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Abstract: Ocean Acoustic Waveguide Remote Sensing (OAWRS) enables fish population density
distributions to be instantaneously quantified and continuously monitored over wide areas.
Returns from seafloor geology can also be received as background or clutter by OAWRS when
insufficient fish populations are present in any region. Given the large spatial regions that fish
inhabit and roam over, it is important to develop automatic methods for determining whether fish
are present at any pixel in an OAWRS image so that their population distributions, migrations
and behaviour can be efficiently analyzed and monitored in large data sets. Here, a statistically
optimal automated approach for distinguishing fish from seafloor geology in OAWRS imagery is
demonstrated with Neyman–Pearson hypothesis testing which provides the highest true-positive
classification rate for a given false-positive rate. Multispectral OAWRS images of large herring
shoals during spawning migration to Georges Bank are analyzed. Automated Neyman-Pearson
hypothesis testing is shown to accurately distinguish fish from seafloor geology through their
differing spectral responses at any space and time pixel in OAWRS imagery. These spectral
differences are most dramatic in the vicinity of swimbladder resonances of the fish probed by
OAWRS. When such significantly different spectral dependencies exist between fish and geologic
scattering, the approach presented provides an instantaneous, reliable and statistically optimal
means of automatically distinguishing fish from seafloor geology at any spatial pixel in wide-area
OAWRS images. Employing Kullback–Leibler divergence or the relative entropy in bits from
Information Theory is shown to also enable automatic discrimination of fish from seafloor by
their distinct statistical scattering properties across sensing frequency, but without the statistical
optimal properties of the Neyman–Pearson approach.

Keywords: multi-spectral imaging; OAWRS; fish population; Gulf of Maine; herring; towed array;
ocean acoustics; underwater acoustics; clutter; Neyman–Pearson

1. Introduction

Fish populations comprise a large part of the marine biomass, play a major role in the
inter-trophic chain and provide roughly 16% of human protein consumption [1]. Concerns
about adverse affects from climate change and overfishing have highlighted the need
for ecosystem-scale sensing and monitoring of marine habitats [2]. Fish populations in
ocean environments, however, are primarily monitored with highly localized line transect
methods using high-frequency downward directed echo-sounders or capture trawl from
slow-moving research vessels that significantly undersample populations in time and space,
leaving an incomplete and ambiguous record of abundance and behavior [3–5].

Ocean Acoustic Waveguide Remote Sensing (OAWRS) has the potential to signifi-
cantly improve sampling of oceanic fish populations and behavior to help sustain and
properly manage the world’s fish populations. The OAWRS technology has been shown
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to enable instantaneous population density quantification and continuous monitoring of
fish populations over thousands of square kilometers, with space-time sampling rates tens
of thousands to millions of times higher than line transect methods by employing the
natural capacity of the oceans for long-range sound channeling at lower frequencies [3,4,6].
Fish populations and behavior have been studied with OAWRS over wide areas in the
Mid-Atlantic Bite [3], the Gulf of Maine [7] and the Nordic Seas [8–11]. To summarize some
key results, the instantaneous horizontal structures and volatile short-term behavior of
very large fish shoals, containing tens to hundreds of millions of fish and stretching for
many kilometers, have been revealed by OAWRS, including the presence of population
density waves within the shoals that exceed fish swimming speeds [3,7]. Theoretical pre-
dictions that a transition from random to synchronous group behavior should occur when
a critical population density is attained have been proven in the natural environment with
OAWRS imagery showing the formation and migration of massive spawning shoals of
herring stretching for many kilometers over Georges Bank [7]. There, the depth of large
upslope migrating fish shoals from deep waters to shallow spawning grounds was also
remotely determined by multi-spectral OAWRS imagery, providing three-dimensional
images of the shoals’ morphology [12]. Interactions between multi-species whale predators
and spawning herring prey was revealed over tens of thousands of square kilometers
in the Gulf of Maine using OAWRS [13]. Accurate enumeration of the entire Georges
Bank herring spawning population was made from a single instantaneous OAWRS image
per day over the 8-day peak spawning period, to within 7% of the independent NOAA
estimate for 2006, which required weeks of surveying [8,14]. Cod spawning shoals sizes
quantified with OAWRS in Lofoten Norway, with spatial diameters of up to roughly 40 km,
were used to help quantify conditions leading to Cod stock collapses [8]. These results
have been obtained in tandem with advances in accurately predicting and modeling the
acoustic scattering from marine life that makes OAWRS possible [6,7,10–12,15–20] as well
as with advances in equipment development for long-range, wide-area ocean acoustics
sensing [21–23].

Since OAWRS instantaneously provides continuous spatial coverage over thousands
of square kilometers, the seafloor is sometimes imaged when insufficient fish populations
are present, assuming scattered returns are not ambient noise limited which is typically the
case by design [3]. Currently, distinction between regions of fish versus seafloor geology in
OAWRS imagery is achieved manually by [3,7] (1) analysis of the space-time dynamical
patterns of prominent returns, (2) confirmation with highly localized measurements with
trawls or downward directed echo sounders, which are limited to a very small subset of
the areas instantaneously surveyed with OAWRS, and (3) analysis of differences in the
frequency response between fish and seafloor, where such spectral methods have also
enabled fish depth to be estimated [12,15–17].

Given the large open ocean habits of fish, and the large data sets produced by OAWRS,
it is more efficient to have automated rather than manual procedures for distinguishing
regions containing fish from those dominated by seafloor scattering [16] in OAWRS im-
agery. It is then a natural goal to employ an easily automated and statistically optimal
methodology for making such a binary decision at any pixel in an OAWRS image. Such a
methodology exists in Neyman–Pearson Hypothesis testing which delivers the maximum
possible true positive decision rate for a given allowable false-positive rate [24], and so is
the optimal approach for such automated decision making. We apply this approach to data
collected during the OAWRS 2006 experiment in the Gulf of Maine [7] where multi-spectral
OAWRS imagery is available at frequencies in the vicinity of the swimbladder resonances
of the spawning herring shoals studied [12,15–17]. In this experiment, herring shoals were
observed by OAWRS to form each day in deep waters at the northern flank of Georges bank
near sunset and to migrate to shallow waters on Georges Bank to spawn. The analysis here
is conducted using examples of multi-spectral OAWRS images of these spawning shoals at
various days during the spawning period, which was observed to last for roughly one week.
Since the herring frequency response is significantly different [12,17] from the frequency
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response of seafloor scattering [16], this data set is particularly well suited to automati-
cally distinguishing fish from seafloor at each pixel in an OAWRS image. The automatic
classification is performed by choosing between two competing hypotheses, one corre-
sponding to fish shoals dominating the scattered returns with their characteristic frequency
response and the other for seafloor scattering with its characteristic frequency response,
using theoretically and empirically determined multivariate probability density functions
for scattering strength from the herring shoals and those for the seafloor [12,15–17,25–27].

The statistically optimal and automated approach presented here should significantly
help to identify, analyze and monitor fish population densities over the very large oceanic
regions they inhabit.

2. Materials and Methods
2.1. OAWRS Gulf of Maine 2006 Experiment

The data presented here are from the Gulf of Maine 2006 OAWRS Experiment (Figure 1)
conducted on the western flank of Georges Bank area from 19 September to 6 October 2006,
in conjunction with the U.S. National Marine Fisheries Service Annual Atlantic Herring
Acoustic Survey [4,5,14]. In this experiment, spatial and temporal population density
distributions, group behavior and physical scattering characteristics of Atlantic Herring
(Clupea harengus) were quantified during their annual spawning period in their primary
spawning ground in the Gulf of Maine [6–8,10,12,13,16–19,28].

Fish aggregations were instantaneously imaged over a 100 km diameter area and
continuously monitored with consecutive image updates in a complex continental-shelf
environment with variable bathymetry and oceanography [7]. The herring shoals imaged
by OAWRS typically corresponded to tens to hundreds of millions of individuals, and ex-
tended for many kilometers across the western flank of Georges Bank. Simultaneously,
ground truth sampling of herring shoals identified by OAWRS was performed with local
downward directed echo-sounding and concurrent trawl sampling from supporting
research vessels.

In this experiment, the OAWRS system employed a vertical source array to transmit
linear frequency modulated (LFM) pulses centered at a range of frequencies from 390 to
1150 Hz and with 50 Hz bandwidth and 1 s duration [7,12,17]. Scattered returns from
the environment were received with a horizontal towed line array with multiple nested
sub-apertures at half-wavelength sensor spacing spanning 5 octaves (Figure 2). Three
64-element apertures were used in this analysis, with inter-element spacing of 1.5 m, 0.75 m
and 0.375 m nominally for the low (LF), mid (MF) and high frequency (HF), respectively [29].
Beamforming coherently combining all sensors in these three apertures is employed here to
obtain the high resolution in horizontal azimuth [30]. This eventually leads to a fixed range
resolution of roughly 15 m, and an azimuthal resolution varying as λ/(L cos θ) in radians
away from array endfire, where θ is the scan angle from array broadside, λ is the acoustic
wavelength and L is the array aperture length. Matched filtering with the transmitted
waveform follows beamforming, which is in turn followed by spatial charting of scattered
returns [3,7,17,31,32]. Instantaneous snapshots of the ocean environment over the two-way
travel times of the scattered returns are then obtained with sufficient imaging resolution to
investigate the group behavior of oceanic fish over vast regions.
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Figure 1. Instantaneous areal coverage of a single OAWRS transmission in the Gulf of Maine
2006 experiment shown over bathymetry. A region of 100 km in diameter (red circle) and roughly
8000 square kilometers is surveyed within 75 s by OAWRS. Widely spaced line transects of the
concurrent National Marine Fisheries Service (NMFS) two-week survey. NMFS used a downward
directed echo-sounder to sense within a few horizontal meters of the research vessel track shown in
yellow. Yellow NMFS survey tracks are not shown within the OAWRS circle to avoid visual clutter,
but extended there along the lines shown.

Figure 2. OAWRS receiving array system used during the Gulf of Maine 2006 Experiment [7].
The towed horizontal receiving array and OAWRS vertical source array were separately deployed
from two research vessels for bistatic measurements.
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2.2. Automatic Distinction of Fish Shoals from Seafloor in Multi-Spectral OAWRS Imagery via
Neyman–Pearson Hypothesis Testing

Here, we apply Neyman–Pearson hypothesis testing [24], which provides the highest
probability of detection for a chosen false-alarm rate, to automatically distinguish fish from
seafloor in wide-area multispectral OAWRS population density images.

First, we apply beamforming and matched filtering acoustic pressure field returns
from an OAWRS transmission at a given center frequency and spatially charting their
intensities to the spatial locations from which they were returned. Subsequently, the
scattering strength for a given center frequency is determined at each spatial pixel by
correcting for transmission loss over the OAWRS system resolution footprint following
the approach described in References [3,6,7,12,17,28]. Examples of the resulting OAWRS
image are shown in Figure 3A,B for a transmission with center frequency at 950 Hz, which
is just below the expected swimbladder resonance peak for the swimbladder semi-minor
axis length determined from trawl data (Figure 3C) as shown in Figure 3D [33]. Scattering
strength images for the same times and locations were obtained for transmissions at four
center frequencies—415, 735, 950 and 1125 Hz.

For a given OAWRS scattering strength image at a given center frequency, such as
Figure 3A, taken to be training data, histograms are formed for scattering in regions with
significant fish populations. These histograms represent the H1 hypothesis of fish domi-
nating scattering in a given region. The same is applied for regions with negligible fish
populations, where the histograms represent the H0 hypothesis of seafloor dominating
scattering in a given region. The hypotheses are verified by: independent in situ conven-
tional downward directed echo-sounder measurements as in Figure 3C; capture trawl;
time-space variations in sequential OAWRS images consistent with dynamic fish migration;
and frequency analysis as in Figure 3D, where scattering from fish swimbladder resonance
exhibits a dramatic spectral dependence [3,6,7,12,17] not seen in seafloor scattering [16].
The process is repeated for all center frequencies. Both the multivariate H1 and H0 scat-
tering strength probability density functions corresponding to these histograms are found
to follow a Gaussian distribution by a Chi-Square goodness of fit test [34,35] with 5% of
significance level as expected since the acoustic field can be described as a Circular Complex
Gaussian Random variable (CCGR) [3,17,25–27].

The multivariate Gaussian probability density found for the H1 hypothesis is then

pH1(SS1; µ1, Σ1) =
1

(2π)2
(
σ2

11σ2
12σ2

13σ2
14
)(1/2)
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(
− 1

2

( 4
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2
))

. (1)

where SS1 is the random scattering strength vector for regions where fish scattering is
dominant with four components S1i for i = 1, 2, 3, 4 corresponding to the four scattering
strengths at OAWRS center frequencies 415, 735, 950, 1125 Hz. The mean of SS1 is µ1 with
diagonal covariance Σ1 that has variances σ1i determined from the training data. Similarly,
for the H0 hypothesis for regions with negligible fish scattering, the multivariate density is
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where SS0 is the random scattering strength vector for regions where seafloor scatter-
ing is dominant, with four components S0i corresponding to scattering strengths at the
four OAWRS center frequencies, with mean µ0 and variances σ0i determined from the
training data.
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Figure 3. Discrimination of fish from seafloor scattering regions by Neyman–Pearson hypothesis
testing. (A) OAWRS 950 Hz scattering strength measured on 3 October, at 18:18:45 EDT, with
bathymetric contours (dashed white lines) dominated by scattering from massive fish shoal extending
for roughly 30 km (training data within black contour) and seafloor geology (training data within
red contour). Coordinate origin is located at the source array location. Data from these respective
contoured regions are used to determine the likelihood functions. (B) OAWRS 950 Hz scattering
strength image containing fish and seafloor scattering at various pixels measured on 3 October,
at 19:21:15 EDT to be sorted as test data using Neyman–Pearson decision rule. (C) Time-depth profile
of fish volumetric density (fish/m3) measured by high-frequency downward-directed echo-sounding,
along the blue line-transect of NOAA FRV Delaware II research vessel through the shoal shown in (A).
White dashed vertical lines correspond to Delaware II transect start α and end Ω points. (D) Measured
scattering strength (SS) versus frequency for four OAWRS center frequencies for black-bounded
region in (A) shows excellent least-square fit with Love-model frequency response for herring with
swimbladder semi-minor mean of 4.9 mm, with standard deviation typically within +/−30% of
semi-minor axis mean. Scattering strength versus frequency of red-bounded region in (A) show
excellent correspondence with seafloor scattering [16].
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To determine whether scattering at any spatial pixel in an OAWRS image is from fish
or seafloor geology by Neyman–Pearson hypothesis testing, given measured scattering
vector SS at that pixel, the log of the likelihood ratio

λLR = ln
(

PH1(SS; µ1, Σ1)

PH0(SS; µ0, Σ0)

)
, (3)

is used [24]. In the log-likelihood ratio test, fish are taken to be present at a given spatial
pixel if

λLR(SS) > ccritical , (4)

where ccritical is chosen to yield a 1% significance level of allowable false-positive detection rate.

3. Results
3.1. Automatic Optimal Discrimination of Fish from Seafloor Geology with Absolute Scattering
Strength Levels

Neyman–Pearson hypothesis testing using the optimal decision rule of relation (4) is
used to automatically evaluate whether a spatial pixel in multispectral OAWRS imagery is
dominated by fish or seafloor geology. Test data SS at pixels in Figure 3B are used, while
training SS0 and SS1 data to determine the mean and covariances of the two hypothe-
ses are from Figure 3A. The automatic classification results are as shown in Figure 4A,
for pixels identified as primarily containing fish, and Figure 4B for regions dominated by
seafloor scattering. These results correspond well with those determined from ground truth
measurements, observation of temporal evolution, and manual spectral analysis.

Figure 4. Each pixel in Figure 3B measured on 3 October, 19:21:15 EDT is classified as being dominated
by fish or seafloor scattering with the likelihood ratio test of Equation (3). (A) Pixels classified as
dominated by fish scattering. (B) Pixels classified as dominated by seafloor scattering.
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Similarly, Neyman–Pearson hypothesis testing is applied for training data of Figure 5A,
with ground truth data shown in Figure 5C,D, to test data in Figure 5B, leading to automatic
pixel-by-pixel classification of fish-dominated versus seafloor-dominated scattering regions
in Figure 6A,B. Again, the results correspond well with those determined from ground
truth measurements, observation of temporal evolution and manual spectral analysis.

Figure 5. Same as Figure 3 except OAWRS scattering strength in (A) is measured on 2 October
23:36:15 EDT and (B)—on 2 October 19:33:45 EDT, echosounder tracks in (C) are shown with blue
line in (A) and scattering strength versus frequency for fish and seafloor in (D) are within black and
red contours, respectively.
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Figure 6. Each pixel in Figure 5B measured on 2 October 19:33:45 EDT is classified as being dominated
by fish or seafloor scattering with the likelihood ratio test of Equation (3). (A) Pixels classified as
dominated by fish scattering. (B) Pixels classified as dominated by seafloor scattering.

3.2. Automatic Optimal Discrimination of Fish from Seafloor Geology with Relative
Spectral Dependencies

The approach of the previous section of using the absolute levels of scattering to
distinguish fish from seafloor geology may restrict it to scenarios where the training data
are very specifically tuned to specific environmental conditions where both fish shoals
and seafloor geology have absolute scattering strength levels that are invariant. A more
general approach is to use only the relative spectral dependencies of fish versus seafloor
scattering in the hypothesis test which tends to be more invariant to changes in herring
population density and seafloor depth, morphology and composition. This is accomplished
by substituting SS′ for SS where SS′ = SS− 1

N ∑4
i=1 SSi for i = 1, 2, 3, 4 scattering at four

center frequencies. Similar offset adjustment by subtracting the mean scattering strength
across frequency leads to SS′

0 and SS′
1, and all corresponding means and covariances of

these random vectors as in Figure 7A,B. The modified, primed scattering strength vectors
and their means and covariances are then substituted in Equations (1)–(3) and the relation
(4) decision rule in place of the unprimed variables.

Neyman–Pearson hypothesis testing using the optimal decision rule of relation (4)
is again used with the same critical value. Test data SS′ at pixels in Figure 3B are used,
while training data SS′

0 and SS′
1 for the two hypotheses are taken from Figure 3A. The au-

tomatic classification results are as shown in Figure 8A, for pixels identified as primarily
containing fish, and Figure 8B for regions dominated by seafloor scattering. Similarly,
Neyman–Pearson hypothesis testing is applied for training data of Figure 5A, with ground
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truth data shown in Figure 5C,D, to test data in Figure 5B, leading to automatic pixel
by pixel classification of fish-dominated versus seafloor-dominated scattering regions in
Figure 9A,B.

Figure 7. Relative scattering strength versus frequency for fish and seafloor after subtracting instanta-
neous average scattering strength over frequency at each pixel comprising different relative spectral
dependencies measured on (A) 3 October 18:18:45 EDT and (B) 2 October 23:36:15 EDT.

Figure 8. Each pixel in Figure 3B measured on 3 October 19:21:15 EDT is classified as being dominated
by fish or seafloor scattering with the log-likelihood ratio test of Equation (3) using relative frequency
responses obtained by subtracting the mean instantaneous average scattering strength across fre-
quency at each pixel. (A) Pixels classified as dominated by fish scattering. (B) Pixels classified as
dominated by seafloor scattering.
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Figure 9. Same as Figure 8 except OAWRS scattering strength is measured on 2 October 19:33:45
EDT. Each pixel in Figure 5B is classified as being dominated by fish or seafloor scattering using
relative frequency responses obtained by subtracting the mean instantaneous average scattering
strength across frequency at each pixel. (A) Pixels classified as dominated by fish scattering. (B) Pixels
classified as dominated by seafloor scattering.

The results when only spectral dependencies are used in the classification are similar
to those obtained when the absolute scattering strengths are used. Differences between
the two approaches appear primarily at the edges of fish shoals. There, both spectral
dependencies and levels of the mixed fish and seafloor returns differ from those of both
the purely fish scattering Hypothesis 1 and the purely seafloor scattering Hypothesis 0 of
the Neyman–Pearson test. Edges of shoals, however, comprise a small fraction of the area
and total population of a shoal, especially when the scattering strength levels there are
comparable with seafloor scattering.

4. Discussion

Since OAWRS may image many diverse environmental scatterers when sensing fish
populations over wide areas, including those from seafloor geology, it is important to
develop methods to efficiently identify pixels dominated by fish scattering in large data sets.
Here, a method is developed and demonstrated to accomplish this task in an systematic,
automatic and optimal manner given prior knowledge of the physical and statistical
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scattering properties of each type of scatterer. The particular prior knowledge employed
here is for large herring shoals in their annual fall migration to spawning grounds on
the northern flank of Georges Bank. The herring groups have been observed to migrate
upslope near the seafloor from depths in the vicinity of 200-m to the very shallow regions
for spawning with very similar scattering characteristics each day [7]. Strong variations
in the spectral scattering response of the herring groups, which typically include or are
in the vicinity of the swimbladder resonance peak, have been previously shown to be in
the OAWRS spectral range of the present study [7,12,17]. Seafloor scattering in the vicinity
has also been characterized and shown to have a very different and a far more constant or
gradual spectral dependence over this OAWRS frequency range [16,36]. While the approach
presented here is general, the training data are specific to herring shoals in the Northern
Flank of Georges Bank during spawning migrations. For other regions and species, different
training data or alternatively physical models will be necessary. With the current data,
two approaches are employed. In the first, absolute scattering strengths measured are
used to train and test the alternate Neyman–Pearson Hypotheses. In the second, only the
normalized spectral dependence of scattering strength is used in the training and testing.
The latter has advantages when fish populations densities or seafloor scatterers undergo
large variations in absolute level, but maintain their spectral characteristics, making it
more broadly applicable. Differences between the two approaches are found in regions
where fish population densities are so low that their contribution to the total scattered field
across frequency is similar to that of geologic seafloor scattering in the same pixel and
neither hypothesis is best. For the large fish shoals of the present analysis, this is sometimes
found at the shoal boundary, which comprises a very small part of the entire shoal area or
population and so is not of critical importance. The creation of a third mixed hypothesis in
this case is the subject of future work, with variable weighting for fish or seafloor that can
be estimated from the data.

Another approach described in Appendix A, employing Kullback–Leibler divergence
or relative entropy from Information Theory [37,38] is shown to also enable automatic
discrimination of regions containing fish from those containing seafloor by use of their
statistical scattering properties across sensing frequency. The approach shows that a signifi-
cant difference, roughly two orders of magnitude larger in quantifiable bits of information,
exists between regions dominated by fish versus seafloor scattering. To obtain robust
divergences in bits, the approach of Appendix A is formulated purely in terms of empirical
differences between the measured statistics of scattering between two regions containing a
large number of independent pixels at each independent sensing frequency. As a result, it
is not well-suited for discrimination at a single pixel, as is the Neyman–Pearson hypothesis
testing approach presented in earlier sections.

5. Conclusions

Fish are optimally and automatically distinguished from seafloor geology at every
pixel in multi-spectral Ocean Acoustic Waveguide Remote Sensing (OAWRS) images that
instantaneously cover ecosystem scales. The optimality is attained by determining OAWRS
scattering statistics of the competing hypotheses from prior data using the Neyman–Pearson
decision rule, which provides the highest true positive detection rate possible for a given
false alarm rate. Frequency-dependent scattering strengths of herring aggregations mea-
sured near their swimbladder resonance with OAWRS in the Gulf of Maine during the
Autumn 2006 spawning season are used to develop and test the approach. Near swimblad-
der resonance, herring have a prominent spectral peak and sharp low frequency roll-off
that distinguishes it from the mildly increasing to level frequency response of surrounding
seafloor in the same frequency band. The likelihood function for herring and seafloor
scattering are determined from the measured multi-spectral OAWRS imagery. The models
are then applied to automate the discrimination of regions dominated by fish from those
dominated by seafloor via the optimal Neyman–Pearson decision rule applied at each
spatial pixel in instantaneous wide-area multi-spectral OAWRS imagery. The automated
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results are verified with ground-truth measurements of fish presence via local conventional
echo-sounder measurements, capture trawls, analysis of time-space variations in scattered
returns, as well as their spectral characteristics. The approach is found to be robust and
should be broadly applicable.

The demonstrated pixel-by-pixel discrimination of fish from seafloor geology, opti-
mized and automated over wide areas, has the potential to significantly impact the study
of fish population dynamics, behavior and resource management. This is made even more
compelling given current concerns about the effects of increased industrialization on the
oceans and the effect of this and other modern pressures on the world’s fish populations.

Another approach, employing Kullback–Leibler divergence or relative entropy from
Information Theory, is shown to also enable automatic discrimination of regions containing
fish from those containing seafloor by use of their statistical scattering properties across
sensing frequency. To garner robust divergences in quantifiable bits, however, this approach
requires a large number of independent pixels in each region compared and so is less well
suited to single-pixel discrimination than Neyman–Pearson hypothesis testing. It is also
suboptimal in the sense that it does not provide the maximum true-positive detection rate
for a given false-positive rate as does the Neyman–Pearson approach.
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funding acquisition, N.C.M.; conducting experiment at sea, N.C.M. and P.R.; methodology, K.E.,
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draft, K.E. and N.C.M.; writing-review and editing, N.C.M. and K.E. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Office of Naval Research grant number N00014-20-1-2035.
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Appendix A. Spectral Distinction of Fish Shoals from Seafloor Using Generalization
of Kullback–Leibler Divergence

Information theory is also utilized to discriminate regions containing predominantly
fish shoals from those containing seafloor by measuring the Kullback–Leibler divergence
in bits (relative entropy) of their respective scattering strength PDFs, again designated H1
and H0 respectively, from multispectral OAWRS imagery.

The relative entropy of the approximately normal multivariate distributions of scat-
tering strength with means µ0, µ1 and covariance matrices Σ0, Σ1 for the seafloor and fish
shoals regions respectively, incorporating all the data across frequency domain, is expressed
as [37,38],

KL f (H0||H1) =
1
2

(
tr
(
Σ−1

1 Σ0
)
+ (µ1 − µ0)

TΣ−1
1 (µ1 − µ0)− k + ln

|Σ1|
|Σ0|

)
. (A1)

where µ1 = [µ11, µ12, µ13, µ14] and µ0 = [µ01, µ02, µ03, µ04] are the mean scattering strengths
for the examining fish shoal and seafloor regions for each frequency, for k = 4 frequency
dimensions of the multivariate scattering function PDF and covariance matrix.

KL-divergence is greatest when comparing two regions most dissimilar in terms of the
relative amount of fish versus seafloor scattering, as expected. This is seen in Figure A1A in
which the fish shoal within black contour is identified based on echo-sounder measurements
and frequency analysis (Figure A1C,D). This identified fish region is compared via Kullback–
Leibler divergence with three other regions bounded by red, white and blue contours,
respectively. Kullback–Leibler divergence increases dramatically with frequency over
the 400–1200 Hz range when comparing the black-contoured region containing a dense
fish shoal with the red-contoured region (Figure A1B). This red-contoured region has
been independently verified to be a region dominated by seafloor scattering via echo-
sounder measurements as well as its spectral characteristics and spatial-temporal context
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in the OAWRS imagery and known Georges Bank bathymetry [16]. The strong increasing
frequency dependence is not found in when comparing the black-contoured dense fish
region with the white or blue regions. A potentially mild increase in Kullback–Leibler
divergence for the highest frequency is found in comparison between the black-contoured
fish shallow region and the white-contoured region containing low-density fish populations.
Negligible Kullback–Leibler divergence is found when comparing the black-contoured
region with the blue-contoured region, both of which contain dense fish shoals.

Figure A1. Cont.



Remote Sens. 2023, 15, 437 15 of 18

Figure A1. Discrimination of fish from seafloor scattering regions by Kullback–Leibler Divergence.
(A) OAWRS 950 Hz scattering strength measured on 4 October, at 00:16:15 EDT, dominated by scatter-
ing from massive fish shoal extending for roughly 15 km, part of which is within the black-contoured
region, compared with returns within red-contoured region dominated by seafloor scattering, white-
contoured region with low population density fish presence and blue-contoured region containing a
dense fish shoal. (B) Frequency variation of Kullback–Leibler divergence in bits of information in
comparison between black contoured region with red, white and blue contoured regions respectively.
For dense fish versus seafloor in black versus red-contoured region comparison, overall Kullback–
Leibler divergence is greatest and monotonically increases with frequency and reaching a maximum
near the swimbladder resonance peak. Kullback–Leibler divergence is overall the least in comparison
of two densely populated fish regions, i.e., those within black and blue contours. (C) Echosounder
tracks shown with blue line on 4 October at midnight hours and (D) scattering strength versus
frequency for each contoured region, dense fish (black and blue data points), seafloor (red data with
black mean line), low population density fish (gray data points for white-contoured region).

The multivariate Kullback–Leibler divergence simultaneously including all frequen-
cies follows Equation (A1), which is a function of the single frequency divergences. These
multivariate results are shown in Figure A2 for OAWRS data from 4 October at 00:16:15 EDT.
Multivariate Kullback–Leibler divergence is significantly great for dense fish versus seafloor
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in black versus red-contoured region, while being overall least in comparison with two
densely populated fish regions, i.e., those enclosed in black and blue contours. Kullback-
Leibler divergence so provides a method for discriminating regions with dominated by fish
scattering from those dominated by seafloor scattering. The approach, however, requires
comparison of the scattering statistics over large regions in order to adequately quantify in
bits the statistical scattering properties compared in Kullback–Leibler divergence, and so it
is not so well suited to pixel-by-pixel discrimination.

Figure A2. Kullback–Leibler divergence (in bits) from Equation (A1) comparing black-contoured
densely populated fish region with red-contoured seafloor region, white-contoured sparsely popu-
lated fish region, and blue-contoured densely populated fish region, imaged on 4 October at 00:16:15
EDT and shown in Figure A1A.
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