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Abstract: Several large-scale porphyry copper deposits (PCDs) with high economic value have been
excavated in the Duolong ore district, Tibet, China. However, the high altitudes and harsh conditions
in this area make traditional exploration difficult. Hydrothermal alteration minerals related to PCDs
with diagnostic spectral absorption features in the visible–near-infrared–shortwave-infrared ranges
can be effectively identified by remote sensing imagery. Mainly based on hyperspectral imagery
supplemented by multispectral imagery and geochemical element data, the Duolong ore district was
selected to conduct data-driven PCD prospectivity modelling. A total of 11 known deposits and
17 evidential layers of multisource geoscience information related to Cu mineralization constitute
the input datasets of the predictive models. A deep learning convolutional neural network (CNN)
model was applied to mineral prospectivity mapping, and its applicability was tested by comparison
to conventional machine learning models, such as support vector machine and random forest. CNN
achieves the greatest classification performance with an accuracy of 0.956. This is the first trial in
Duolong to conduct mineral prospectivity mapping combined with remote imagery and geochemistry
based on deep learning methods. Four metallogenic prospective sites were delineated and verified
through field reconnaissance, indicating that the application of deep learning-based methods in PCD
prospecting proposed in this paper is feasible by utilizing geoscience big data such as remote sensing
datasets and geochemical elements.

Keywords: Duolong ore district; porphyry metallogenic system; hyperspectral information extraction;
deep learning; mineral prospectivity mapping

1. Introduction

In the late twentieth century, remote sensing technology was widely utilized to detect
different types of ore deposits, especially epithermal, porphyry, and volcanic massive
sulphide deposits [1], providing valuable support during the early stages of mineral
exploration [2]. Porphyry copper deposits (PCDs) currently provide approximately three-
quarters of the world’s copper and are characterized by mineralization and alteration
zones [3]. Typical alteration types in PCDs include potassic alteration in the core, which is
surrounded by phyllic, argillic, and propylitic zones [3]. In the Tibetan Plateau, three por-
phyry copper belts, namely, Gangdese, Yulong, and Bangong Co-Nujiang, have been found,
whose representative large-scale PCDs are Qulong, Yulong, and Duolong, respectively,
showing tremendous potential for Cu prospecting [4]. However, due to its remoteness,
rugged topography, and severe climate, Tibet remains vastly underexplored. Further explo-
ration of PCDs in the Tibetan Plateau will need to make use of remote sensing technology
to rapidly identify the prospected ore areas.
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As an image-spectrum merging technology [5], remote sensing technology has quickly
been employed in the Earth observation field [6]. Hyperspectral imaging systems with a
high spectral resolution are normally utilized to simultaneously scan the observation area
with hundreds of continuous spectral bands [7]. In remote sensing imagery, each pixel
holds spectral information, which is added as a third dimension to a two-dimensional (2-D)
image, forming a three-dimensional (3-D) cube [8]. Hyperspectral cubes contain absorption
and reflectance spectral data for each pixel [9].

In the 21st century, regional-scale mineral mapping is in demand and has drawn the
attention of many researchers to mineral information extraction. Extracting mineral infor-
mation from hyperspectral images is generally the comparison of an unknown spectrum to
a reference spectrum [10]. Spectral absorption characteristics, including position, width,
depth, and area of spectral absorption peak, related to electronic vibrations of Fe2+, Fe3+,
Al-OH, Mg-OH, OH-, and CO3 in the VNIR and SWIR, are diverse in different minerals [11].
Geologists use these spectral characteristics as diagnostic features to identify and distin-
guish between various alteration types using remote sensing data [12]. Al-OH-bearing
minerals have a noteworthy absorption peak at 2.15 µm to 2.22 µm, while the significant
absorption peak position of Mg-OH minerals occurs at 2.30 µm to 2.39 µm [13]. The VNIR-
SWIR region is generally used for alteration minerals, including Fe-OH, Mg-OH, Al-OH,
and CO3-bearing minerals, such as chlorite, pyroxene, muscovite, and kaolinite, which are
widespread in many kinds of hydrothermal systems. Common remote sensing information
extraction for mineral mapping is based on diagnostic absorption characteristics, such as
spectral angle mapping (SAM) [14], band ratio (BD) [15], relative band depth (RBD) [16],
and mixture-tuned matched-filtering (MTMF) [17]. Spectral features of reference-spectra
and pixel-spectra are compared to differentiate mineral species. The classical spectral angle
mapping (SAM) algorithm converts the spectra of two ground objects into n-dimensional
spatial vectors to calculate the angle between the two vectors and then takes the angle as a
similarity measure.

Mineral prospectivity mapping (MPM) is a classification problem [18], utilizing multi-
ple abnormal information to predict the location, quantity, or quality of minerals during
mineral exploration [19]. At the end of the twentieth century, with the development of
modern scientific theories and technical methods, geographic information systems (GISs)
have been able to conveniently store, manage, analyse, and visualize geological informa-
tion [20]. The widely used GIS technology made it possible to comprehensively utilize
geological geoinformation such as remote sensing, geophysics, geochemistry, and other
spatial data for quantitative assessment and modelling of mineral resource potential [21].
In recent years, much of the groundbreaking activities in the field of mineral discovery
rely on three areas: digitization and the use of artificial intelligence, remote sensing, and
geophysical technology development [12].

GIS-based MPM models can be categorized into knowledge-driven and data-driven
models [22]. Knowledge-driven models include metallogenic systems, metallogenic mod-
els, ore prospecting models, etc. Data-driven models for metallogenic prognosis based on
geological knowledge, include the weight of evidence and related models [23,24], logistic
regression [25], artificial neural networks [26], random forest (RF) algorithms [27], and sup-
port vector machine (SVM) methods [18]. As a subclass of machine learning methods, due
to its excellent ability to represent features and solve nonlinear problems [28], DL models
were introduced it into the field of metallogenic prediction. With deep architecture, deep
learning methods can extract higher-level features that comprise lower-level features; thus,
complex relationships can be mapped and learned. However, the ‘black box’ mechanism
of DL makes it agnostic to the drivers of the underlying phenomena and processes [29].
Knowledge-driven forwards models and data-driven inversion models are double-edged
swords in geoscience research. Therefore, it is of utmost importance that the model outputs
can be interpreted. The emergence of new explainable algorithms, such as Shapley additive
explanations (SHAP) [30,31], can not only help to understand model outputs but also
change the perception of using DL-based models for decision-making purposes.
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The purpose of this research was to analyse the ore-indicating information for prospect-
ing in the Duolong ore district, using remote sensing and geochemical data, to accomplish
MPM and to identify areas of potential mineralization in Duolong. Therefore, a deep-
learning model based on 17 evidential layers of multisource geoscience information of
remote sensing and geochemical data will be constructed. This study will certify the
applicability of the deep-learning model in MPM. This is the first trial in Duolong to
conduct MPM combined with remote sensing imagery and geochemistry based on deep
learning methods.

2. Geological Setting

The study area is situated in the Duolong ore district in Tibet, China, covering ap-
proximately 324 km2. Tibet consists of several terranes that were progressively accreted
onto the southern margin of Eurasia during the Paleozoic and Mesozoic. These terranes
are separated by a series of suture zones that are defined by ophiolitic fragments and
mélanges [32].

The Duolong ore district is located in the western part of the Bangong Co-Nujiang
metallogenic belt. The origin and evolution of this region are mainly controlled by the
ocean–continent subduction system between the Bangong–Nujiang Tethyan Ocean and
the South Qiangtang terrane [33]. The Middle-Lower Jurassic Sewa group (MLJS) and the
Middle Jurassic Quse group (MJQ) are largely exposed in the area, and both are important
ore-containing strata in the study area [34].

This area has experienced a long history of tectonic changes and has undergone geolog-
ical actions such as extensional fissures, compression, and reduction. Faults are developed
there, whose trends are mainly east–west, northwest, and northeast (Figure 1) [33].

Except for the Tiegelongnan (Rongna mine section) and Dibaonamugang, which
are porphyry–epithermal complex copper deposits, other deposits, such as Bolong and
Duobuza, are all PCDs. The porphyry-epithermal deposits have a symbiotic and transitional
relationship with the porphyry deposits, appearing together in space [3]. Studies of
the Duolong district [35–37] have shown that all the deposits in the area have the same
source of metallogenic materials that originate from the same magma source. Although
these two types of deposits are produced at different locations in the vertical direction,
they are the products of the same magma-hydrothermal system under different depths
and physical and chemical conditions. These deposits constitute a complete porphyry-
epithermal metallogenic system, which is an integral part of the porphyry metallogenic
system. Although the alteration zonation of different PCD regions is slightly diverse, they
generally conform to the following pattern [38]: from the inner outwards, the concentric
alteration zones successively follow the potassic-silicate zone, the phyllic zone, the argillic
zone, and the propylitic zone. The phyllic and argillic zones are overlying. The main altered
minerals in the central potassic-silicate zone are quartz, potassium feldspar, sericite, biotite,
chalcopyrite, bornite, and pyrite; the main altered minerals in the phyllic zone are sericite,
quartz, chalcopyrite, pyrite, and magnetite; the main altered minerals in the argillic zone
are kaolinite and alunite; and the main altered minerals of the propylitic zone in the margin
of the porphyry deposit are chlorite and epidote.
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Figure 1. Geological map of the Duolong ore district modified from Refs. [32,33].

3. Materials and Methods

The experimental process consists of four parts: data preprocessing, ore-indication
information extraction, mineral prospectivity mapping, and prospective area delineation,
as shown in Figure 2.

3.1. Materials and Data Preprocessing

The remote sensing data used in this study were mainly Gaofen-5 (GF-5) hyperspectral
images (HSIs) supplemented by ASTER multispectral images. The regional geochemical
data and related explanatory materials were also obtained.

3.1.1. Preprocessing of GF-5 HSIs

The GF-5 satellite has been used since 2019 and is a hyperspectral satellite with a high
spectral resolution in the visible–shortwave infrared range (SWIR). It can provide a reliable
source for future large-area practical applications. The GF-5 Advanced Hyperspectral
Imager is a 330-band imaging spectrometer with a 30 m spatial resolution covering the
400–2500 nm spectral range. The visible and near-infrared (VNIR) spectral resolution
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is 5 nm, covering 390–1029 nm with 150 bands; the SWIR spectral resolution is 10 nm,
covering 1005–2513 nm with 180 bands [39].
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Figure 2. Experimental flow chart.

The preprocessing of the GF-5 L1 data mainly includes the following steps: bad-band
removal, radiometric calibration, and atmospheric correction. The preprocessing of GF-5
HSIs was completed on ENVI 5.3.

1. Bad-band removal

The GF-5 spectral ranges of the 145–150 band in VNIR and the 151–153 band in SWIR
overlap. Because 145–150 bands have the advantage of a high signal-to-noise ratio (SNR),
145–150 bands were retained. Part of the bands located in the water vapour absorption
zone leads to radiant energy affected by the strong absorption of water vapour, resulting in
real ground information loss. Bands 191–200 and 246–262, which are greatly affected by
water vapour, were removed. Ultimately, 300 effective bands of GF-5 HSIs were reserved,
including the 1–150, 154–190, 201–245, and 263–330 bands.
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2. Radiation calibration

This step converts the digital number value on the image into the radiance value. The
gain and offset values can be obtained from the GF-5 HSI header files. The band interleaved
by line (BIL) was set as the output interleave, and the scale factor was set to 0.1.

3. Atmospheric correction

Owing to the scattering and absorption of the atmosphere, the original digital remote
sensing imagery has radiation distortion when electromagnetic radiation is transmitted.
Remote sensing imagery without atmospheric correction cannot be directly applied to
mineral mapping; otherwise, it will cause errors in the results. In this study, the FLAASH
model for atmospheric correction [40] was used.

4. Denoise via Subspace-Based Nonlocal Low-Rank and Sparse Factorization

After the first three steps, severe noise remains in the GF-5 data, influencing the
subsequent MPM tasks. Aiming at the most important prior information of HSI denoising,
i.e., spectral band correlation and spatial nonlocal similarity, a regularization model via
subspace-based nonlocal low-rank and sparse factorization (SNLRSF) was established to
denoise HSIs [41].

When the HSIs have mixed noise, the regularization model separates the sparse noise
and Gaussian noise to establish an HSI denoising model. Clean HSI spectral bands have a
strong spectral correlation, so the HSI denoising model can be written by spectral global
low-rank factorization as follows:{

Ẑ , Ŝ
}
= argmin

Z,S

1
2‖Y-EZ-S‖ 2

F + λ1F1(Z) + λ2‖S‖1

s.t. ETE = Ik

(1)

where Y is a 2-D matrix, that is reshaped from an observed HSI cube; E denotes the basis
of the subspace in which E is orthogonal, i.e., ETE = Ik, with Ik representing the identity
matrix of the size. The matrix Z denotes the representation coefficient with respect to E; S
denotes sparse noise; ‖ ·‖ 2

F represents the Frobenius norm; and parameters λ1 and λ2 ≥ 0
balance the contributions of the three terms to the result.

Eigenimages have two important properties that benefit the image-denoising task [42]:
the nonlocal self-similarity of each eigenimage, and the correlation among the eigenimages.
A spatial nonlocal low-rank decomposition was selected to exploit the abovementioned
two properties. The HSI denoising model with subspace-based nonlocal low-rank and
sparse regularization can be reformulated as:

C(., .)
{

Ê, Ẑ , L̂, Ŝ
}
= argmin

E,Z,L,S

1
2‖Y-EZ-S‖ 2

F + λ1∑
i

(
1

δi
2 ‖<iZ−Li‖ 2

F + κ(Li)
)
+ λ2‖S‖1

s.t. ETE = Ik

(2)

where Li represents the clean 3-D tensor, κ(Li) denotes the sum of the singular values
of matrices flattened by the tensor, δi

2 is the noise variance of the 3-D tensor used to
normalize the F-norm data fidelity term, and <i is a binary operator to withdraw nonlocal
similar overlying 3-D patches. The model was composed of three parts: spectral low-rank
factorization for HSIs in subspaces; nonlocal low-rank factorization for characterizing
spatial nonlocal self-similarity along with the high correlation among eigenimages; and the
l1-norm sparse term for considering sparse noise.

After all preprocessing, the entire image was clipped to an appropriate size according
to the study area to facilitate subsequent research.

3.1.2. ASTER Preprocessing

ASTER, an advanced multispectral imager on the Terra satellite, covers 14 bands
from VNIR (520–860 nm), and SWIR (1600–2430 nm) to the thermal infrared range (TIR)
at ground resolutions of 15 m, 30 m, and 90 m respectively. Each ASTER scene covers
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an area of 60 × 60 km. In this research, two AST_L1T level products were used, which
were subjected to orthorectification and terrain-accurate correction. ASTER preprocessing
technology is relatively mature and forms a standardized process [43]. This research mainly
utilized VNIR-SWIR band data. The VNIR-SWIR datasets were resampled by using the
nearest neighbour resampling method and stacked into a nine-band file so that all bands
had the same 15 m pixel size to preserve the spatial features provided in the VNIR bands.
The preprocessing process was carried out on the ENVI 5.3 platform, which mainly includes
radiometric calibration and FLAASH atmospheric correction, similar to GF-5 preprocessing.

3.1.3. Geochemical Data Preprocessing

Based on a 1:50,000 stream sediment geochemical survey in the Duolong ore district in
2008, 1748 samples in the study area were selected for preprocessing. The samples were
analysed by the Southwest Metallurgical Geological Testing Center. Each point selects
15 trace metal elements, such as Ag, As, Au, Bi, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Sn, W,
and Zn. The impacts of compositional or stoichiometric closure constraints are usually
neglected because of the low concentrations of these trace elements [44]. The inverse
distance weight (IDW) (a two-dimensional interpolation function for irregularly spaced
data) is a common spatial interpolation method, that weights the distance between the
interpolation point and the sample point as the weighted average, and the sample point
closer to the interpolation point gives a greater weight. The original geochemical data
employed IDW to interpolate 15 layers with a 100 m × 100 m grid size, performed in
ArcGIS 10.5.

3.2. Hydrothermal Alteration Mineral Mapping Methods
3.2.1. Spectral Properties of Hydrothermal Alteration Minerals

Most alteration minerals have absorption features in the wavelength range of 2050–2450 nm.
They can be identified by using features such as the location, width, and depth of the
absorption peaks [45]. In this study, porphyry copper ore bodies primarily occur in the
potassic and phyllic zones characterized by chalcopyrite and pyrite [34]. The main alteration
minerals, including muscovite, kaolinite, and chlorite, were collected; their spectral curves,
selected from the USGS mineral library, are shown in [46].

The reflectance spectra of chlorite, as a typical propylitic alteration mineral, exhibit Mg-
OH and Fe-OH absorption features, whose main absorption peaks are centred at 2327 nm.
Kaolinite, the indicator mineral of argillic alteration, displays an Al-OH group absorption
position at 2209 nm and a secondary absorption peak at 2167 nm [11]. For phyllic alteration
indexed by muscovite, Figure 3 shows an intensive Al-OH absorption at approximately
2200 nm. According to the different contents of AlIV, the location of the Al-OH absorption
peak will shift in the longwave direction with decreasing AlIV content [47].
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3.2.2. Endmember Extraction and Hyperspectral Unmixing via Sparse Autoencoder Network

Compared with multispectral imagery, HSIs have a lower spatial resolution, resulting
in a pixel containing multiple mineral spectral information due to smaller mineral scales.
Therefore, the prime process of mineral information extraction using HSIs is hyperspectral
unmixing, which contains endmember extraction and abundance estimates [48]. We used
the EndNet method to extract endmembers and estimate abundance. EndNet is constructed
on a two-stage autoencoder network that is restructured by introducing additional layers
and a projection metric (spectral angle distance in place of inner product) to realize opti-
mization [49]. A novel loss function constituted by a Kullback–Leibler divergence term
with spectral angle distance (SAD) similarity and additional penalty terms was renovated
to better the sparsity of the estimates. This method, which can extract endmembers and
estimate abundance in an unsupervised manner, has demonstrated excellent performance
in hyperspectral unmixing.

An autoencoder is an artificial neural network that belongs to a three-layer, fully
connected structure, including an input layer, a hidden layer, and an output layer. The input
layer and the hidden layer compose an encoder, which converts the high-dimensional raw
data to a low-dimensional space through mapping to obtain the data feature representation.
The output layer and the hidden layer constitute a decoder, which restores the feature
representation to reconstructed data [50]. Traditional autoencoders are less stable because
the inner product of the input data is not adequately discriminative, which may lead to
abundance estimation error. The standard Euclidean distance reorganization term used as
the chief penalty function for minimizing the estimation error may lead the solution to fall
into a local minimum.

To solve the above problems, first, the rectified linear unit (ReLU) function was used as
the activation function in the encoder layer instead of the logistic function, which makes the
trained network exhibit sparsity. A normalization layer was introduced before and after the
ReLU function to increase the robustness of the network. Using SAD instead of the inner
product can more easily separate endmembers from other interfering information [51]. The
loss function can be written as:

L =
λ0

2
‖x− x̂‖2

2 − λ1DKL(1.0‖C(x, x̂) ) + λ2‖z‖1 + λ3

∥∥∥W(e)
∥∥∥

2
+ λ4

∥∥∥W(d)
∥∥∥

2
+ λ5‖ρ‖2 (3)

where C(., .) denotes the normalized SAD score between the initial and the reconstructed
data; DKL is a Kullback–Leibler divergence term to maximize the SAD score distributions;
‖z‖1 is a regularization term; and ρ and λ are trainable parameter sets.

3.3. Deep Learning Model: CNN

DL neural networks can adaptively extract simple features from the original data and
then extract deep features from the simple features. Layer-wise learning can reduce the
dependence on features for a simple neural network [52]. CNN is a neural network model
with a convolutional structure consisting of an input layer, a hidden layer, and an output
layer. The hidden layer contains convolutional layers, pooling layers, and fully connected
layers. Compared with traditional metallogenic prediction methods, one-dimensional (1-D)
CNN processes can directly process raw data to achieve “end-to-end” classification, which
is more flexible and less dependent on expert knowledge. The designed 1-D CNN model
for MPM is shown in Figure 4. The feature data are converted into a 1-D array as the
input layer. The convolutional layers employ a randomly initialized kernel (also called a
filter) to perform a convolutional operation, which calculates the dot products to obtain
a new feature dataset between the kernel and the input data. The activation function of
the convolutional layer is the nonlinear ReLU function [53]. The pooling layers are also
kernel-based processes using a moving kernel to extract the maximum value of the data
overlapped by the kernel. Through convolution layers paired with pooling layers, the input
data are propagated to draw out features. The drawn feature maps are sent to the flattened
layer, which is used to flatten features to fit into the fully connected layers. The output
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of the fully connected layers is transmitted to the last layer, which applies the softmax
function to reach the predictive probability and outputs a binary prediction. To enhance the
generalization of the network, dropout layers are added to skip some samples with a certain
probability, which can reduce the dependence on some local features [54]. In addition,
batch normalization (BN) layers are introduced to avoid network training overfitting [55]
and enhance the distribution consistency between the test set and the training set.
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Figure 4. Two components of the designed 1-D CNN model construction: (a) The architecture of
the dataset; and (b) The structure of the specific network, * represents the convolutional operation
performed on the input data with the convolution filter.

4. Results
4.1. Denoised GF-5 HSIs

The SNLRSF method was employed to denoise the GF-5 image compared with the
traditional method: minimum noise fraction (MNF) [56]. The MNF method was employed
to rotate the original GF-5 image to choose the first 30 bands. The former 30 bands were
retained for the inverse MNF rotation to obtain hyperspectral imagery with 300 bands. The
noisiest parts of GF-5 are in the SWIR band, so false colour bands (R:269, G:299, B:317)
were chosen to show the denoised effect. Three bands were integrated into 3-D imagery
after different denoising methods in the GF-5 dataset, as shown in Figure 5a–c. Figure 5d–i
shows denoising results on band 1 and band 330, respectively. It is obvious that only part
of the Gaussian noise can be removed through MNF, with much stripe noise remaining.
Compared to MNF, the SNLRSF method achieves improved visual quality and retains more
detail, effectively removing the stripe noise and salt-and-pepper noise. The essential reason
is that spectral low-rank and spatial nonlocal self-similarity of HSIs are both considered in
the SNLRSF method.

Furthermore, a point of the image was selected to present the spectral curve before
and after denoising (the bands in the ranges of 1334–1426 nm and 1798–1948 nm were
removed in the preprocessing), as shown in Figure 6. The spectral curve of the original
image exhibits rapid fluctuations, and the SNR is low. Via the MNF method, the curve
shows no obvious change, and only the sawtooth is partially reduced. Clearly, the spectral
curve processed by the SNLRSF method is relatively smooth. Compared with the original
image, the peak of absorption and reflection at this point did not shift, indicating that
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the SNLRSF method can efficiently reduce the noise on the basis of retaining most of the
structural information of the raw image.
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4.2. Ore Indication Information Extraction Based on Multisource Data
4.2.1. Ore Indication Information Extraction Based on GF-5 HSIs

1. Alteration mineral mapping

Based on the 300 bands of the preprocessed GF-5 HSIs, we used EndNet to attain the
main altered mineral and abundance estimates. The USGS spectral curves were used as the
endmember spectra in the EndNet processing. In Tiegelongnan and Dibaonamugang, the
muscovite distribution (Figure 7a), an indicator of the phyllic zone, is less than the kaolinite
distribution. Argillization, a broad developing alteration type in Duolong, primarily
displays intensive kaolinization [57], which is distributed in all deposits shown in Figure 7b.
The distributions of kaolinite and muscovite overlap in some areas, such as Tiegelong and
Gaerqin. The representative mineral of the distal alteration zone, propylitic, is essentially
chlorite. The wall rock surrounding the ore body in Duobuza and Tiegelong is a widely
propylitic zone distributed outwards of the argillic and phyllic zone in a zonal-circular
pattern (Figure 7c).
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and (c) chlorite. The value denotes the abundance of alteration minerals.

2. Determination of the Absorption Location and Depth

Along with the spectral features of the alteration mineral muscovite in Duolong,
the feature absorption peak position and maximum absorption depth of each pixel were
calculated in the spectral range of 2190–2210 nm to embody the position shift of the global
absorption feature and the changing trend of absorption depth. The absorption position
and depth are obtained by using the least square simulated spectral curve after continuum
removal [58] and then using the second derivative. Most of the absorption peaks of deposits
are in the middle or short wavelength (Figure 8a), and the absorption depth is deeper than
that in the ore-free zone (Figure 8b).
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Figure 8. Position and depth of the feature absorption peak in the 2185–2215 nm spectral range based
on GF-5 data: (a) Wave2200 and (b) Deep2200.

3. SWIR Processing Results

Muscovite, kaolinite, and other alteration minerals are usually affected by surface
physical processes [59], whose characteristics are less noticeable in the VNIR but obvious in
the SWIR of 2000–2450 nm [60]. To reveal the SWIR information, 55 bands (band: 269–323,
wavelength range: 1999–2454 nm) with typical features of the preprocessed GF-5 HSIs
were selected to perform the principal component analysis (PCA) method. Seven principal
components (PCs) were extracted by the PCA method, but the last three PCs were all
displayed as disordered noise. Therefore, the first four principal components (PCs) were
selected for subsequent analysis (Figure 9). The cumulative contribution of the four PCs
reached 99.99%, preserving the characteristic SWIR information to the greatest extent.
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4.2.2. Ore Indication Information Extraction Based on ASTER

The BR and RBD methods were utilized for ASTER imagery to map the hydrothermal
alteration minerals related to the alteration zones of Duolong. The following formulas
(Table 1) were used to extract the corresponding mineral information [61,62], as shown
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in Figure 10. The ferric oxide is widely distributed in the argillic and propylitic zones of
Duolong. The distributions of the other three alteration minerals extracted from ASTER
data are similar to those from GF-5 HSIs. There is obvious local enrichment of muscovite,
such as in the Tiegelong and Naruo areas, and kaolinite is widely distributed, especially in
the Dibaonamugang, Tiegelongnan, and Saijiao areas. The kaolinite of the argillic alteration
mainly coexists with muscovite in Tiegelong, Bolong, and Duobuza. Chlorite extracted from
ASTER is more widely distributed than GF-5 HISs in Dibaonamugang and Tiegelongnan.

Table 1. Band combinations for enhancing mineral features on the ASTER dataset.

Mineral Band Combinations

Ferric oxide Band4/Band3
Muscovite (Band5 + Band7)/Band6
Kaolinite Band7/Band5
Chlorite (Band7 + Band9)/Band8
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(c) kaolinite; and (d) chlorite.

4.2.3. Ore Indication Information Extraction Based on Geochemical Data

The PCA method was performed on the 15 elements interpolated by the IDW to
reduce the dimensions of the geochemical elements. Before the PCA process, the data
were logarithmically transformed and standardized. Seven PCs were extracted by the
PCA method. The first four PC factors explain 85% of the total variance of the original
15 elements. The last three PCs contain less than 3% original information. We chose the
first four PCs, taking into account the computational cost. Figure 11 shows the loading and
component variance of each PC. The first PC contains 41% of the information, Au exhibits
the largest loading, and Cu takes second place. The second PC contains 32% information,
Cr has the largest load, and Ni is number two. The third PC contains 6% information, and
Au demonstrates the largest load. The fourth PC contains 5% information, and Mo is the
largest, followed by Cu. Figure 12 shows the distribution of different values of each PC.
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4.3. MPM Model Configuration and Classification Results

For the 11 copper deposits as positive samples in Duolong, the number of pixels of
known deposits, namely, 11, is considerably low compared with the total number of 100 m
by 100 m pixels in the study area. It will bias the model and impede the generalization
ability of deep learning algorithms. To meet the requirements of large-capacity training
samples for DL, using data augmentation methods for generating positive samples is
accessible [63]. Data augmentation in geology, including buffering [64], XGBoost [65],
and random-drop data augmentation [66], has been successfully applied for generating
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additional positive samples in MPM. By 500-metre buffering, 11 copper deposits can
acquire a total of 868 positive samples. There are two strategies from the geological
viewpoint for selecting negative training samples, including random locations [67] and
low-probability areas [68]. According to the local metallogenic conditions [69] and known
mineral occurrences, negative samples should be randomly selected outside the favourable
metallogenic area, including copper deposits, intrusive rocks, and faults. Figure 13 shows
the distribution of positive and negative samples. To alleviate the overfitting phenomenon
due to deposits accounting for a small proportion of the predicted area, the negative
samples are 3 times the positive samples, namely, 2604 negative samples. The training
subset and the test subset contain equal quantities of samples, according to a ratio of 1:1.
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Predictors were employed as determining factors for predicting mineral potential.
Based on the genetic model and controlling factors of Cu mineralization and according
to the above-extracted ore indication information, 17 evidential maps involving remote
sensing and geochemical information were employed as predictor variables. Nine predictor
variables were from HSI images, consisting of three extracted alteration minerals, the
maximum absorption depth and wavelength position in the 2185–2115 nm spectral range,
and the first four PCs obtained after the PCA procedure for the 55 SWIR bands of GF-5 HSIs.
Four predictor variables were derived from ASTER images and are alteration information
extracted by BR or RBD methods. The spectral resolution of GF-5 HSIs is high compared
to ASTER data, which have a low spectral resolution but a high SNR. The multiscale
information complements each other, which is conducive to a comprehensive reflection
of the ground features. Four predictor variables were the first four PCs of 15 geochemical
elements after the PCA process.

Different hyperparameters in the CNN model have an impact on the classification
performance. Four factors, namely, dropout rate, learning rate, kernel size, and batch size,
were considered in this study. The epoch was set to 50, the X-axis was the independent
variable, and the other hyperparameters were kept unchanged. Figure 14 shows the
influence of selecting diverse hyperparameters on the final accuracy. The parameters
corresponding to the highest scores were obtained; that is, the dropout rate was 0.09, the
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learning rate was 0.009, the kernel size was 56, and the batch size was 12 to obtain the
best performance.
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Figure 14. The test accuracy of the different hyperparameter settings in the CNN model. (a) Dropout
rate; (b) Learning rate; (c) Kernel size; and (d) Batch size. The red vertical line indicates the best
parameter value when the score is highest.

The CNN model trained by the optimal hyperparameters outputs the prediction. For
comparison, traditional ML models, SVM and RF, were utilized. The three models exhibit
different performances.

All the models can properly recognize the majority of known deposits in the study
area. When epoch 50 is set, the loss and the accuracy level off in the training subset and test
subset of the CNN model (Figure 15a). The accuracy of the CNN test subset is 0.956 and
that of the training subset is 0.993 (Table 2). The RF accuracy comes next, with 0.937 and
0.998 for the test and training subsets, respectively. SVM models produce relatively worse
predictions, with 0.931 for the training subset and 0.922 for the test subset. The accuracy of
the training subset is higher than that of the test subset, especially for the RF model, which
leads to overfitting. The CNN model takes second place. Although the accuracy of the
training subset is slightly lower than that of RF, the prediction ability for unknown samples
(test subset) is better than that of the other two models. The runtimes of the three models
are quite different because the complexity of the CNN models is higher; CNN takes the
longest time, followed by RF, and SVM is the fastest.

Table 2. Classification performance of the three models.

Classifier Train Accuracy Test Accuracy AUC
(Area under the Curve)

Time
(s)

RF 0.998 0.937 0.973 130.66
SVM 0.931 0.922 0.959 65.10
CNN 0.993 0.956 0.982 895.78
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The delineation of the high-confidence area and predictive effectiveness of the model
are vital for exploration applications such as MPM. Hence, predictive performance needs
to be well assessed. The receiver operating characteristic (ROC) curve and AUC have
been broadly utilized to assess the performance of classification models in MPM [70]. The
more a ROC curve approaches the top left corner, the better the model performs. The
performance of the three models was assessed by using ROC curves (Figure 15b). The
ROC curve of the CNN model is the closest to the upper left corner. The AUC values show
that CNN (AUC = 0.982) outperforms RF (AUC = 0.973) and SVM (AUC = 0.959). Many
aspects have proven that the CNN metallogenic prediction model demonstrates the best
performance, so the prediction results of the CNN model were selected to delineate the
metallogenic prospect.

4.4. Mineral Prospectivity Map

The CNN algorithm outputs the prediction probability at each grid that is embodied
by a floating probability value fluctuating from 0 to 1. The DL model labels red grids with
high values as potential sites that contain mineralization. The remaining blue grids are
marked as ore-free regions without adequate prospecting potential. Based on the prediction
results, according to the main structures, lithologies, and alteration zones, four metallogenic
prospective areas are delineated, as shown in Figure 16 below.

All four prospects contain one known deposit and are in the predicted high-value
area. In this area, obvious muscovite alteration zones overlap in the kaolinite zone, and the
periphery of the prospective region is the chlorite alteration zone. The prospective areas
are also located in the high-value area of Cu, where faults exist, and diorite porphyrite is
exposed in the area. Prospect I is located in Tiegelong, and the exposed stratum is the MLJS
group, where chalcopyrite-bearing diorite (Figure 17A), malachite, and pyrite sericite are
found in the field. Prospect II is located in Duobuza, and the exposed stratum is the MLJS
group. Malachite and azurite have been discovered in the field (Figure 17B), accompanied
by pyrite sericite, silicification, and argillization. Prospect III is located in Gaerqin, and
the exposed stratum is the MJQ group. Malachite, azurite, gossan (Figure 17C), and pyrite
sericite have been discovered in the field. Prospect IV is in Naton, and the exposed stratum
is the MLJS group. Malachite appears on the spot, and chalcopyrite can be seen in the
quartz veins of the rock (Figure 17D).
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Figure 17. Field photographs of the study areas: (A) chalcopyrite-bearing diorite in Tiegelong;
(B) malachite (left and middle) and azurite (right) in Duobuza; (C) Gossan in Gaerqin; and
(D) chalcopyrite mineralization in Naton.

5. Discussion

The ‘black box’ nature of DL models leads to an agnostic driver of the underlying
process [29], which may hinder their implementation. To enhance the interpretability of
DL models, Python’s SHAPs are utilized to interpret the individual predictions of the
CNN model output using the SHAP library. SHAP values are calculated using a coalition
game theory in which different coalitions of the feature set (i.e., numerous iterations of the
models with all possible element combinations) are used to re-estimate the class prediction,
and the difference in prediction when a specific feature is observed versus excluded is
averaged. Feature importance scores were calculated by utilizing the SHAP library to show
the relative importance of specific features during CNN model classification and to report
the average scores (Figure 18). It is suggested that feature importance scores imply the
significance of a feature to the model instead of the direct importance of the feature in
nature. A key advantage of SHAP is that feature importance scores can be calculated for
individual compositions.
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greater significance in distinguishing the areas from ore/ore-free.

The top five features that contribute the most to the model prediction score are the
first and fourth PCs of geochemical elements, the second and fourth PCs of the SWIR band
of GF-5, and the kaolinite alteration zone extracted from the GF-5 HSIs.

The scores of the first four PCs of the geochemical elements are high, and most of
the deposits fall in the middle-high value regions of PC4 and PC1, showing a positive
correlation. The top five largest positive loadings of elements in PC4 with the highest SHAP
value are Mo, Cu, Bi, W, and Cr. The top five elements with the highest positive loadings
of PC1 elements are Au, Cu, Bi, Ag, and Pb (Figure 19). These results coincide with the
drilling results [71]; from the centre of mineralization outwards, the elements anomalously
exhibit obvious zoning. Specifically, Mo-W-Bi-Sn is located in the centre of the ore body,
and the middle zone combines Au-Cu-Sb; beyond the centre location and outwards are
Ag-Pb-Zn. The combination of Mo, Bi, and W elements extracted from PC4 are all enriched
elements in the centre of the ore body, indicating that the elements W, Mo, and Bi played a
vital role in the prediction of porphyry copper ore. The Au, Cu, Ag, and Pb extracted by
PC1 are mostly in the intermedial region of the ore body, and although the contribution
score to the CNN model is lower than that of PC4, good performance is still achieved.

The PC2 and PC4 results of the GF-5 SWIR HSIs also play a large role in the predictive
output of the model. Referring to Figure 9b,d, the incidence of PC2 and the ore point is a
negative correlation. The deposits are mostly in the middle-high value area of PC4, which
shows a positive correlation with PC4. The SWIR is roughly divided into four intervals:
1999–2091 nm, 2100–2185 nm, 2193–2319 nm, and 2328–2454 nm, and a 95% confidence
ellipse (Figure 20) is circled. The bands with the largest positive loading of PC2 are in the
2328–2454 nm range, which mainly affects the ore-free area of the Duolong ore district.
Chlorite and epidote, with main absorption peaks in the 2328–2454 nm range, are located on
the periphery of the metallogenic alteration zone, generally not in the metallogenic centre.
The bands with the largest positive loading of PC4 are mainly in the 2193–2269 nm range,
showing a positive relationship because most deposits are located in the medium-high
value areas of PC4. The diagnostic feature absorption of typical minerals in the inner-
middle areas of the alteration zone, such as muscovite, kaolinite, montmorillonite, and
illite [72], are all in the 2193–2269 nm range.
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Comparing the influence of alteration bands extracted from two different remote
sensing datasets on the prediction model, GF-5 HSIs demonstrate a better performance
than ASTER when extracting the same alteration type. The argillic zone represented
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by kaolinite has the greatest influence on the output of the CNN model, followed by
the phyllic zone represented by muscovite. The propylitic zone represented by chlorite
exhibits the lowest influence. The reason is that argillic alterations usually overlap in the
phyllic zone in the two porphyry–epithermal complex copper deposits of Tiegelongnan and
Dibaonamugang [73]. Therefore, less muscovite is extracted from remote sensing images
(Figure 7a), resulting in CNN models not extracting this feature very well. The argillic zone
represented by the extracted kaolinite is distributed at each deposit, so the CNN prediction
model correlates the argillic zone with the distribution of the deposits well. The propylitic
zone is generally on the periphery of the ore site, not in the centre of mineralization, so the
predicted high-value zone will not be there.

6. Conclusions

This research mainly focuses on GF-5 HSIs supplemented by ASTER and geochemical
data, introducing the DL model into the field of metallogenic prediction. Predictive mod-
elling of mineral prospectivity was accomplished in the Duolong ore district, Tibet. In this
study, a synthetic MPM model was established, including GF-5 denoising technology, the
comprehensive extraction of ore-indication information, and metallogenic prediction on
the basis of the DL model. The DL model has shown strong potential in applications such
as MPM. Based on integrating remote sensing imagery and geochemical data, the CNN
model constructed in this paper has shown outstanding results. Although the accuracy
of the training set is lower than that of RF, the test set reaches the highest accuracy of
0.956, showing better prediction ability for unknown samples. The known deposits are all
situated in the middle-high value of the predicted outcomes.

According to previous research and fieldwork, four predicted places for favourable
areas of ore prospecting were delineated, which are the key areas for the next porphyry
copper deposit prospecting prediction.

Future research will focus on using DL algorithms to perform HSI denoising research
based on spectral-spatial joint features. In addition, the interpretability of geological data
in the DL models will be enhanced by the introduction of a knowledge-driven engine,
and the lucid expression of evidential layers will be used to increase the usability of the
DL algorithm.
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