 1 × 1 convo-
lution and an upsampling operator are used for feature transferring. In the second case,
feature transferring from a high-resolution to a low-resolution, we use a 1 × 1 convolution
and a downsampling operator (see in Figure 5b,c) to keep feature size consistent. In order
to speed up computational efficiency, we used only the nearest-neighbor interpolation to
implement downsampling and upsampling; the detailed parameter information from the
input layer to the output layer can be seen in Figure 5e.

3.3.2. The Deep Feature Fusion Module

After the high-level semantic feature is extracted by the backbone, we use two feature
fusion modules for the next step of feature learning, namely “differencing” and “concatena-
tion” (Figure 4). In the “differencing” deep feature fusion method we use feature difference
to fuse the bi-temporal deep semantic change features, while in the “concatenation” deep
feature fusion method we fuse the bi-temporal deep semantic change features with a stack
operation. In this manuscript, the “differencing” operator is the default way to fuse the
high-level semantic features, because the existing study [38] indicates that the “differenc-
ing” method achieves better precision than the “concatenation” method; the experiment in
Section 5.2 also confirms this point.

3.3.3. The OCR Refine Module

The main idea of the OCR refine module is that it can characterize each pixel by
exploiting the corresponding object representation and aggregating high-level semantic
features to the object itself [47]. Compared with direct segmentation of the HRnet, the
segmentation accuracy of the OCR module can be improved to a certain extent, especially
in cases with complex backgrounds [47]. The OCR refine module first makes an initial
change judgment to obtain the approximate change area, and then aggregates these high-
level features to obtain finer change detection results. The core operator in the OCR refine
module is the multiple matrix multiplication operation, which can be generalized as an
attention mechanism. The recent SegNext [58] also demonstrates that matrix multiplication
is simple but useful for dense pixel-level segmentation tasks. The computational flow of
this module is shown in Figure 6.
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3.3.4. The Change Result Optimization Module

The loss function is important for model training, and it also significantly affects
the accuracy of change detection results. Currently, the commonly used loss function is
cross-entropy [38]. For a pixel-level change detection task, there are often relatively few
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changed pixels in bi-temporal images. Consequently, if we directly use the cross-entropy
loss function, it will cause the deep learning model to pay more attention to these stable
unchanged regions increasing the omission alarms of the final detection result. Therefore,
we construct a new loss function—MWCE (Modified Weighted Cross-Entropy), which is
sensitive to an unbalanced class. The formula is as follows:

MWCE = −


∑

i∈Z1

log P(yi = 1)

Np
+

∑
i∈Z2

log(1− P(yi = 0))

Nn

 (1)

where, P(yi = 1) denotes the probability value of a positive sample pixel i through a
softmax function, P(yi = 0) the probability value of a negative sample pixel i through
a softmax function, Z1 the set of positive sample pixels, Z2 the set of negative sample
pixels, Np and Nn the number of pixels in a labeled image for positive and negative
samples, respectively.

3.4. Accuracy Assessment

We use Recall, Precision, F1, and OA (Over Accuracy) [37] for accuracy assessment.
The Recall indicator reflects the omission error of positive samples; the higher the value the
lower the omission of positive samples. The Precision indicator reflects the commission
error of positive samples; the higher the value the lower the commission error of positive
samples. The F1 metric is a combination of Recall and Precision metrics which visually
evaluates the comprehensive performance of an algorithm. The OA metric is a standard
classification accuracy evaluation which visually reflects the detection accuracy of positive
and negative samples. The mathematical calculation formulas of the above indicators are
as follows:

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 = 2×Recall×Precision
Recall+Precision

OA = TP+TN
TP+TN+FP+FN

(2)

where TP indicates that the predicted result is a positive sample and the ground truth is
also a positive sample. TN indicates that the predicted result is a negative sample and
the ground truth is also a negative sample. FP indicates that the pixel in the ground truth
image is a negative sample but is predicted as a positive sample. FN indicates that the pixel
in the ground truth image is a positive sample but is predicted as a negative sample.

3.5. Implementation Details

We implement our experiment on a computer configured with the Windows-10 op-
erating system, an AMD 5600× CPU, 64 GB DDR4 memory, and a TeslaV100 GPU with
32 GB memory. The deep learning framework used is Pytorch 1.8.1, and the optimizer is the
Adam method [46,59]. The initial learning rate is set as 0.001, and the total training epoch is
set as 60. After every 10 epochs, the initial learning rate is decreased to 1/10 of the original
rate, and the batch size is set to 6. After the model was trained, we used half-precision for
model inference with the goal of saving GPU memory and inputting larger sliced images in
the model inference stage, thus improving the processing efficiency on large-scale images.
For data augmentation methods, we only used random angle rotation, adding Gaussian
noise, random scaling, and luminance transformation [56] to improve the generalization
ability of the model. The total model training time was 28 h.

3.6. Comparision with other Deep Learning Models

In essence, our deforestation detection method still belongs to the subfield of land
cover change detection, and thus it is necessary to compare it with other deep learning
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change detection models. We choose some other excellent change detection models that
have been published in recent years for comparison. Considering that most of the existing
change detection methods use an encode–decoder semantic segmentation architecture, we
also select several classical semantic segmentation models for comparison. (The detailed
information of compared models can be seen in Table 6).

Table 6. Comparison models.

Method Category Method Name Method Description

Change detection
models based on

deep learning

SiamFCN [36]

SiamFCN uses a fully convolutional neural network for RS image change detection for
the first time. The authors completed the pixel-level RS image change detection by
image concatenation, feature concatenation, and feature differencing, and verified the
effectiveness of a fully convolutional neural network applied to change detection for
the first time.

Unet++ [37]

Unet++ addresses the problem that most existing change detection algorithms use
feature layer comparison, which may lead to greater error transfer, and effectively
improves accuracy by stacking the bi-temporal images, inputting them into a deep
neural network, and then optimizing the output features at different levels and scales.

STAnet [38]

STAnet proposes a spatial–temporal attention module for building change detection to
address the pixel “misregistration” caused by multi-temporal remote sensing image
registration. STAnet fused Channel Attention Module and Position Attention Module
to obtain state-of-the-art experimental results on the newly proposed building change
detection dataset.

DTCDSCN [39]

DTCDSCN addresses the problem of inaccurate boundaries in existing building
extraction models by using two semantic segmentation networks and a siamese
change detection network, and then introducing a dual-attention module with focal
loss to improve accuracy.

ESCNet [40]
ESCNet proposed a deep convolutional neural network change detection method
based on superpixels for the problem of noise in pixel-level change detection,
effectively solving the pixel noise problem and extracting accurate change boundaries.

SNUNet [41]

SNUNet is a dense feature-linked change detection model for high-resolution remote
sensing images. By analyzing the problems of inaccurate boundary segmentation in
existing change detection models, it proposes a dense feature-connected deep siamese
change detection module, and finally obtains accurate boundaries by designing an
ECA module (Ensemble Channel Attention Module) to acquire fine semantic features.

Semantic
segmentation

models

Unet [60]

Unet was originally designed to solve the medical image segmentation problem, and
it used a very elegant encode–decode architecture for the first time to achieve a
surprising level of segmentation accuracy by fusing different level semantic features;
it provides a very important reference for the subsequent development of semantic
segmentation.

PSPnet [45]
PSPnet mainly proposed a PPM module, which aggregates contextual features at
different scales through multiple max-pooling operations, enabling the network to
perceive richer semantic features and improve semantic segmentation accuracy.

DeepLabV3+ [44]

DeepLabV3+ mainly proposes a Spatial Pyramid Pooling Module (ASPP), which
obtains contextual features at different scales by the dilation convolution, enabling
semantic segmentation models to effectively improve segmentation accuracy with the
same computational efficiency.

HRnet [30]

HRnet designed a high-resolution semantic segmentation network, whose main idea
is that the network retains high-resolution feature transfer during the learning process.
HRnet achieved state-of-the-art experimental results in the semantic segmentation
task and the final segmentation result is excellent.

4. Results
4.1. Visual Evaluation of Deforestation Detection

The deforestation detection results for Hengyang city and Qujing City can be seen
in Figures 7 and 8, respectively. It is worth noting that the ground truth polygons are
generated from the aforementioned webGIS system. In this section, we will discuss the
deforestation detection results extracted by the SiamHRnet-OCR model and the cause
of deforestation.
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In Figure 7, on the whole, the area of deforestation detection extracted by SiamHRnet-
OCR is 11.24 km2 (Table 7). Compared with the GT (9.43 km2), the detected deforestation
result of SiamHRnet-OCR was a little overestimated. It is worth noting that the defor-
estation detection results of SiamHRnet-OCR are not processed by any post-processing
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methods. In terms of details, as shown in subregions A, B, C, and D, the boundary of the
deforestation areas extracted by the SiamHRnet-OCR is well sketched. Furthermore, to
improve the efficiency of visual interpretation, a fast and simplified polygon is used to
describe the GT map. Though it seems not to fit very well with the base high-resolution
image, using these polygons to evaluate the quantitative accuracy is enough. The shape of
the detected change regions extracted by the SiamHRnet-OCR seems better than the GT
map, because the training samples proposed in this study are collected from a large region
and all of them are carefully examined for quality check; high-quality training samples
are very important to the final deforestation detection models. The deforestation detection
result for Qujing city is shown in Figure 8:
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Table 7. Area of deforestation in Hengyang City and Qujing City.

Study
Area

GT
(km2)

SiamHRnet-OCR
(km2)

Area Statistics after Removing Commission
Alarms (Caused by Cloud and Cloud Shadow)

Hengyang 9.43 11.24 10.05
Qujing 23.46 32.79 25.72
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In Figure 8, we can see that deforestation in Qujing City mainly takes place in the
southeast region, which is an important area for agricultural cultivation in Qujing City. On
the whole, the changing area detected by the SiamHRnet-OCR is 32.79 km2 (Table 7), while
the GT is 23.46 km2; the difference between them is mainly due to the effect of thick clouds
and cloud shadows (as shown in subregion B). In terms of detail, the SiamHRnet-OCR
also achieved excellent performance, as shown in subregion A; for example, the newly
constructed road boundary is extracted accurately. In subregions C and D, the SiamHRnet-
OCR also accurately outlines the boundaries of deforestation regions, but in the red oval
region of subregion D two small erroneous polygons are produced, which is because
the SiamHRnet-OCR incorrectly identifies water change into bare land as deforestation,
possibly causing the area of our deforestation result to be overestimated. The whole
deforestation statistical area of each of these two study areas is listed in Table 7.

In Table 7, it can be seen that the area of deforestation detected with the SiamHRnet-
OCR is a little larger than the GT of both two cities, which is mainly the effect of clouds
and cloud shadows. After removing these commission errors caused by clouds and cloud
shadows, the deforestation result of SiamHRnet-OCR is very close to the GT in both
two cities. However, there are still a few commission errors in the deforestation results
extracted by the SiamHRnet-COR. To further improve the deforestation detection accuracy
of SiamHRnet-OCR, an effective post-processing method is using forest products to mask
these commission errors. For example, the forest type in GlobaLand30 [49] is a very
useful auxiliary method to achieve this. Additionally, though the image acquisition time
of these two study areas is different from the training samples, the final deforestation
detection result with the SiamHRnet-OCR is still satisfactory. This phenomenon suggests
that collecting some samples from the experimental area without needing to consider time
consistency is a simple but effective means to improve model performance.

4.2. Quantitative Accuracy Assessment

We calculated Recall, Precision, F1, and OA for accuracy assessment (without removing
polygons covered by cloud and cloud shadow). The quantitative accuracy evaluations for
Hengyang City and Qujing City are listed in Table 8.

Table 8. Accuracy assessment.

Study Area Recall (%) Precision (%) F1 (%) OA (%)

Hengyang City 78.97 44.24 56.71 99.85
Qujing City 69.16 44.28 50.52 99.81

We can see that the Recall indicator in the two study areas is high; indicating that
most deforestation regions can be captured by the SiamHRnet-OCR in both the Hengyang
City and the Qujing City. The precision indicator in the two study areas is relatively
low compared with other three indicators, mainly because of the effect of cloud or cloud
shadow cover on remote sensing images; these clouds or cloud shadow pixels will be easily
identified as changed pixels by SiamHRnet-OCR, increasing the commission errors. The
overall accuracy of the two study regions is very high because most pixels in the deforesta-
tion detection images are negative pixels, which will greatly affect the OA indicator [12].
Additionally, the F1 indicator in the Qujing City is slightly lower than that of the Hengyang
City, mainly because the proportion of cloud pixels in two time-phase images of Qujing
City is relatively higher than in Hengyang City. However, the F1 indicators in the two
study areas are both larger than 0.5, meaning that the performance of the SiamHRnet-OCR
is robust.

4.3. Efficiency Test

Firstly, we slice the bi-temporal large images into small blocks before inputting them
into the SiamHRnet-OCR model, because direct input of two bi-temporal large images will



Remote Sens. 2023, 15, 463 16 of 27

cause some errors, a common example being “out of memory” caused by limited GPU
memory. The size of each small block is 4096 × 4096 pixels, which can make full use of the
GPU memory resources (the GPU is Tesla V100 with 32 GB memory). Then, deforestation
detection is carried out on each small block image. Finally, the predicted deforestation
block images are mosaiced to form the final deforestation detection image. The total time
consumed in the Hengyang City and theQujing City is shown in Table 9:

Table 9. Accuracy assessment.

Study Area Image Size (Pixels) GPU Time Consumed (s)

Hengyang City 48,448 × 20,202 × 3 TeslaV100 205.1
Qujing City 150,294 × 98,345 × 3 Tesla V100 2805.2

In terms of computational efficiency, we directly used the trained model files without
converting the model files into ONNX files or using any other quantization acceleration
methods to speed up the deep learning model. The overall computation time can be
controlled within 1 h for a very large image with a size of 150,294 × 98,345 × 3 pixels. It
can be summarized from this point that with the development of computing hardware
devices, and the continuous breakthroughs in the computing power of AI (Artificial In-
telligence) chips in the future, the efficiency of model inference will no longer be the
bottleneck problem, and thus using high-resolution or very high-resolution remote sensing
imagery to monitor deforestation may become the mainstream method in a special region
or even on a global scale; we believe that the proposed deforestation detection dataset and
the SiamHRnet-OCR model in this study can provide data and method support for the
deforestation detection research field.

4.4. Factors in Deforestation

To understand what the main factors in deforestation in the study area are, we choose
the Qujing City as an example for analysis. After analyzing each deforestation detection
polygon extracted by the SiamHRnet-OCR model (each polygon is analyzed by visual inter-
pretation based on interpretation marks, such as deforestation caused by mining activities,
agriculture, or other factors), we find that the types of potential deforestation factors can
be divided into five categories: urbanization, infrastructure construction, agriculture, and
others. Then we conduct a statistical analysis of the deforestation area of each category, as
shown in Table 10.

Table 10. Factors in deforestation.

Type of Deforestation Proportion (%)

urbanization 5.02
infrastructure construction 25.75

agriculture 45.21
mining activities 20.29

others 3.73

In Table 10, the agriculture factor comprises a dominant proportion of deforestation,
possibly due to factors such as growing cash crops. Infrastructure construction also plays
an important role in deforestation, reflecting the development strategy of the Chinese
government in the southwest region, which is developing infrastructure first to promote
economic development. Furthermore, from the perspective of China’s recent policy of
“common prosperity”, strengthening infrastructure development is also a very important
way to address the gap between rich and poor regions.

Another interesting question is where deforestation occurs. We first extract the cen-
terlines of all roads (the width of roads is over 4 m) with the D-Linknet model [46]. Then
we count the distances from the deforestation regions to the nearest road centerlines, and
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finally we make a statistical accounting of all distance values (our deforestation regions
are after removing commission alarms caused by clouds and cloud shadows). We found
that most of the deforestation occurred in the range of 0–3000 m from roads (Figure 9),
which means that human activity plays an important role in deforestation, one of the main
reasons being that human activities can be conveniently carried out in these areas.
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5. Discussion

The deforestation detection results in the Hengyang City and the Qujing City indi-
cate that the boundary of change regions produced by the SiamHRnet-OCR is satisfying,
which allows us to address the following questions: What is the feature extraction abil-
ity of SiamHRnet-OCR? What are the advantages of the SiamHRnet-OCR versus other
deep learning models? What is the advantage of deforestation detection results by the
SiamHRnet-OCR over existing deforestation products? To answer these questions, we did
some qualitative and quantitative experimental analyses.

5.1. Feature Extraction Ability of the SiamHRnet-OCR

In this study, we proposed a deforestation detection model—SiamHRnet-OCR—to
monitor deforestation using high-resolution RS images. To answer the first question (What
is the feature extraction ability of SiamHRnet-OCR?), we used a feature visualization
methodto help understanding [39]. The deep feature extraction module, the deep feature
fusion module, and the OCR refine module in the SiamHRnet-OCR model are visualized at
different stages, as shown below.

In Figure 10, we can see how the features change in different layers of SiamHRnet-OCR
(the feature map in the above figure is the strongest feature response in the corresponding
layer). It clearly indicates that, with the deepening of the model layer, the response of
change information in deforestation regions is more and more obvious. It is interesting
that, during the whole feature extraction process from Stage 1 to Stage 4, the extracted
features are gradually gathered in the change regions and can finally be accurately located
in deforestation regions. From the feature fusion layer to the OCR refine layer, the feature
response of the “pseudo-change” regions is largely reduced. This phenomenon means high-
level semantic features extracted by the OCR refine module have a positive effect on hard-to-
classify regions. indicating that the SimaHRnet-OCR model has a strong feature extraction
ability to capture the change signal of deforestation, even for ares with subtle changes.
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5.2. Comparison with Other Change Detection Methods Based on Deep Learning

To answer the second question (What are the advantages of the SiamHRnet-OCR vs.
other deep learning models?), we first discuss the feature extraction ability of different
deep learning models for elongated objects. A newly constructed road in the forest was
selected for a detailed comparative analysis.

In Figure 11, the deforestation detection result of the semantic segmentation models
including Unet, PSPnet, and DeeplabV3+ is relatively worse than those of the change
detection models such as Unet++, STAnet, DTCDSCN, ESCNet, SNUNet, etc. From the
detailed comparison of deforestation results, there are some commission alarms in Unet,
PSPnet, and DeeplablV3+. Essentially, the semantic segmentation models stack two tem-
poral images into a single image with six bands (each time-phase image is three bands),
though this means the change detection task can be easily transformed into a semantic
segmentation task; the feature extraction ability of the semantic segmentation models may
be weaker than the change detection models because the change detection models can ex-
plicitly extract the difference between two time-phase images [36]. The depths of SiamFCN
and Unet are relatively shallow; thus, their deforestation detection results are relatively
worse, because the high-level semantic features extracted by them are not enough to de-
scribe the differences in complex scenes. [42] has also demonstrated that deep model depth
usually achieves higher accuracy than shallower models. In terms of the spatial resolution
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of high-level semantic features, in most of the existing semantic segmentation or change
detection models the spatial resolution of high-level semantic features is 1/32 of original
input images, such as DeepLabV3+, PSPnet, and SNUnet. Generally speaking, objects in
remote sensing images, especially those slender targets such as roads or rivers, high-level
semantic features will be lost in deep layers. Therefore, the omission alarms of slender
objects in the final detection result will be increased. However, the deforestation detection
result produced by the SiamHRnet-OCR indicates that it can accurately capture slender
object change, because whether in low-level semantic feature or high-level semantic feature
the spatial resolution of semantic features in the SiamHRnet-OCR is always kept as 1/4 of
original input images. Such a spatial resolution is suitable for slender object detection; and
the above detection result also confirms that such a model structure is effective.
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In Figure 11, both SiamHRnet-OCR (concatenation) and SiamHRnet-OCR (differenc-
ing) indicate a good visual effect, and the difference between them is negligible. Then
how does SiamHRnet-OCR perform in other objects with irregular shapes? An example
experiment is shown in Figure 12.

In Figure 12a,b, we can see that the spectral difference between deforestation regions
in the bi-temporal images is large, and the shape of the change region is also irregular.
As shown in the deforestation detection result of different deep learning models from
Figure 12d,o, some omission alarms are produced by the semantic segmentation models,
such as in the Unet, PSPnet, and DeeplabV3+ models. It could be that simply stacking the
bi-temporal images into a multi-band image will interfere with high-level semantic feature
generation [36]. However, this phenomenon also occurred in the change detection models,
for example, the Unet++ and DTCDSCN models. This result gives some indication that not
all change detection models can achieve excellent performance in monitoring deforestation
with high-resolution imagery. In Figure 12j,m, both STAnet and SNUnet achieve relatively
good results, but a few omission alarms are still produced in the boundary of change regions
of these two methods, especially in the “pseudo-change” regions. As a whole, visually,
both SiamHRnet-OCR (concatenation) and SiamHRnet-OCR (differencing) achieved better
results than all other models. Additionally, it seems that deforestation detection results
based on the SiamHRnet-OCR (differencing) model achieved better visual effects than the
SiamHRnet-OCR (concatenation) model, such as in the edge of deforestation regions.
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We have qualitatively compared and analyzed the change detection results of differ-
ent models; we have also quantitatively evaluated all the models using the quantitative
accuracy evaluation metrics mentioned in Section 3.4. The detection accuracies of different
models are shown in Table 11.

Table 11. Model comparison (The FLOPs, Parameter, and Inference time are calculated on two images
(each image is 512 × 512 × 3 pixels), the hardware is RTX3090 with 24 GB memory, CUDA11.1).

Model Recall (%) Precision (%) F1 (%) OA (%) FLOPs Parameter Inference Time

Unet 73.51 30.45 37.95 96.56 8.81 G 0.90 M 0.085 s
PSPnet 83.84 49.35 57.67 9855 541.64 G 65.70 M 0.247 s

DeepLabV3+ 90.45 44.06 55.26 98.22 332.11 G 58.04 M 0.238 s
HRnet 83.78 53.35 59.59 98.45 207.32 G 40.20 M 0.188 s

SiamFCN 85.05 46.65 54.50 97.73 37.81 G 1.35 M 0.103 s
Unet++ 82.07 53.50 59.00 98.40 279.69 G 9.16 M 0.128 s
STAnet 88.58 54.60 63.73 98.70 102.87 G 16.89 M 0.103 s

DTCDSCN 68.85 55.10 56.18 98.17 163.57 G 41.07 M 0.142 s
ESCNet 83.84 48.19 55.35 98.14 353.21 G 5.13 M 0.367 s
SNUNet 81.62 62.81 65.92 98.71 438.66 G 12.03 M 0.197 s

SiamHRnet-OCR
(concatenation) 85.00 60.25 66.13 98.95 628.66 G 50.51 M 0.252 s

SiamHRnet-OCR
(differencing) 84.05 64.82 68.92 98.98 306.62 G 40.20 M 0.236 s

In Table 11, among all deep learning models, the Precision, F1, and OA indicators
of the SiamHRnet-OCR (differencing) model achieve the highest scores. The F1 indicator
of the SiamHRnet-OCR (concatenation) model was slightly lower than SiamHRnet-OCR
(differencing). Moreover, the complexity comparison between SiamHRnet-OCR (differenc-
ing) and SiamHRnet-OCR (concatenation) indicates that SiamHRnet-OCR (differencing)
has fewer parameters and a faster inference speed than SiamHRnet-OCR (concatenation),
for example, the FLOPs indicator of SiamHRnet-OCR (differencing) is only 48.77% of
SiamHRnet-OCR (concatenation), and the model Parameters of SiamHRnet-OCR (differ-
encing) is 79.58% of SiamHRnet-OCR (concatenation).

Although compared with the lightweight models, such as Unet, SiamFCN, and
SNUNet, the inference time of SiamHRnet-OCR (differencing) is slower, the Precision,
F1, and OA indicators show that SiamHRnet-OCR (differencing) has higher accuracy re-
sults than them—for instance, the F1 indicator of SiamHRnet-OCR (differencing) is 3.0%
higher than the SNUnet model. Moreover, compared with other relatively heavyweight
models, such as PSPnet, DeepLabV3+, and ESCNet, the SiamHRnet-OCR (differencing)
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model has a faster inference speed. In addition, our experiment also confirms the finding
of recent research [61] that it is important to keep high-resolution features forwarding in
the training process to acquire rich and useful context semantic information, which can
improve the model detection accuracy of slender objects or other complex objects.

5.3. Comparison with an Existing Forest Change Product

What is the advantage of deforestation detection results by SiamHRnet-OCR over other
existing deforestation products? To answer this question, we selected the Hengyang City
for comparison. The current highest resolution forest change detection product covering
large regions available was proposed by [4], namely GFC-V1.8 (Hansen Global Forest
Change V1.8), which has a 30 m spatial resolution. To maintain time consistency between
GFC-V1.8 and our result, we selected the 2019 global forest loss product of GFC-V1.8 for
comparison. The GFC-V1.8 and the SiamHRnet deforestation detection results are shown
in Figure 13.
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As shown in the sub-regions A and B in Figure 13, the deforestation boundaries
detected by the SiamHRnet-OCR are accurate and almost identical to the GT boundaries.
Though the spatial resolution of GFC-V1.8 is 30 m, it can still accurately locate forest change.
However, GFC-V1.8 produces a few omission alarms in the central region of subregion A,
because this region was covered by weeds in the former time-phase image with high NDVI
values, causing it to be incorrectly considered as forest cover. By contrast, SiamHRnet-OCR
can effectively distinguish between grass and forest on 2 m high-resolution remote sensing
images. In sub-region C, the GFC-V1.8 product did not detect deforestation, perhaps due
to cloud cover or missing image data.

The quantitative accuracy comparison between the SiamHRnet-OCR and the GFC-
V1.8 can be seen in Table 12. It indicates that all four accuracy assessment indicators of the
deforestation detection result from SiamHRnet-OCR are higher than those of the GFC-V1.8
product; in particular, the F1 indicator of SiamHRnet-OCR is 40.75% higher than GFC-V1.8.
In terms of spatial detail, the visual effect of our results is also relatively superior. It is worth
mentioning that the GFC-V1.8 product is produced on Landsat imagery with 30 m spatial
resolution, and thus the comparison between the SiamHRnet-OCR and the GFC-V1.8 is
not entirely fair so it is not possible to say that the deforestation detection result based
on SiamHRnet-OCR is better than GFC-V1.8 product. However, the above comparison
further confirms that deep learning methods are a good choice to achieve high-precision
deforestation detection with high-resolution remote sensing imagery.

Table 12. Accuracy assessment.

Methods Recall (%) Precision (%) F1 (%) OA (%)

GFC-V1.8 18.15 14.24 15.96 99.76
SiamHRnet-OCR 78.97 44.24 56.71 99.85

Statistical analysis results indicate that the forest loss area detected by GFC-V1.8 in the
Hengyang City is 6.05 km2, which is significantly lower than the GT (9.43 km2), while the
total deforestation area detected by SiamHRnet-OCR is 11.24 km2, which is slightly larger
than the GT. There are three possible reasons to explain this difference: (1) GFC-V1.8 was
produced on 30 m Landsat imagery, which is a relatively coarse spatial resolution, and may
be not suitable for high-precision deforestation detection; (2) some deforestation regions
with slight spectral change cannot be captured by GFC-V1.8; and (3) a few commission
errors were produced by the SiamHRnet-OCR, e.g. water changing into bare land was
regarded as deforestation.

5.4. Limitations

With the help of a large quantity of high-quality deforestation training samples, de-
forestation detection with high-resolution imagery has been investigated in this study
and proves the feasibility and efficiency of the SiamHRnet-OCR model in deforestation
detection tasks. However, there is still room for further improvement.

(1) In this newly proposed deforestation detection dataset, the SimaHRnet-OCR
achieved excellent performance; however, further experiments are needed to verify whether
SimaHRnet-OCR is still the best model on other change detection training datasets.

(2) The SiamHRnet-OCR model can only be applied to two bi-temporal image change
detections so far, and the next step is to extend the trained deep learning model for long
time-series deforestation detection tasks.

(3) The SiamHRnet-OCR model produced a few omission errors in cloud and cloud
shadowing covered regions. To improve the model accuracy, the automatic or semi-
automatic cloud and cloud shadow masking algorithms can be used as the pre-processing
means to further improve detection accuracy [62].
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6. Conclusions

In this paper, a new deforestation detection dataset was proposed, with a spatial
resolution of 2 m. This dataset was generated over a large region, namely the whole region
of the Yangtze River Economic Zone of China. In addition, we designed a new deforestation
detection model based on a deep learning method: SiamHRnet-OCR. Compared with other
deep learning models, SiamHRnet-OCR achieved excellent performance with the new
deforestation detection dataset. In the future, we will also test the potential ability of
the SiamHRnet-OCR on other landcover datasets and continue to increase the number of
deforestation datasets over a larger region.
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