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Abstract: The AI-aided variational Bayesian extended Kalman filter (AI-VBEKF)-based robust di-

rection-of-arrival (DOA) technique is proposed to make reliable estimations of the bearing angle of 

an uncooperative underwater target with uncertain environment noise. Considering that the large 

error of the guess of the initial mean square error matrix (MSEM) will lead to inaccurate DOA track-

ing results, an attention-based deep convolutional neural network is first proposed to make reliable 

estimations of the initial MSEM. Then, by utilizing the AI-VBEKF estimating scheme, the uncertain 

measurement noise caused by the unknown underwater environment along with the bearing angle 

of the target can be estimated simultaneously to provide reliable results at every DOA tracking step. 

The proposed technique is demonstrated and verified by both of the simulations and the real sea 

trial data from the South China Sea in July 2021, and both the robustness and accuracy are proven 

superior to the traditional DOA-estimating methods. 

Keywords: extended Kalman filter; robust tracking; underwater direction-of-arrival tracking;  

variational Bayesian; attention-based neural network 

 

1. Introduction 

Estimating the bearing angle of an uncooperative underwater target is vitally im-

portant in underwater acoustic engineering [1–4]. Considering that the unknown under-

water environment sometimes causes uncertain measurement noise that will degrade the 

estimation accuracy of the interested target’s bearing angle, the robust bearing angle esti-

mating technique is necessary and has attracted a number of researchers’ attention [5–8]. 

In addition, the techniques of passive bearing angle estimation can be based on two dif-

ferent ways, namely the DOA estimation and the DOA tracking methods. The DOA esti-

mation merely depends on the measurements from a certain period. Besides the measure-

ments, the DOA tracking techniques also utilize the prior motion information of an inter-

ested target. Although the DOA estimation has already made many milestones in various 

bearing angle estimation missions [9–11], its ignorance of the target’s kinematics makes 

the DOA estimation techniques always have superior estimating results when the target 

is nearly static and the environment is stable. When the target is maneuvering or the meas-

urement noise shifts because the underwater environment is uncertain, the DOA estima-

tion methods can hardly have satisfied results. In addition, in order to make reliable and 

accurate estimations of an uncooperative underwater target’s bearing angle, the DOA es-

timation techniques usually need a wide observation window, which will lead to heavy 

on-board computational load and which will occupy a lot of on-board limited storage. 

Considering the advantages and drawbacks of the DOA estimation methods, DOA 

tracking techniques have been proposed. Instead of merely utilizing the measurement in-

formation, DOA tracking methods take both the target’s motion model and the current 

measurements into consideration. Based on the Bayesian estimation principle, the DOA 

tracking techniques can reach higher estimating accuracy and can occupy less on-board 
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computing or storage resources, especially when the underwater target is maneuvering 

[12–15]. In addition, the unpredicted moving objects or environmental changes in the 

ocean can sometimes make the measurements uncertain, which will degrade the bearing 

angle estimation accuracy or even make the estimating procedure diverge. Under this cir-

cumstance, the robust DOA tracking technique is necessary to guarantee the precision of 

the whole estimation process. Among all the robust DOA tracking techniques, two cate-

gories can be divided depending on the basic mathematical principles, namely the data-

inspiring robust tracking techniques [16] and the Bayesian inferring techniques [17,18]. 

These two categories of robust DOA tracking techniques are both derived based on the 

widely used Kalman filter technique [19–21]. The former one utilizes good estimations 

from a long tracking period to adjust the weight of the bad measurements when the meas-

urement noise becomes uncertain. As a result, the weights of the poor measurements can 

become very small to make the current bearing angle estimations mainly depend on the 

historical good estimations. These kinds of data-inspiring robust DOA tracking tech-

niques have proven their efficiency in a number of research studies [22–26] nevertheless, 

their convergence is still an open question. When the hyper-parameters of the inspired 

robust DOA tracking are set inappropriately, the estimations usually have poor accuracy 

and sometimes diverge. 

To overcome the drawbacks of the data-inspiring robust tracking techniques, the 

Bayesian inferring techniques, or the so-called variational Bayesian (VB) robust tracking 

techniques, are proposed and have been utilized in a various of research studies [27–29]. 

Unlike the data-inspiring robust tracking methods, the VB robust tracking techniques are 

strictly derived mathematically. By assuming the prior probability density functions 

(PDFs) of the tracking parameters and the interested time-varying parameters (i.e., covar-

iance matrix of the uncertain measurements noise) along with optimizing the Kullback–

Leibler Divergence (KLD) among the posterior PDFs, the VB technique can analytically 

estimate the tracking parameters and other interested parameters simultaneously. Differ-

ent from the data-inspiring robust tracking methods, the VB robust tracking techniques 

have strict mathematical foundations and can guarantee convergence and accuracy if the 

prior PDFs are set properly. Under this circumstance, the VB robust tracking techniques 

do not need good estimations from a long period to output reliable results when meas-

urements become uncertain, and they are more theoretically complete.  

In addition, the error between the guess of the initial state and its real value will in-

fluence the final DOA tracking accuracy since the DOA tracking system has high nonlin-

earities. If the error is large enough, the tracking results will even be diverged [30]. Under 

this circumstance, before operating a DOA tracking algorithm, the initial MSEM should 

be set properly. However, in the real DOA tracking scenario, it is almost impossible to 

obtain an accurate error covariance matrix since the real initial states cannot be accurately 

obtained. In addition, the uncertain underwater environment always affects the state es-

timating results and makes the initial MSEM much harder to accurately predetermine. To 

deal with this problem, some researchers suggested utilizing a large guess of the initial 

MSEM to make the tracking system have fast converging speed and to deal with the large 

error between the initial guesses of the states and their real values. However, since the 

underwater target DOA tracking system has high nonlinearities, setting a large guess of 

the initial MSEM sometimes makes the whole tracking procedure become unstable or 

even diverge. As a consequence, how to set a proper guess of the initial MSEM with re-

spect to the error of the initial guess of the state and its real value is still an open question. 

Usually, the initial MSEM is set by engineering experience, which is similar to an expert 

system that tries to have common solutions. Although some adaptive tracking techniques 

have been designed to weaken the influences by the initial error [31], the unproperly set 

initial MSEM still affects the overall tracking performance. Under these circumstances, a 

robust and accurate technique for properly setting the guess of the initial MSEM is neces-

sary. Usually, the traditional Bayesian estimating techniques rely heavily on the mathe-

matical model of the systems or parameters to be estimated, but the guess of the initial 
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MSEM does not have a determined and accurate mathematical model with respect to the 

system state, which makes the traditional methods fail. However, the value of the guess 

of the initial MSEM has a relationship with the theoretical measurements calculated by 

the state by the measurement model, initial guess of the state, and its real value. Under 

this circumstance, the data characteristics other than the mathematical characteristics of 

the guess of the initial MSEM can be analyzed and utilized. As a result, although the tra-

ditional techniques have few general solutions for the problem of properly setting the 

guess of the initial MSEM, the latest data-driven AI techniques allow the problem dis-

cussed above to be solved. 

Except for depending heavily on the mathematical derivations, the AI techniques can 

only rely on the statistical characteristics to infer the inner nonlinear relationship between 

the inputs and the outputs from a certain system. As a result, the AI techniques are more 

suitable for the problems that are hard to be mathematically or analytically depicted but 

have plenty of data resources. After the back propagated (BP) training method was pro-

posed by Rumelhart et al. [32] and after the deep learning scheme that brought the deep 

artificial neural network (DANN) into light by Hinton et al. [33], the DANN has shown 

its powerful abilities in many fields, such as automation, parameter estimation, target 

tracking, etc. Among all of the DANNs, the deep convolutional neural networks (DCNNs) 

and the variations of the DCNNs (i.e., Resnet [34], Senet [35]) are the most notable ones, 

with robust and accurate performances, especially for regression and classification prob-

lems that are hard to be analytically modeled. By adopting the convolutional and pooling 

ideas into one DANN, the DCNN can be modeled much deeper and can easily be trained. 

Based on the DCNN technique, Lecun et al. [36] proposed a DCNN named Lennet-5 to 

deal with the digital image classification task. Ref. [37] considered the training efficiency 

and the gradient vanishing problem caused by the DCNNs and proposed the shortcut 

concept to make the DCNNs have a much deeper structure so that the DCNNs can deal 

with more complicated classification and regression issues. Ref. [38] considered that the 

different features may have different weights during the training process of the designed 

DCNNs and proposed an attention-based scheme to make the designed DCNNs more 

robust and accurate. Besides the principle developments of the DCNNs, the applications 

of them have also attracted a number of researchers from various fields, especially from 

the field of underwater target localization, detection, classification, and tracking [37–43]. 

Niu et al. [37–40] have published a series of research studies to make the underwater tar-

get localization task more accurate and robust to the uncertain underwater environment. 

Wang et al. [41,42] utilized the DCNNs technique in estimating the unknown parameters 

in the underwater acoustical channel. Based on the DCNNs technique, Ref. [40] developed 

intelligent target classification algorithms that can obtain higher accuracy and classifica-

tion speed than the traditional methods. Ref. [43] proposed a DCNN-based seabed param-

eters inversion method. However, to the best of the authors’ knowledge, very few research 

studies have considered using the advanced DCNN technique for the underwater target 

DOA tracking problem. As a result, the potential and strength of the DCNNs in the un-

derwater target DOA tracking scenario, especially in dealing with the proper setting of 

the guess of the initial MSEM, have not been proven yet. 

Based on the above analysis, an AI-aided variational Bayesian extended Kalman filter 

(AI-VBEKF)-based robust direction-of-arrival (DOA) technique is proposed to make reli-

able estimations of the bearing angle of an uncooperative underwater target with uncer-

tain environment noise. The main contributions of this study are summarized as follows. 

Firstly, a uniform circular array (UCA) is considered to provide measurements of the 

underwater target. By adopting the UCA as the measurement system, the port and star-

board ambiguity problem is overcome. In addition, the uniform aperture at all bearing 

angles is processed. 

Secondly, considering the effects caused by the unproperly set guess of the initial 

MSEM, an attention-based DCNN is designed to make reliable initial guesses of it and to 

make the later DOA tracking process steady and accurate. 
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Thirdly, considering that the unknown underwater disturbance can sometimes make 

the measurement noise uncertain, the AI-VBEKF is designed to robustly estimate the bear-

ing angle of the underwater target with a shifting covariance matrix of the uncertain meas-

urement noise. 

Finally, based on the sea trail data from the South China Sea in July 2021, the pro-

posed AI-VBEKF is verified. The robust and accurate estimation results proved the supe-

rior characteristics of the proposed DOA tracking method. 

The remainder of this paper is organized as follows: Section 2 shows the kinematic 

model and the measurement model of the DOA tracking problem. In Section 3, the VB-

EKF using a UCA is derived first. In addition, the attention-based DCNN is proposed to 

make a good estimation of the guess of the initial MSEM. Then, based on the VB-KEF and 

proposed DCNN, the whole frame of the AI-VBKEF is proposed. In Section 4, the simula-

tion and experiment verification results are shown. Finally, the conclusions are drawn in 

Section 5. 

2. Problem Formulation 

2.1. Kinematic Model of the DOA Tracking Process 

Since the underwater target is usually performing at a constant velocity to keep in-

visibility and is far from the hydrophone arrays, the motion model of the target’s bearing 

angle can be modeled as the constant velocity (CV) model. 

Let k  denote the bearing angle of the target ( k  is the angle between the target 

and the positive x-axis with the positive counterclockwise direction) and 
k
  denote the 

change rate of k . Then, the CV can be expressed as: 

| 1 1 1 1k k k k k kw    x F x G  (1)

where  
T

,k k k x   is the system state at time step k,  
T
  denotes the matrix transposi-

tion, and 1kw   denotes the zero mean Gaussian process noise with the covariance matrix 

1kQ 
 caused by the unknown underwater environment. 

1kQ 
 is named the process noise 

covariance matrix (PNCM). 
| 1k k F  and 

kG  are the state transition matrix for CV motion 

and the noise driving matrix at time step k, which are given by: 

| 1

1

0 1k k

T


 
  
 

F  (2)

2

1

/ 2
=k

T

T


 
 
 

G  (3)

where T is the tracking interval. 

2.2. Measurement Model Based on the Received Signal of UCA 

Considering that the bearing angle of the target varies in a wide range in long-time 

tracking, the UCA is used since it is free from the port and starboard ambiguity problem. 

The configuration of the UCA and the underwater target is shown in Figure 1. 
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Figure 1. Configuration of the UCA-based measurement system. 

Consider a narrowband acoustic signal is emitted by a target. The frequency, ampli-

tude and the initial phase are f, a, and 0�. Then, we express the target signal at time step 

k as: 

    0exp 2s k j fkT    �  (4)

The emitted signal given by Equation (4) is received by the UCA with P elements at 

time step k. The P elements are uniformly placed around the circle with the radius r and 

the center at the origin of the cartesian coordinates. It is assumed that the range of the 

target satisfies the far-field condition to regard the arrived signal as a plane wave, and the 

sound velocity is c. Then, the time delay of the signal relative to the center of the UCA at 

the p-th element ( 1,2,...,p P ) is cos( 2 )k p P r c  . In addition, considering the signal 

given by Equation (4), the shift of the signal caused by the time delay at the p-th element 

is expressed as:  

Consider that a P-element UCA with radius of r received the emitted signal at time 

step k. The arrived signal is assumed to be the plane wave, and the sound velocity is de-

noted by c. Then, the array manifold at the p-th element is expressed as: 

  exp 2 cos 2p k k

r p
A j f

c P
   

  
   

  
 (5)

Thus, the received signal at the p-th element is expressed as: 

      realp p k kz k A s k v   (6)

where real( )  denotes taking real part of a complex number, 
k  denotes the bearing an-

gle of the target at time step k, and 
kv  denotes the zero mean Gaussian measurement 

noise with the variance 2
,r k  at time step k from the measurement system and the un-

known ocean environment. 

We define the received signal vector of the UCA as T
1 2[ ( ), ( ), ..., ( )]k Pz k z k z kz , the 

output of the UCA at time step k is: 

    realk k ks k z A v  (7)

where ( )kA  denotes the array manifold vector, which is given by 

 
T

1 2( ) ( ), ( ),..., ( )k k k P kA A A   A  (8)

M snapshots of the received signal are taken in a measurement. The snapshots are 

taken from a small period within every tracking interval T to guarantee that the target 

remains stationary. Then, we can express the measurement vector at tracking step k as: 
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We take M snapshots of the received signal from a small period within every tracking 

interval T in one measurement to guarantee that the target remains stationary. Then, the 

measurement vector at time step k is given as follows: 

 

 

 

  

 

    
    
    

     

real

real

2 real 2

1 real 1

k

k

k k k k k k

k

s kk

s kk

k h s k

k M s k M



 

  

  

  
  
  
          
  
  
         

Az

Az

Z z X V A V

z A

 

 (9)

where τ denotes the interval between adjacent snapshots, M T , ( )k kh x  denotes the 

nonlinear measurement function, and kV  denotes the measurement noise.  

The measurement noise of each element is assumed to be independent and identi-

cally distributed. Then, kV  at time step k is defined as a zero mean Gaussian noise with 

covariance matrix 2
,=k M P r kR I , where 2

,r k  is the variance of the measurement noise of 

each element given in Equation (6), and MPI  is the MP-order identity matrix. The meas-

urement noise covariance matrix (MNCM) 
kR  is usually assumed to be fixed in the un-

derwater tracking problem. However, in the real scenario of underwater tracking, the un-

known ocean environment can result in uncertain measurement noise, which makes the 

MNCM become fluctuant and hard to deal with by using traditional tracking methods. 

This problem seriously degrades the tracking performance. 

3. Methods 

3.1. EKF for DOA Tracking 

Since the measurement model depicted by Equation (9) has high nonlinearities, the 

extended Kalman filter (EKF) scheme is used to derived a DOA tracking algorithm in this 

section. 

From Equation (1), the one-step prediction of the state estimate 
| 1

ˆ
k k x  is depicted as: 

| 1 | 1 1
ˆ ˆ
k k k k k  x F x

 (10)

where 
| 1k k F  is the state transition matrix given by Equation (2), and 

1
ˆ
k x  is the state es-

timate at tracking step k-1. The one-step prediction of the MSEM 
| 1k k P  is expressed as: 

| 1 | 1 1 | 1
T T

k k k k k k k kk k    F G QP P F G  (11)

where 
1k P  is the MSEM at step k-1, 

kG  is the noise driving matrix given by Equation 

(3), and 
kQ  is the covariance matrix of the process noise. 

Then, considering the UCA-based measurement model given in Equation (9), the 

Kalman filter gain 
kK  is expressed as: 

 
1

| -1 | 1
T T

k k k k k k k k k



 K P Η Η P Η R
 

(12)

where 
kΗ  is the first order Taylor expansion of the nonlinear measurement model. 

kR  

is the MNCM. According to Equation (9), 
kΗ  can be calculated as: 

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,

0 0 0 0 0 0 0 0 0

T

P P M M P M

k

h h h h h h h h h         
  
 

Η
   

   
 (13)

The elements of the matrix 
,p mh  ( 1,2,...,p P , 1,2,...,m M ) are given by [44]: 
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     , | 1 | 1
ˆ ˆ ˆ2 sin 2 real 1p m k k p k k

r p
h f jA s k m

c P
     

 
      

 
 (14)

where   ˆ 1s k m    denotes the estimate of the target signal, which is given by [45]: 

         ( ) ( (
1

H H) ) ( )ˆ ˆ ˆˆ ( ) Hilberti i i i

k k k k k k k k
s k k  



 A A A z
| | | |

 (15)

where 
( )ˆ i
k k


|  is the predicted bearing angle, i.e., the first term of 
1

ˆ
k k 
x

|
,  ( )ˆ i

k k
A

|
 is obtained 

by using Equations Equations (5) and (8)  
H

  and  H ilbert   denote the conjugate 

transposition and the Hilbert transform, respectively. 

The state estimate ˆ
kx  at tracking step k is expressed as: 

  | 1 | 1
ˆ ˆ ˆ+k k k k k k kh  x x K Z x  (16)

where kZ  is the measurement of the UCA at step k. The one-step prediction of MSEM 

| 1k k P  is modified by kK , i.e.,  

  | 1k k k k k  P I K H P  (17)

where kP  denotes the MSEM at tracking step k. From Equations (10)–(17), the current 

bearing angle estimation can be calculated by the inputs of 0x̂  and 0P . 

From the above analysis, the DOA tracking process not only depends on the meas-

urements but also utilizes the target’s prior motion information. Therefore, the DOA 

tracking techniques can be robust to the target’s motion; especially, the kinematic model 

of the target is accurate. However, from Equation (12), it is obvious that the measurement 

noise 
kR  will affect the Kalman gain, which will hugely influence the final tracking pre-

cision. In addition, from Equation (10), it is obvious that the initial values of the state and 

MSEM will influence the final tracking accuracy. As a result, in the scenario of accurate 

and robust underwater DOA tracking, both the uncertain measurement noise and proper 

setting of the 0x̂  and 0P  need to be considered. 

3.2. VB-EKF for Robust DOA Tracking 

Regarding the measurement model with high nonlinearity depicted by Equation (7), 

the extended Kalman filter (EKF) technique is used for DOA tracking in this section. Fur-

thermore, considering the fluctuations of the MNCM caused by the unknown underwater 

environment, the variational Bayesian approach is utilized to improve the tracking per-

formance by estimating the MNCM. Thus, the VB-EKF for DOA tracking using the UCA 

is proposed, and the details are given as follows.  

3.2.1. Choice of Prior Distribution 

In the framework of the standard EKF [5], the one-step predicted probability density 

distribution (PDF) 
1: 1( )|k kp x z  and the likelihood PDF ( )k kp z x|  are assumed to be sub-

ject to Gaussian distributions as follows: 

   1: 1 1 1 1
, N ˆ; ,k k kk k k k k k

p    
x z P x x P

| | |
|  (18)

    , N ; ,k k k k k kp z x R z h x R|  (19)

where N(  ; , ) Σ  denotes the PDF of the Gaussian distribution with mean μ and covar-

iance matrix Σ, and ( )kh x  is the nonlinear measurement function given by Equation (7). 



Remote Sens. 2023, 15, 420 8 of 27 
 

 

1
ˆ
k k 
x

|
 and 

1k k 
P

|
 denote the one-step prediction of state and MSEM, respectively, which 

are given by Equations (10) and (11). 

In order to infer 
kx  along with 

kR , a conjugate prior distribution needs to be se-

lected for the fluctuant MNCM kR  since a conjugate distribution can guarantee the same 

functional forms of the prior distribution and the posterior distribution. In the Bayesian 

theory, inverse Wishart distribution is usually used as the conjugate prior to the covari-

ance matrix of a Gaussian distribution with known mean [6]. Since kR  is the covariance 

matrix of Gaussian distribution, the prior distribution 
1: 1( )k kp R z|  is selected as an in-

verse Wishart distribution given by: 

   1: 1 | 1 | 1IW ; ˆ,ˆ
k k k k k k kp u  R z R U|  (20)

where IW(  ; , ) Ψ  denotes the PDF of the inverse Wishart distribution with degree of 

freedom (dof) λ and inverse scale matrix Ψ [3], | 1
ˆ
k ku   and 

| 1
ˆ
kkU  are the dof and the in-

verse scale matrix of 
1: 1( )k kp R z| , respectively. 

The posterior distribution 
1 1: 1( )k kp  R z|  is also subject to an inverse Wishart distri-

bution as follows: 

   1 1: 1 1 1| 1 1| 1IW ; , ˆˆ
k k k k k k kp u      R z R U|  (21)

To guarantee that 
1: 1( )k kp R z|  is the inverse Wishart distribution given by Equation 

Error! Reference source not found., the previous approximate posteriors is spread 

through a forgetting factor  0,1  , which indicates the extent of the time-fluctuations of 

the MNCM. Then, the prior dof | 1
ˆ
k ku   and the prior inverse scale matrix 

| 1
ˆ
kkU  are given 

as follows: 

 1 1 1 1 1ˆ ˆ
k k k ku u n n      ∣ ∣

 (22)

1 1 1
ˆ ˆ
k k k k  U U∣ ∣

 (23)

where n denotes the order of the MNCM kR . 

3.2.2. Variational Approximations of Posterior PDFs 

According to the variational Bayesian approximation, the joint posterior PDF of the 

state 
kx  and the MNCM 

kR  is approximated to 

     1:,k k k k kp q qx R z x R∣  (24)

where ( )kq x  and ( )kq R  are the approximate posterior PDF of 
kx  and

kR , respec-

tively. The variational Bayesian approximation is formed by minimizing the Kullback–

Leibler divergence (KLD) between the true joint distribution 
1:( , )k k kp x R z∣  and the ap-

proximate distribution ( ) ( )k kq qx R , i.e., 

           1:, argminKLD ,k k k k k k kq q q q px R x R x R z ∣  (25)

where KLD( ( ) ( ))q x p x  denotes the KLD between ( )q x  and ( )p x , and 

    
( )

KLD ( ) log
( )

q x
q x p x q x dx

p x
   (26)
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The optimal solution of Equation Error! Reference source not found. satisfies the 

following Equations [4]: 

 1:log ( ) E log , ,
kk k k kq p c   R xx x R z  (27)

 1:log ( ) E log , ,
kk k k kq p c   x RR x R z  (28)

where E [ ]
k
x  and E [ ]

k
R  denote the expectation with regard to 

kx  and 
kR , respec-

tively, and c x  and c R  denote the constants with respect to 
kx  and 

kR , respectively. 

Since the variational parameters of ( )kq x  and ( )kq R  are coupled, a fix-point iteration 

process is applied to solve Equations (27) and (28), i.e., the approximate posterior PFD 

( )kq x  is updated to  1
( )

i

kq


x  at the 1i  -th iteration using the posterior PDF   ( )
i

kq R

, and ( )kq R  is updated to  1
( )

i

kq


R  using the posterior   ( )
i

kq x . 

According to Equations (18)–(20), the joint PDF is expressed as 

 

       

        

1:

1: 1 1: 1 1: 1

| 1 | 1 1: 11 1

, ,

,

N ; , N ; , IW ; , ˆˆ ˆ

k k k

k k k k k k k k

k k k k k k k k k kk k k k

p

p p p p

h u p

  

   



 

x R z

z x R x z R z z

z x R x x P R U z
| |

| | |  (29)

(1) Update of kx  

The posterior ( 1 )
1: 1( | )i

k kq 
x z  is updated according to Equations (12), (16) and (17) 

as: 

   ( 1) ( 1) ( 1)
1: 1 | |

ˆˆN ; ,|i i i
k k k k k k kq   

 x z x x P  (30)

where the mean vector ( 1 )
|

ˆ i
k k

x  and the covariance matrix ( 1)
|

ˆ i
k k
P  are given as follows: 

    ( ) ( ) (
1T T( 1 )) ( )

1 1
ˆi ii i

k k k k kk k k

i

k




 
 K P H H P H R

| |
 (31)

  ( 1) ( 1)

1 1
ˆ ˆ ˆi i

k kk k k k k k
z h 

 
  x x K x

| | |
 (32)

( 1 ) ( 1 )

1

( )

1

ii i
k kk k k k k k

 

 
 P P K H P

| | |
 (33)

where ( )i
kH  denotes the Jacobian matrix of the measurement function. ( )i

kH  is obtained 

by substituting ( )ˆ i

k k
x

|
 into 

kH  given by Equation (33). 

Based on the new estimated state ( )
|

ˆ i
k kx  and MSEM ( )

|
i

k kP , a more accurate approx-

imation of ( )kh x  can be obtain by performing linearization with ( )
|

ˆ i
k kx  [6], i.e., 

     ( ) ( ) ( )
| |

ˆ ˆi i i
k k k k k k k  h x h x H x x  (34)

The estimate of the signal ( )ˆ ( )i

k k
s k

|
 is also used instead of the real one to calculate the 

measurement function ( )( )ˆ i

k k
h x

|
 by using Equation (7). Thus, Equation (32) is upgraded to 

    ( 1) ( 1) ( ) ( )

1

( )

1
ˆ ˆ ˆ ˆ ˆi i i i

k k kk k k k k k k k k k

iz h 

 
    x x K x H x x

| | | | |
 (35)

(2) Update of kR  

According to Equations (18)–(20),  lo g ( )
i

kq R  is given by 
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 

         

    

( 1)

T1 1

1 1

( ) 1

1 1

 log

0.5 2 log 0.5tr 0.5ˆ

0.5 2 log 0.5t ˆˆ r

ˆ

i
k

k k k k k k kk k k k

i
k k kk k k k

u c

c

q

n

n u



 

 



 

       

     





R

R

R

R U R z h x R z h x

R B U R

| |

| |

 (36)

where 

       
T( ) Ei

k k k k k

i  
 

 B z h x z h x  (37)

Similar to Equation (34),  kh x  is linearized as 

     ( 1) ( 1) ( 1)
| |

ˆ ˆi i i
k k k k k k k

    h x h x H x x  (38)

where ( 1 )i
k

H  denotes the Jacobian matrix of the measurement function ( )kh x  at ( 1 )
|

ˆ i
k k

x

, and ( 1 )i
k

H  is obtained by substituting ( 1 )
|

ˆ i
k k

x  into Equation (13). Substituting Equation 

(38) into Equation (37), we obtain: 

       

           

           

     

( )

T

T
( ) ( ) ( ) ( ) ( ) ( )
| | | |

T T( ) ( ) ( ) ( ) ( ) T
| | | |

T
( ) ( ) ( ) ( )
| | |

E

ˆ ˆ ˆ ˆ

ˆ ˆ

 

E

ˆ

E ˆ ˆ

ˆ

i
k

k k k k

i i i i i i
k k k k k k k k k k k k k k

i i i i i
k k

k

i

i

k k k k k k k k k k k k

i i i i
k k k

i

k k k k k k

  

      


  



    


 






 

  

B

z h x z h x

z h x H x x z h x H x x

z h x z h x H x x x x H

z h x z h x H P H T

 (39)

From Equation (36), ( 1 ) ( )i
kq  R  is updated as 

   ( 1) ( 1) ( 1)IW ; , ˆˆi i i
k k k kq u  R R U  (40)

where the dof ( 1 )ˆ i
ku

  and the inverse scale matrix ( 1 )ˆ i
k

U  are given as follows: 

( 1 )

1
1ˆ ˆi

k k k
u u


 

∣
 (41)

( 1 ) ( )

1
ˆ ˆi i
k k k k




 U B U

∣
 (42)

Then, according to Equation (29),  lo g ( )
i

kq x  is given by: 

       

   

T( 1) ( 1) 1

T 1
| 1 | 1 | 1

 log 0.5 E  

ˆ ˆ 0.5

i i
k k k k k k

k k k k k k k k

q

c

  


  

  



   

   x

x z h x R z h x

x x P x x
 (43)

where ( 1) 1[ ]E i
k

 R  is given by: 

  
1

( 1) 1 ( 1) ( 1)E 1 ˆˆi i i
k k ku m


        R U  (44)

The modified one step predicted PDF  ( 1 ) |i
k kp  z x  at the I + 1th iteration is defined 

as: 

   ( 1) ( 1)N ; , ˆ|i i
k k k k k kp  z x z H x R  (45)

where the modified MNCM ( 1 )ˆ i
k

R  are formulated as: 
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   
1

( 1) ( 1) 1 ( 1) ( 1)ˆ 1E ˆ ˆi i i i
k k k ku m


         R R U  (46)

Finally, after N fixed-point iterations, the variational approximations of the posterior 

PDFs are given as follows: 

       ( ) ( ) ( )N ; , N ˆ; ,ˆN N N
k k k kk k k k k k k k

q q  x x x x P x x P
| | | |

 (47)

       ( ) ( ) ( )IW ; , Iˆ W ; , ˆˆ ˆN N N
k k k k k k k k k kq q u u  R R R U R U∣ ∣

 (48)

Combining the EKF depicted by Equations (10)–(17) and the VB estimating technique, 

the state can be robustly estimated under uncertain measurement noise.  

3.3. AI-VBEKF for Robust DOA Tracking 

Considering the high nonlinearities of the measurement model by Equation (7), the 

initial values will affect the tracking results. Since the EKF is based on the Taylor series 

expansion to linearize the nonlinear system model, the truncation error will become un-

acceptable if the error between the initial guess of the state and its real value is quite large. 

In addition, if the initial MSEM cannot be set properly, the DOA tracking results will be 

in low accuracy or even diverged. In the real underwater DOA tracking scenario, the ini-

tial DOA of the target can be obtained by traditional DOA estimation methods (i.e., CBF, 

MVDR, MUSIC, et.al.), but the initial MSEM cannot be determined since the initial error 

between the real state and the estimated one is unknown. If the initial MSEM is set too 

small, the DOA tracking algorithm will converge very slowly or cannot converge at all. 

On the contrary, if the initial MSEM is set too large, the DOA tracking process will be soon 

diverged since the Kalman gain will become uncontrolled during the measurement up-

date steps for nonlinear tracking systems. As a result, a proper preset initial MSEM not 

only affects the final DOA tracking accuracy but also determines the convergence of the 

total tracking procedure. However, in the real DOA tracking scenario, the initial MSEM 

can only be set by engineering experience. To solve this problem and deal with the uncer-

tain measurement noise, an AI-aided robust DOA tracking algorithm is proposed in this 

subsection. 

In order to minimalize the final DOA tracking error caused by the inaccurate initial 

guess of the MSEM, an AI-aided robust DOA tracking algorithm is proposed by this sub-

section. Firstly, considering that the different initial state guesses will lead to different 

theoretical measurement calculations by the measurement model, the error between the 

real measurements and the theoretical ones contains the information of the error of the 

initial guess of the MSEM between its true value. Thus, based on the difference between 

the theoretical measurement calculations and the real measurements, the initial MSEM 

can be estimated via deep learning techniques. By utilizing the covariance matrix of the 

difference between the theoretical measurement calculations and the real measurements 

from all bearing angles with different initial errors as inputs, an attention-based deep con-

volutional neural network is proposed by this subsection to output reliable initial MSEM. 

Then, utilizing the estimated MSEM as the input of the VB-EKF, the AI-VBEKF for a robust 

DOA tracking algorithm is finally carried out in this subsection. 

3.3.1. Input Data Processing 

Supposing the initial state is selected as: 

 
T

0 0 0,  x  (49)

Using the measurement model depicted by Equation (9), the error between the theo-

retical measurement and the real measurement can be presented as:  



Remote Sens. 2023, 15, 420 12 of 27 
 

 

 

 

 

 

  

    
    
    

     

0

0

0

0

real 00

real

2 real 2

1 real 1

k k

s

s

s

M s M



 

  

  

  
  
  
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  
       



 

0 0

Az

Az

Z Z h x z A

z A

 (50)

Using Equation (50), the quadratic form of the error between the theoretical meas-

urement and the real measurement can be presented as: 

k

T
kVe ZZ   (51)

where Ve  is a matrix with the dimension of MP MP . 

From Equation (7), it can be found that the real measurement has a strong relation-

ship with the real DOA angle of the target and its angular velocity. When the value of the 

real state changes, the measurement will also change. In addition, the estimated state in-

fluences the value of the theoretical measurement computed by the measurement model. 

Thus, the computed Ve  has the information of the difference of the real values of the state 

and its estimated values. From the view of data-driven techniques, Ve  can be utilized to 

output this error and can make good estimation of the guess of the initial MSEM. 

In addition, from Equation (51), it is obvious that the size of Ve  depends on the num-

ber of the snapshots in one measurement time interval. In order to make reliable DOA 

estimations and DOA tracking, the value of M is usually set high during one measurement 

updating step (i.e., the same as the sampling rate of the sonar system). As a result, the size 

of Ve  is usually large, and the nonlinear relationship between the real guess of the initial 

MSEM and its real values is hard to be dug out by shallow BP neural networks. In order 

to make sufficient utilization of the data resources obtained by the sonar system and make 

reliable estimations of the guess of the initial MSEM, an attention-based DCNN is pro-

posed in the following subsection. 

3.3.2. Attention-Based Deep Convolutional Neural Network 

As mentioned in Section 3.3.1, since the traditional BP neural networks have limited 

ability in dealing with a large matrix and the computed Ve  has the form of a symmetric 

matrix such as an image, an attention-based DCNN is proposed by this subsection. 

Among the latest DCNNs, the attention-based DCNN is the most popular one and has 

been utilized in a number of target classification, localization, and tracking missions. Un-

like the basic DCNN that cannot be developed very deep and the Resnet that cannot give 

different features different weights, which make the overall performance degrade, the at-

tention-based DCNN not only utilizes the advantages of the Resnet to make the DCNN 

much deeper than the traditional ones, but also develops the attention scheme that values 

different features with different weights to make the DCNN have better tracking perfor-

mance. The basic structure of the attention-based DCNN is shown in Figure 2 [35]. 
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Figure 2. The basic structure of the attention-based DCNN [35]. 

From Figure 2 [35], the main difference between the attention-based DCNN and the 

other DCNNs is the “squeeze and excitation” block. For any given data with the dimen-

sion ' ' 'C W H  , firstly a transformation mapping trF is operated to generate the fea-

ture maps U, which can be depicted as: 

: , ,H W C H W C
tr

      F X UX U   (52)

From Equation (52), it is obvious that the trFoperation has no difference with other 

DCNNS (i.e., trF is the traditional DCNN or Resnet). As a result, the attention-based 

DCNNs can be fitted into any existing DCNNs to enhance their performance.  

After the trFmapping operation, the “squeeze and excitation” block can operate. 

Firstly, the feature maps U is operated via a squeeze process that aims to compress the 

information of the feature maps into a one-dimensional vector. By operating in this way, 

the compressed feature of every channel of the feature maps U is generated. The squeeze 

operation can be depicted as the following equation: 

 
111

( , )
ji

sq c c
H W

u i j
H W



  


cz F u  (53)

where cu  is the c-th channel of the feature maps U, and sqF  is the squeeze operation. 

From Equation (53), it can be found that the squeeze operation operates on every 

feature map with the dimension of H W . After the squeeze operation, every feature 

map of U turns to a real number so that the information is maximally compressed. Then, 

the excitation operation is processed to calculate the weights of every feature map. The 

excitation operation aims to fully capture the channel-wise dependencies of the input fea-

ture maps U. By utilizing full connection layers and the ReLU activation function, the 

nonlinear mapping process made by the excitation operation can be depicted as: 

  2 1( , ) ( ( , ))ex g    c c cs F z W z W W Wz  (54)

where s is the output of the excitation operation, exF  is the excitation operation, 1W  

is the first fully connected (FC) layer that can be regarded as a nonlinear operation to 

extract the inner information of the input cz ,     is the ReLU activating function, 

2W  is the second FC layer, and     is a typical activating function that can be se-

lected as a sigmoid function in general. 

From Equation (54), after the excitation operation, the inner relationships between 

every feature map in U can be represented by s. Thus, s is the core of the attention-

based DCNN, for it depicts the weights of every feature inside the whole feature maps U 
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shown by Equation (52). As long as s is obtained, the weights vector of every feature 

map is known. As a result, the final output of the attention-based DCNN can be repre-

sented as: 

 scale ,c c c c cs s  x F u u  (55)

where scaleF is the final scaling operation that refers to the channel-wise multiplication 

between the c-th element of the output of the excitation operation and the c-th feature 

map of U. It is obvious from Equation (52) and Equation (55) that the original feature maps 

U is weighted by the “squeeze and excitation” block. This weighting mechanism is similar 

to paying attention to different features such that the whole deep learning technique is 

called the attention-based DCNN. 

From Equation (52) and the above statements, the first mapping operation trFcan be 

any type of DCNN technique. As the Resnet has proven its superior performance in un-

derwater target localization missions [38], the trF is selected as the residual model [38] and 

the attention-based DCNN blocks combined with the residual model can be shown as the 

following block as shown in Figure 3: 

 

Figure 3. The structure of the attention-based DCNN blocks combined with the residual model [35] 

Equations (52)–(55) represent the whole theoretical derivations of the attention-based 

DCNN. In addition, since this DCNN is mainly based on the “squeeze and excitation” 

block, the mentioned attention-based DCNN is also called the Senet. Here, substitute 

Equation (51) into Equation (52), and change the initial input X  to Ve . The Senet can 

then be directly utilized to analyze the inner nonlinear relationship between the real val-

ues of the state and its estimated values. 
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3.3.3. Design of the AI-VBEKF 

From Equation (9), if the measurement noise varies for the same initial error between 

the initial guess of the state and its real value, Ve  computed by Equation (51) will change 

by different 
kR . Supposing the number of varying covariance matrix of 

kR is 'H  and 

the measurement kZ has snapshots with the number of M, Ve will have the dimensions 

of 'H M M  . Then, substituting Equation (51) into Equation (52) and changing the 

initial input X  to Ve  with 'H covariance matrix of the measurement noise and M 

snapshots, Equation (52) can be represented as: 

: , ,H M M H W C
tr

     V VF e Ue U   (56)

In addition, if the transformation mapping trF is chosen as the residual model, and 

the following steps are the same as the aforementioned ones (Equations (53)–(55)), the 

attention-based DCNN combined with the residual model can be proposed. By using Ve
with different kR  as inputs and the differences between the initial guess of the state and 

its real value as outputs, the attention-based DCNN for the initial guess of the error of the 

covariance matrix of the states can be proposed as in Table 1. 

Table 1. The attention-based DCNN for estimation of the guess of the initial MSEM. 

Layer Name [Kernel Size, Filters] No. of Blocks 

SE-Comv1 [5 5, 64] 1   

SE-Conv2 

 

1 1 64

3 3 64
3

1 1 256

16,256full connection

 
  
 
 
 

 

SE-Conv3 

 

1 1 128

3 3 128
4

1 1 512

32,512full connection

 
   
 
 
 

 

SE-Conv4 

 

1 1 256

3 3 256
6

1 1 1024

64,1024full connection

 
  
 
 
 

 

SE-Conv5 

 

1 1 512

3 3 512
3

1 1 2048

128, 2048full connection

 
  
 
 
 

 

SE-Global Global average pool, fully-connected layer with ReLU 

Then, by combining the proposed attention-based DCNN, the EKF DOA tracking 

scheme and the VB robust estimating technique, the AI-VBEKF, which has the abilities of 
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estimating the guess of the initial MSEM and performing robust DOA tracking, can be 

depicted as Algorithm 1. 

 

3.3.4. Performance Metrics 

In the underwater target DOA tracking scenario, the angular velocity of the target is 

quite small, for the target usually moves at a relatively far distance from the observer. To 

obtain the accurate initial MNCM of the target, only the difference between the real initial 

angle and its estimation will be determined by the attention-based DCNN. According to 

the goal of the estimation of the initial guess of the error of the covariance matrix of the 

states, the metrics for quantifying the performance of the proposed attention-based 

DCNN can be described as: 

0 0

,
1 0

1 N

acc
i

E
N



 




   (57)

where 0  is the estimated initial guess of the DOA angle, and 0  is the real initial val-

ues of the DOA angle and its angular velocity. N  is the total number of the training 

data. 

  

Algorithm 1: AI-VBEKF 

Input 0x . 

Calculate 
k
Z as Equation (50). 

Calculate Ve  as Equation (51). 

Initial MSEM 
0P  estimation by attention-based DCNN.  

Inputs: 
1 1

ˆ
k k 
x

|
, 

1 1k k 
P

|
, 

kz , 
1 1

ˆ
k k
u

 |
, 

1 1
ˆ
k k 

U
|

, 
1kQ 

, ρ, N. 

Time update 

| 11 1 1
ˆ ˆ

k kk k k k  
x F x

| |
. 

T T
| 1 | 1 | 1 1 1 11 1k k k k k k k k kk k      

 P F P F G Q G
|

. 

1 1 1
( 1) 1ˆ ˆ

k k k k
u u n n

  
    

∣ |
,

| 1 1| 1
ˆ ˆ
k k k k  U U . 

Iteration measurement update 

Initialization: ( 0 )

1
ˆ ˆ
k k k k 

x x
| |

, ( 0 )
| 1 | 1

ˆ ˆ/ˆ
k k k k ku R U . 

For 0: 1i N   

Update ( 1) ( 1) ( 1)N ( ; , )( )i i i
k k k k k k

q   x x x P
| |

 

( )( )ˆ i

k k
h x

|
 is calculated by Equation (7), ( )

k
iH  is calculated by Equation (13). 

( 1) T T ( ) 1(( )

1

) ( )

1
ˆ( ) ( )( )i i ii i

k k k k kk k k k

 

 
 K P H H P H R

| |
, 

( 1) ( 1) ( ) ( )

1 1

( )ˆ ˆ ˆ ˆ ˆ( ( ))( )i i i i
k k kk k k k k k k k

i

k k
z h 

 
    x x K x H x x

| | | | |
, 

( 1) ( 1)

1

( )

1

ii i
k kk k k k k k

 

 
 P P K H P

| | |
. 

Update ( 1) ( 1) ( 1 )
| |IW ( ; , )ˆˆ( )i i i

k k k k k kq u  R R U  

( 1)( )ˆ i

k k
h x

|
 is calculated by Equation (7), ( 1)

k
i H  is calculated by Equation (13). 

( 1) ( 1) ( 1) T ( 1) ( 1) T( 1)( )(ˆ ˆ( ) ( ) )) (i i i i
k k k k kk k k k k k

i ihz z h      B x x H P H
| | |

, 

( 1) ( 1)

1
ˆ ˆi i

kk k k k

 


 U U B

| |
, ( 1)

| | 1 1ˆ ˆi
k k k ku u

  , 

( 1) ( 1) ( 1)ˆ ˆ ˆ/i i i
k k k k k

u  R U
| |

. 

End for 
( )

| |
ˆ ˆ N
k k k kx x , ( )

| |
N

k k k kP P , ( )
| |

ˆ ˆ N
k k k ku u , ( )

| |
ˆ ˆ N
k k k kU U . 

Outputs: 
|

ˆ
k kx , 

|k kP , 
|

ˆ
k ku , 

|
ˆ
k kU . 
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4. Results and Discussions 

4.1. Simulations 

4.1.1. Simulation Scenario and Data Set Generation of the Attention-Based DCNN 

An underwater target is assumed to perform in CV motion mode. The initial state 

0x  is set to [270, −0.03], and process noise covariance matrix 1k Q  is set to 4 22 10 s  . 

The total simulation time is 5000 s with a 1 s interval. The frequency f, amplitude a and 

the initial phase 0  of the target signal are set to 170 Hz, 1 and 0 rad, respectively. The 

underwater sound velocity c is assumed to be 1500 m/s. A UCA with 12 elements is used 

to obtain the measurements. The sample frequency of the array signal is 1000 Hz. 

The MNCM kR  is set to 2
MP rI , where 2

r  is set as 20 to simulate a low SNR track-

ing scenario. The uncertainties of the MNCM appear from 3600 to 4000 s to test the ro-

bustness of the VB-EKF to the uncertain measurement noise caused by the unknown un-

derwater environment. Then, kR  is expressed as: 

2

2

       0 3600,4000 5000

10    3600 4000

MP r

k

MP r

k k

k





    
 

 

I
R

I
 (58)

The proposed AI-VBEKF for DOA tracking given by Algorithm 1 is tested by the 

simulated measurement data. The EKF, the SH-EKF for DOA tracking [44] are also tested 

for comparison. In addition, to illustrate the superior performance of the proposed AI-

VBEKF, kP  is initialized to different initial guesses as  5
0 d ia g [ 2 5 ,1 0 ]P , 

 5
0 d ia g [5 0 ,1 0 ]P , and  5

0 d iag [1 0 0 ,1 0 ]P . The process noise covariance matrix kQ  

for EKF, SH-EKF and VB-EKF is set to the true value. The MNCM of EKF is set to a con-

stant 
MPI . The initial estimate of the MNCM and the forgetting factor b are set to 

MPI  and 

0.9 for the SH-EKF. The dof 0û , the inverse scale matrix 
0Û  of the inverse Wishart dis-

tribution and the forgetting factor ρ for VB-EKF are set to 16, 16 MPI , and 0.9995, respec-

tively. 

To numerically compare the tracking precision of the above methods, the bearing 

angle estimation error (BEE) is defined as a performance metrics, which is given as fol-

lows: 

  ˆ
k kBEE k   

 
(59)

where ˆ
k  is the bearing angle estimate at step k, and k  is the real bearing angle. 

Furthermore, 500 Monte Carlo simulations are performed to statistically evaluate the 

performance of the VB-EKF. The root mean square error (RMSE) for DOA tracking results 

at time step k is defined as 

 
2

,
1

1 ˆRMSE
N

k n k
nN

  


   (60)

where N is the number of the Monte Carlo trials, 
,

ˆ
k n  is the estimate of bearing angle in 

the n-th trail. The average RMSE of the bearing angle estimate in total time is defined as: 

 
2_________

,
1 1

1 ˆ
K N

k n k
k n

RMSE
KN

  
 

   (61)

where K is the total number of tracking steps. A smaller RMSE represents a higher preci-

sion of the DOA tracking. 
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4.1.2. Data Set Generation and Training of the Attention-Based DCNN 

The training data for the attention-based DCNN for initial MSEM estimations are 

generated as the following steps: 

Firstly, 0  of the initial state 0x  is set as  0 0 360  ， deg with intervals of 1 deg.  

In addition, the offset of the initial guess of 0  is set as:  0 0 20  ，  deg with 

the interval of 0.1 deg. 

Then, the MNCM 
kR  is set as: 2

,=k M P r k R I , where the parameter   is set as 

 1,2  with the interval of 0.1 to generate different measurement noise. 

Finally, assuming that a UCA has 12 elements and the number of snapshots in one 

measurement is set as 12, by utilizing the different generated 0 along with 
kR  and us-

ing Equations (4)–(9), (50) and (51), the data set for training and testing can be generated. 

From the above data-generating methods, the dimension of every input data of the 

attention-based DCNN is 144 144 , and the total number of data are 1,440,000. 

By utilizing the generated training data and the proposed attention-based DCNN 

depicted by Table 1, the proposed attention-based DCNN can be properly trained, and 

the averaged cross entropy loss for the training process is shown in Figure 4. 

 

Figure 4. The cross-entropy loss of the attention-based DCNN on generated data sets. 

4.1.3. Simulation Results 

The DOA tracking results of the EKF, SH-EKF and AI-VBEKF are shown in Figure 5, 

and Table 1 shows the average RMSEs. Since the CBF is only a DOA estimation technique, 

we merely compared different DOA tracking algorithms in the simulation section to show 

the robustness and accuracy of the proposed AI-VBEKF. When the initial MSEM is set 

properly (  5
0 diag [25,10 ]P ), all of the DOA tracking techniques can output acceptable 

DOA tracking results. The trajectory obtained by the EKF, SH-EKF, and AI-VBEKF fluc-

tuated in the beginning. After about 1000 s, the algorithms converged, and then, the track-

ing stabilized. The reason is that the error in the initial state estimate and MSEM affect the 

performance at the beginning of the tracking. The error was gradually eliminated by the 

correction of the new measurements after a certain period. When the uncertainties of the 

measurement noise appear, the DOA estimation accuracy of the EKF degrades. However, 

by utilizing the prior information of the kinematics model of the underwater target, the 

DOA tracking results by the EKF are still within a certain threshold (see in Figure 5b).  
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Since the SH-EKF estimates the MNCM in real time by using the Sage–Husa algo-

rithm to provide accurate Kalman filter gain, the precision of SH-EKF is higher than EKF. 

By giving the prior distribution of MNCM, the AI-VBEKF uses the VB iteration method to 

jointly estimate the MNCM and the target state, which provides a more accurate estima-

tion of the MNCM. Thus, the AI-VBEKF provides the most high-precision tracking trajec-

tory. Therefore, by utilizing the online measurement noise covariance estimating tech-

niques, the SH-EKF and AI-VBEKF can achieve much higher DOA tracking accuracy.  

From the RMSE results (  5
0 d ia g [ 2 5 ,1 0 ]P ) shown by Table 2, similar to the conclu-

sion above, the EKF, SH-EKF and AI-VBEKF converged after a period, and SH-EKF and 

AI-VBEKF can provide high-precision tracking even with the uncertain measurement 

noise. The AI-VBEKF can achieve the highest DOA tracking results so that the superior 

performance of the proposed AI-VBEKF is verified again. 
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Figure 5. Simulation results of EKF, SH-EKF and AI-VBEKF. (a) Trajectories tracking results under 

 5
0 diag [25,10 ]P , (b) BEEs obtained under  5

0 diag [25,10 ]P , (c) trajectories tracking re-

sults under  5
0 diag [50,10 ]P , (d) BEEs obtained under  5

0 diag [50,10 ]P , (e) trajectories 

tracking results under  5
0 diag [100,10 ]P , and (f) BEEs obtained under  5

0 diag [100,10 ]P  

Table 2. The average RMSEs of EKF, SH-EKF and VB-EKF. 

 0P  EKF SH-EKF VB-AEKF 

RM SE 
 (°) 

 5
0 d ia g [ 2 5 ,1 0 ]P  7.4 2.8 2.7 

 5
0 d ia g [5 0 ,1 0 ]P  13.2 7.4 2.7 

 5
0 d iag [1 0 0 ,1 0 ]P  61.7 7.3 2.7 

Figure 5c,f and Table 2 (  5
0 d ia g [5 0 ,1 0 ]P ,  5

0 d iag [1 0 0 ,1 0 ]P ) give the DOA track-

ing results under different initial MSEMs. From the DOA tracking results, it is obvious 

that the properly set initial MSEM can strongly affect the overall DOA tracking results. By 

utilizing the attention-based DCNN to estimate the initial MSEM before operating the 

DOA tracking procedure, the AI-VBEKF can achieve good tracking accuracy and robust-

ness. However, without properly setting the initial MSEM, the DOA tracking results of 

the SH-EKF and EKF degrade, especially for the case that the initial MSEM is largely de-

viated from its proper values (  5
0 d iag [1 0 0 ,1 0 ]P ). 

4.2. Experimental Scenario 

4.2.1. Experimental Scenario 

We used the data from an acoustic experiment in the South China Sea in July 2021 to 

verify the performance of the proposed method. A ship with an acoustic signal emission 

system kept moving and emitting an acoustic signal at 170 Hz for 7500 s with a source 

level of 145 dB during the experimental procedure. 

Figure 6a shows the underwater buoy system used in the experiment, which was 

placed 20 m under the sea surface. A 12-element uniform circular hydrophone array with 

a radius of 1 m was fixed on this underwater buoy along with a digital acquisition system. 

As shown in Figure 6b, a compass system (the rectangle) was fixed on the underwater buoy 

in order to measure the bearing of hydrophone 1 to offset the rotation angle of the buoy φ 

(measured clockwise wrt north). The digital acquisition system sampled the array signal 

at a frequency of 8192 Hz during the acoustic signal emission. A CTD profiler was used 

to measure the sound velocity to be constant at 1544 m/s at a depth from 0 to 20 m. 

 

Compass 
system

North

East

#1 Hydrophone

#2 #3 

#4 

#5 

#6 

#7 

#8 #9 

#10 

#11 

#12 
φ

 
(a) (b) 

Figure 6. Configuration of the underwater buoy system: (a) photo of the underwater buoy system; 

(b) configuration of the UCA and the compass system. 
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In order to provide the true bearing angle of the target with regard to the circular 

hydrophone array for reference, the GPSs are used to record the locations of the acoustic 

signal emission system and the underwater buoy system. Then, the bearing angle trajec-

tory of the target was calculated clockwise with regard to north by using the GPS data. 

4.2.2. Verification of the AI-VBEKF for DOA Tracking 

The CBF-based DOA estimation [46], the EKF, SH-EKF [44] and the proposed AI-

VBEKF are tested by using the experimental data. The interval of adjacent steps was set 

to 1 s. The bearing angle of the CBF-based DOA estimation scans from 0° to 360° every 1°. 

The initial state estimates of the EKF, SH-EKF and the AI-VBEKF are both set to 
0

0
ˆˆ [ , 0]CBFX , where 0ˆ

C BF  is the estimate of bearing angle obtained by using CBF-based 

DOA estimation at k = 0. In addition, to illustrate the superior performance of the proposed 

AI-VBEKF, 
kP  is initialized to different initial guesses as  5

0 d ia g [ 2 5 ,1 0 ]P , 

 5
0 d ia g [5 0 ,1 0 ]P , and  5

0 d iag [1 0 0 ,1 0 ]P . The covariance matrix of the process noise 

kQ  is set as 410 . The MNCM was set as MPI  for the EKF. The estimation of the MNCM 

ˆ
kR  is initialized to 

MPI , and the forgetting factor b is set to 0.995 for the SH-EKF. The 

parameters 0û , 
0Û  and ρ of the AI-VBEKF are set to 16, 16 MPI  and 0.997, respectively.  

To numerically compare the tracking precision of the above methods, the bearing 

angle estimation error (BEE) and the average BEE (ABEE) are defined as the performance 

metrics, which are given as follows: 

  ˆ GPS
k kBEE k     (62)

   
2

1

1 ˆ
K

GPS
k k

k

ABEE k
K

 


   (63)

where ˆ
k  is the bearing angle estimate at step k, and 

GPS
k  is the true bearing angle ob-

tained by the GPS data. 

The trajectories obtained by the AI-VBEKF under different 0P  are shown in Figure 

7 and Table 3, which show the BEEs and the ABEEs, respectively. Figure 7 and Table 3 

also show the results of the CBF, EKF and the SH-EKF for comparison. Specifically, con-

sidering the complicated actual underwater environment, the CBF used 10 measurements 

to obtain bearing angles every 10 s for a higher precision. In order to further test the ro-

bustness of the proposed AI-VBEKF to uncertain measurement noise, a period of Gauss-

ian noise with the covariance of 2 MPI  was added to the raw measurement data from 2600 

to 3000 s, and then the methods were tested again. The results are shown in Figure 7 and 

Table 3. 

Table 3. ABEEs of different DOA tracking methods under different initial MSEMs. 

Data 
 ABEE (°) 

CBF EKF SH-EKF AI-VBEKF 

 5
0 diag [25,10 ]P  

Raw data 13.2 8.2 7.1 6.3 

With noise 20.1 12.2 7.3 6.5 

 5
0 diag [50,10 ]P  

Raw data 13.2 11.3 11.6 6.8 

With noise 20.1 12.9 11.8 7.2 

 5
0 diag [100,10 ]P  

Raw data 13.2 18.3 14.2 6.4 

With noise 20.1 18.5 14.9 6.6 
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(c) (d) 

  

(e) (f) 

Figure 7. Experimental results of CBF-based DOA estimation, EKF, SH-EKF and AI-VBEKF on raw 

data. (a) Trajectories obtained using the raw data under  5
0 diag [25,10 ]P , (b) BEEs obtained 

using the raw data under  5
0 diag [25,10 ]P , (c) trajectories obtained using the raw data under 

 5
0 diag [50,10 ]P , (d) BEEs obtained using the raw data under  5

0 diag [50,10 ]P , (e) tra-

jectories obtained using the raw data under  5
0 diag [100,10 ]P , and (f) BEEs obtained using the 

raw data under  5
0 diag [100,10 ]P . 
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Figure 7 shows that the trajectories of all methods fluctuated around the true trajec-

tory under the effect of the underwater environmental noise. Figure 7 shows that the tra-

jectories obtained by all methods using raw experimental data fluctuated around the true 

trajectory due to the effect of the underwater environmental noise. In addition, it can be 

found that the initial guess of 
0P  influences the final tracking accuracy. From Figure 7a,b, 

when 
0P  is properly set, all the DOA tracking and DOA estimation methods can output 

reliable results. The trajectory obtained by the CBF-based DOA estimation is the most 

fluctuant and provided a large error. The precision of the EKF is higher than that of the 

CBF-based DOA estimation since the EKF considers the kinematic model of the underwa-

ter target.  

The trajectory obtained by the robust DOA tracking algorithms, namely the SH-EKF 

and the AI-VBEKF, are closest to the true trajectory. The reason is that the robust DOA 

tracking algorithms provide more accurate Kalman filter gains than EKF due to the high-

precision estimation of the MNCM, which can significantly improve the precision of DOA 

tracking. In addition, it can be found that the proposed AI-VBEKF has higher DOA track-

ing accuracy compared the SH-EKF since the VB technique is more analytical, such that it 

makes a precise mathematical model of the unknown MNCM and makes it more accu-

rately estimated. In addition, the AI-VBEKF utilizes the attention-based DCNN to esti-

mate the initial MSEM, which makes the whole DOA tracking process more stable and 

accurate. However, the data-inspiring SH-EKF outputs the DOA tracking results with 

lower accuracy since the precision of the experimental data is not accurate enough such 

that the tracking window of good estimations is not sufficient. Table 3 shows the high 

precision and robustness of the AI-VBEKF. 

Figure 7c–f and Table 3 illustrate the DOA tracking results under different 0P . It can 

be found that the tracking results of the EKF and SH-EKF degrade when 
0P is not set 

properly. As analyzed in Section 3.3, the high nonlinearities and complexed underwater 

environment make the unproperly set 
0P  seriously influence the DOA tracking result. 

However, since the proposed AI-VBEKF does not rely on the preset 
0P , its DOA tracking 

accuracy only has slight changes with different initial MSEMs. As a result, the proposed 

AI-VBEKF is robust to the initial MSEMs and has the highest tracking accuracy. 

Figure 8a–f and Table 3 give the results obtained by using the data with added noise. 

Similar conclusions can be made as the above. Furthermore, the AI-VBEKF kept robust 

tracking even during the existence of the added noise under different initial MSEMs, while 

the performance of the SH-EKF, EKF and the CBF-based DOA estimation obviously de-

graded when the noise was added or the initial MSEMs were not properly set. 

  



Remote Sens. 2023, 15, 420 24 of 27 
 

 

  

(a) (b) 

  

(c) (d) 
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Figure 8. Experimental results of CBF-based DOA estimation, EKF, SH-EKF and AI-VBEKF on data 

with noise. (a) Trajectories obtained using the data with added noise under  5
0 diag [25,10 ]P , 

(b) BEEs obtained using the data with added noise under  5
0 diag [25,10 ]P , (c) trajectories ob-

tained using the data with added noise under  5
0 diag [50,10 ]P , (d) BEEs obtained using the 

data with added noise under  5
0 diag [50,10 ]P , (e) trajectories obtained using the data with 

added noise under  5
0 diag [100,10 ]P , and (f) BEEs obtained using the data with added noise 

under  5
0 diag [100,10 ]P . 
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5. Conclusions 

An AI-VBEKF robust DOA tracking method was proposed and verified. The theoret-

ical derivations were comprehensively given, and the performances were proven by sim-

ulations and the real sea trial data. It can be found in the experiment results that the pro-

posed attention-based DCNN can make good estimation of the initial MSEM after being 

well trained by the training data with different initial angles, initial errors, and covariance 

matrix of the measurement noise. Based on the experimental results, the proposed AI-

VBEKF can not only have more accurate estimation results, but it is also robust to the 

uncertain underwater disturbance and the initial guesses of the MSEMs. From the overall 

consideration of accuracy and robustness, the proposed AI-VBEKF can be considered as 

an alternative underwater DOA tracking algorithm, especially when the underwater en-

vironment is uncertain and the initial MSEM cannot be determined properly. 
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