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Abstract: Urban agglomerations, such as Beijing-Tianjin-Hebei Region, Yangtze River Delta and Pearl
River Delta, are the key regions for energy conservation, carbon emission reduction and low-carbon
development in China. However, spatiotemporal patterns of CO2 emissions at fine scale in these
major urban agglomerations are not well documented. In this study, a back propagation neural
network based on genetic algorithm optimization (GABP) coupled with NPP/VIIRS nighttime light
datasets was established to estimate the CO2 emissions of China’s three major urban agglomerations
at 500 m resolution from 2014 to 2019. The results showed that spatial patterns of CO2 emissions
presented three-core distribution in the Beijing-Tianjin-Hebei Region, multiple-core distribution in
the Yangtze River Delta, and null-core distribution in the Pearl River Delta. Temporal patterns of CO2

emissions showed upward trends in 28.74–43.99% of the total areas while downward trends were
shown in 13.47–15.43% of the total areas in three urban agglomerations. The total amount of CO2

emissions in urban areas was largest among urban circles, followed by first-level urban circles and
second-level urban circles. The profiles of CO2 emissions along urbanization gradients featured high
peaks and wide ranges in large cities, and low peaks and narrow ranges in small cities. Population
density primarily impacted the spatial pattern of CO2 emissions among urban agglomerations,
followed by terrain slope. These findings suggested that differences in urban agglomerations should
be taken into consideration in formulating emission reduction policies.

Keywords: carbon emission; energy conservation; genetic algorithm; nighttime light data;
urban agglomerations

1. Introduction

Global cities only account for 2% of the Earth’s area, but produce more than 70% of
the world’s anthropogenic CO2 emissions [1,2]. The extent and intensity of global climate
change will be strengthened in the next few decades, according to the sixth assessment
report of the Intergovernmental Panel on Climate Change (IPCC). CO2 emissions are
increasing at an unprecedented rate due to the energy consumption related to human
activities [3–6]. The urbanization rate of China increased to 59.6% in 2018 [7]. Rising
energy consumption due to the rapid development of urbanization and industrialization
has increased China’s CO2 emissions significantly [8,9]. A study reported that China’s
35 largest cities accounted for 40% of the country’s CO2 emissions [10]. The huge amount
and rapid growth rate of CO2 emissions have made China face huge pressure to bal-
ance economic growth and sustainable development [11,12]. Therefore, exploring the
patterns of carbon emissions in urban agglomerations are crucial for formulating carbon
reduction policies.
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Satellite nighttime light information at high resolution may provide accurate estima-
tion of spatial and temporal patterns of CO2 emissions [13]. The relationships between
statistical energy consumption and nighttime light data can be obtained by a variety of
regression models [14–16]. However, the conventional regression method is not effec-
tive due to the fixed model parameters [17]. Back propagation neural networks allow a
high variance model without suffering from overfitting, which can provide more accu-
rate regression models than traditional regression models. Jasiński (2019) used artificial
neural networks to model electricity consumption based on nighttime light images [18].
Yang et al. (2020) proposed a structure-based neural network ensemble to analyze the
nonlinear relationship between nighttime light data and CO2 emissions [17]. Genetic neural
networks integrated with the satellite nighttime light data at high resolution and local
statistical CO2 emissions data may improve estimation accuracy of CO2 emissions.

Fine-scale information of national and regional scale CO2 emissions is essential for
the design of emissions mitigation policies [19–21]. Nighttime light data from satellite
information is highly associated with the footprint of human activities, and can provide
an effective proxy for estimating energy consumption and CO2 emissions [14,15]. The
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS)
data have been commonly used for the estimation of carbon emissions [16]. For example,
Doll et al. (2000) first found a strong relationship between DMSP/OLS nighttime light data
and CO2 emissions [22]. Wang and Liu (2017) utilized DMSP/OLS data from 1992 to 2013
to analyze regional inequalities and spatial agglomeration of urban CO2 emissions [23].
Shi et al. (2018) combined DMSP/OLS images and statistical energy consumption data to
explore spatiotemporal variations of CO2 emissions from urban agglomeration to national
scales [13]. Soon afterwards, the Suomi National Polar-Orbiting Partnership (NPP) Visible
Infrared Imaging Radiometer Suite (VIIRS) using nighttime light data with high spatial
resolution and wide radiometric detection proved to be better than DMSP/OLS data in
simulating CO2 emissions [24,25]. Shi et al. (2014) analyzed the correlation between
nighttime light, gross domestic product (GDP) and electric power consumption, and
found that NPP/VIIRS data were powerful tools to model socioeconomic indicators [26].
Zhao et al. (2018) modelled CO2 emissions in residential sectors at the urban scale and
found that the performance of NPP/VIIRS data in simulating residential carbon emissions
were better than DMSP/OLS data [25].

Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta are the most
populated urban agglomerations with the highest comprehensive strength in China. By
2019, the GDP of the three urban agglomerations accounted for 39.65% of the national
GDP, while their population accounted for only 23.79% of the national population. Here,
spatiotemporal variations of CO2 emissions among urban agglomerations and the profiles
of CO2 emissions along urbanization gradients were explored using NPP/VIIRS nighttime
light datasets at 500 m resolution from 2014 to 2019 based on a back propagation neural
network with genetic algorithm optimization (GABP). Our aims were to: (1) integrate
multi-source data to estimate fine-scale carbon emissions of three urban agglomerations;
(2) analyze the spatial and temporal dynamics of carbon emissions among urban agglomer-
ations and the profiles of CO2 emissions along urbanization gradients within cities; and
(3) reveal the main influencing factors of carbon emissions.

2. Materials and Methods
2.1. Study Area

Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta regions are
China’s three major economic growth poles. These urban agglomerations, located on the
eastern coast of Mainland China, are focus areas for energy conservation and emission
reduction (Figure 1). Beijing-Tianjin-Hebei consists of two municipalities, Beijing and
Tianjin, as well as 11 cities in Hebei province. The Yangtze River Delta consists of 26 cities
(i.e., Shanghai, Hangzhou, Nanjing, etc.). The Pearl River Delta is composed of nine cities
in Guangdong province. Furthermore, Beijing-Tianjin-Hebei is dominated by temperate
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continental monsoon climate [27], while the Pearl River Delta and Yangtze River Delta
are dominated by subtropical/tropical monsoon climates [28] and maritime monsoon
subtropical climates [29], respectively.
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Figure 1. Locations of three urban agglomerations such as Beijing-Tianjin-Hebei Region, Yangtze
River Delta, and Pearl River Delta.

2.2. Data Sources

Datasets consisted of NPP/VIIRS nighttime light data, fossil fuel combustion data,
socioeconomic data, and basic geographic information data. Monthly NPP/VIIRS nighttime
light data (vcmsl version) at 500 m resolution during 2014–2019 were obtained from Colorado
School of Mines (https://payneinstitute.mines.edu/eog, accessed on 11 October 2019). The
radiation value of pixels in this data represents the intensity of the light. The fossil fuel
combustion data and socioeconomic data were obtained from China Statistical Yearbook,
China Regional Statistical Yearbook, and statistical yearbooks of each city. The details of
these data are listed in Table 1.

2.3. Methods

The flowchart of this study is summarized in Figure 2. Three key steps are included:
(1) estimating the statistical carbon emissions using the IPCC method; (2) estimating CO2
emissions using GABP neural networks coupled with satellite data and statistical carbon

https://payneinstitute.mines.edu/eog
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emissions; (3) exploring the spatiotemporal dynamics of CO2 emissions at 500 m resolution
and their influencing factors.

Table 1. Data used in this study.

Data Name Data Description Source

Nighttime light
NPP/VIIRS nighttime light at
a spatial resolution of 500 m
for 2014–2019

Colorado School of Mines
(https://payneinstitute.
mines.edu/eog/, accessed on
11 October 2019)

Fossil fuel combustion data

Annual total data of ten
energy types, such as raw coal,
coke, crude oil, gasoline,
kerosene, diesel oil, fuel oil,
natural gas, heat and
electricity, during 2014–2019

China Statistical Yearbook,
China Regional Statistical
Yearbook, China Energy
Statistical Yearbook and
statistical yearbooks of
each city

Socioeconomic data

Annual statistical data of six
types, such as permanent
population, GDP, per capita
GDP, primary industry GDP,
secondary industry GDP and
tertiary industry GDP, during
2014–2019

China Statistical Yearbook,
China City Statistical
Yearbook, China Regional
Statistical Yearbook, and
statistical yearbooks of
each city

Administrative boundaries Vector files of provinces,
prefectures in China

National Catalogue Service
For Geographic Information

Population density

Annual data with a spatial
resolution of 30 arc-seconds
(approximately 1km at
the equator)

WorldPop
(https:
//www.worldpop.org/,
accessed on 13 August 2021)

Terrain slope Spatial resolution of 90 m
Geospatial Data Cloud
(http://www.gscloud.cn/,
accessed on 16 July 2021)

Temperature
Annual mean temperature
unit with a spatial resolution
of 1 km

Resource and Environment
Science and Data Center
(https://www.resdc.cn/,
accessed on 3 September 2021)

Urban area Redefined data in 2016 Beijing City Lab Database [30]

2.3.1. Correction of NPP/VIIRS Nighttime Light Data

The NPP/VIIRS nighttime lights were not filtered to remove light detections associated
with fires, gas flares and background noise [8,26]. First, a few additional outliers caused
by lights from the flaring of oil and gas wells should be eliminated [31]. Because Beijing,
Shanghai and Guangzhou are major cities in each urban agglomeration, nighttime light
digital number (DN) values in these cities should be the largest compared to that in other
cities. The largest DN value in Beijing, Shanghai and Guangzhou was used as a threshold
to correct the outliers. The 8-neighbor denoising method was used to remove high value
noise in the image [32]. These pixels where the DN value was larger than the threshold
were assigned a new value, which equaled to the maximal DN value within the eight direct
neighbors of the pixel [33]. Secondly, we removed the background noise of nighttime light
data. Referring to Google Earth images, large-scale water areas were selected to set as the
sample area, and the radiation value was averaged to be used as the minimum threshold.
The pixels where the DN value was smaller than this minimum threshold were changed
to zero [34]. Finally, monthly NPP/VIIRS nighttime light data were averaged to annual
nighttime light images for the periods 2014–2019.

https://payneinstitute.mines.edu/eog/
https://payneinstitute.mines.edu/eog/
https://www.worldpop.org/
https://www.worldpop.org/
http://www.gscloud.cn/
https://www.resdc.cn/
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2.3.2. Estimating the Statistical Carbon Emissions Using the IPCC Method

The IPCC guidelines recommended a unified standard method to evaluate CO2 emis-
sions from greenhouse gases [35]. This study used the IPCC method to calculate the
statistical CO2 emissions of energy consumptions [36]. The energy sources selected in this
study were raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas,
heat, and electricity. The conversion formula is:

CO2 =
44
12

×
10

∑
i =1

KiEi (1)

While i represents the types of energy; Ei represents the standard coal consumption
of energy type i; and Ki represents the effective CO2 emission factor of each energy type.
According to the IPCC guidelines, various types of fuel consumptions should be converted
to a standard coal consumption based on the calorific value of each fuel type.

2.3.3. Estimating CO2 Emissions by GABP Neural Networks and Nighttime Light Data

GABP neural networks have a strong ability to construct nonlinear relationships and
overcomes the shortcomings of the traditional neural networks. A BP neural network is
multi-layer feedforward neural network based on the error back propagation algorithm,
composed of an input layer, hidden layer and output layer [37]. Genetic algorithm op-
timization of BP neural network mainly obtains the optimal weights and thresholds to
substitute into the BP neural network for prediction [38]. Previous studies have shown that
there were positive correlations between CO2 emissions, GDP and population, indicating
that GDP and population have large impacts on CO2 emissions [13,39]. As result, major
socioeconomic factors related to human activities were selected as the input layer of GABP
model to explore the effect of human activity on environment. Therefore, we used a GABP
to establish the relationships between NPP/VIIRS nighttime light data, socioeconomic
data, and statistical carbon emissions in three urban agglomerations. Firstly, we used DN,
permanent population, GDP, per capita GDP, primary industry GDP, secondary industry
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GDP, and tertiary industry GDP to determine the input layers of GABP. Variables such as
DN, permanent population and primary industry GDP with the strongest ties to statisti-
cal carbon emissions were finally selected as the input layer. In detail, statistical carbon
emissions have the highest correlation with DN (r = 0.893, p < 0.05), followed by primary
industry GDP (r = 0.796, p < 0.05) and permanent population (r = 0.758, p < 0.05). In terms of
parameter settings, we then reduced the model training error through multiple trainings by
the GABP neural networks, and finally determined the optimal parameters for constructing
the carbon emission model estimation. The datasets during 2014–2018 were utilized for
training and the data in 2019 was used for validation. The GABP neural networks in this
study were divided into three layers. In detail, the input layer node was 3, the hidden layer
node was 5, and the output layer node was 1.

CO2 emissions estimated from GABP neural networks were validated with the city-
level statistical CO2 emissions (Figure 3). Three indicators of root mean square error (RSME),
mean absolute percentage error (MAPE) and determination coefficient (R2) were used to
verify the fitting performance. The RMSE, MAPE and R2 of CO2 emissions estimated from
GABP neural networks and the statistical data in this study were 1386.23 × 104 t, 11.01%
and 0.977, respectively, indicating that the GABP neural networks method showed a good
performance in estimating regional energy carbon emissions [17].
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and simulated CO2 emissions by GABP neural networks of three agglomerations in 2019.

The NPP/VIIRS nighttime light was used to allocate the city-level carbon emissions to
500 m pixel. Radiance values of all pixels belong to a region were summed, and the original
value at each pixel was normalized by the regional sum. The CO2 emission intensity at
a pixel was scaled by multiplying the normalized radiance with the annual total emissions
of a country or a region [40]. Therefore, we obtained energy carbon emissions at 500 m
resolution for three urban agglomerations in China from 2014 to 2019.

2.3.4. Spatiotemporal Dynamics of CO2 Emissions Based on GIS-Based Buffer Analysis,
Kernel Density Estimation and Linear Regression Analysis

Kernel density estimation (KDE) is a nonparametric density estimation method to
estimate the probability density of random variables. In this study, we used KDE to estimate
the continuous probability density curves of carbon emissions to capture the kernel density
maps of carbon emissions in three urban agglomerations [41].
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The city areas in urban agglomerations adopted for the GIS-based buffer analysis were
divided into three urbanization gradients. We designed two buffer zones around urban
areas. Two kinds of buffer zones were established: first-level urban circle was the buffer
zone with a width of 500 m outside the urban area, while second-level urban circle was the
buffer zone with a width of 1 km outside the first-level urban circle [42]. Two circular buffer
systems (first-level urban circle and second-level urban circle) were built by creating buffer
zones to compare the characteristics of CO2 emissions between urban areas and sub-urban
areas in urban agglomerations.

We calculated the variation slope (Sslope index) of energy consumption CO2 emissions
from 2014 to 2019 by establishing linear regression model between CO2 emissions and
years [43].

Sslope =
∑n

i=1 xiti − 1
n ∑n

i=1 xi ∑n
i=1 ti

∑n
i=1 t2

i −
1
n (∑

n
i=1 ti)

2 (2)

where n is the total number of years; xi is the serial number of year i; ti is the CO2 emission
amount in the i year. When Sslope index was larger than 0, it meant that CO2 emissions
showed an increasing trend. Significant trends of CO2 emissions in three urban agglomera-
tions were divided into four levels. The first level was a high-decline region where Sslope
was less than −0.16 and the second level was named as a low-decline region where Sslope
was greater than −0.16 and less than 0. The third levels (0 < Sslope < 0.16) were named
low-growth regions, and the last one (Sslope > 0.16) was called a high-growth region.

Profiles of CO2 emissions along urbanization gradients were investigated using the
section line that passed through the city center. Cities with high CO2 emissions and low
CO2 emissions were selected, respectively, in each urban agglomeration. We chose Beijing
and Langfang in Beijing-Tianjin-Hebei, Shanghai and Chizhou in Yangtze River Delta,
Guangzhou and Zhaoqing in Pearl River Delta as case studies.

2.3.5. Statistical Analysis on the Influencing Factors of CO2 Emissions among
Urban Agglomerations

Population density, annual mean temperature and terrain slope excluding the predic-
tors of the carbon emission model were selected as potential influencing factors of spatial
pattern of CO2 emissions among urban agglomerations. First, population density was an
important socioeconomic factor, which was often found to positively correlate with energy
consumptions and CO2 emissions [44]. Second, climate was considered as a determinant of
energy consumption and CO2 emissions due to heating and cooling [45,46]. Meanwhile,
annual mean temperature was different among three urban agglomerations. Third, topog-
raphy, for example, terrain slope, was a crucial natural factor because CO2 emissions of
the car increased with the increase of terrain slope. In order to analyze the realistic factors
affecting CO2 emissions, the strength of correlation between CO2 emissions and population
density, annual mean temperature and terrain slope were estimated using the Pearson’s
correlation coefficient. All influencing factors, such as population density, annual mean
temperature and terrain slope, were resampled to 500 m resolution.

3. Results
3.1. Spatiotemporal Variations of CO2 Emissions

The spatial distribution of CO2 emissions appeared as different patterns in three urban
agglomerations (Figures 4 and 5). CO2 emissions in Beijing-Tianjin-Hebei Region presented
a three-core distribution, such as Beijing, Tianjin and Tangshan. CO2 emissions in the
Yangtze River Delta showed a multiple-core distribution, such as Nanjing, Zhenjiang, Wuxi,
Suzhou, Shanghai and Ningbo. CO2 emissions in Pearl River Delta appeared as a null-core
distribution (Figure 5).
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The Yangtze River Delta has the largest total CO2 emissions, followed by Beijing-
Tianjin-Hebei region and the Pearl River Delta (Figure 6). CO2 emissions per unit in cities
of the three agglomerations showed that the city with the lowest carbon emissions per unit
in Beijing-Tianjin-Hebei was Langfang, while the highest was Tangshan. CO2 emissions
per unit of Tangshan were 8.29 times that of Langfang. In the Yangtze River Delta, the city
with the lowest carbon emissions per unit was Jinhua, while the highest was Maanshan.
CO2 emissions per unit in Maanshan were 4.39 times that of Jinhua. In the Pearl River
Delta, the city with the lowest carbon emissions per unit was Zhongshan, and the highest
was Shenzhen. CO2 emissions per unit of Shenzhen was 2.46 times that of Zhongshan.
Consequently, Beijing-Tianjin-Hebei Region have the largest variations in carbon emissions
at city level, while the Pearl River Delta have the smallest variations.

Temporal patterns of CO2 emissions showed that th 28.74%, 43.99% and 43.45% of
the areas appeared to have significant upward trends of CO2 emissions in Beijing-Tianjin-
Hebei Region, Yangtze River Delta, and Pearl River Delta during 2014–2019, respectively
(Figure 7). Meanwhile, the percentages of regions with significant downward trends of
CO2 emissions were 15.43%, 13.47% and 15.31% in Beijing-Tianjin-Hebei, Yangtze River
Delta, and Pearl River Delta during study period, respectively. In general, the areas with
downward trends of carbon emissions were concentrated in southern Beijing, southern



Remote Sens. 2023, 15, 404 9 of 16

Tianjin, northern Tangshan, and western Handan in Beijing-Tianjin-Hebei, while these were
dispersed in the Yangtze River Delta and Pearl River Delta. Moreover, the percentages
of high-growth regions and low-growth regions in the upward trend regions were 2.88%,
5.46%, 3.44% and 4.75%, 3.97%, 2.22% in Beijing-Tianjin-Hebei, the Yangtze River Delta,
and Pearl River Delta, respectively.
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Figure 7. Temporal trends of CO2 emissions in three urban agglomerations from 2014 to 2019. The
white area was not passed the significance test (p > 0.05). High-decline: Sslope < −0.16; Low-decline:
−0.16 < Sslope < 0; Low-growth: 0 < Sslope < 0.16; High-growth: 0.16 < Sslope.

3.2. Carbon Emissions within Cities

Urban areas have a larger amount of CO2 emissions than first-level urban circle and
second-level urban circle (Figure 8a–c). In detail, the Sslope of carbon emissions in urban
areas of the Yangtze River Delta was the largest, reaching 0.270, while that of Beijing-Tianjin-
Hebei Region was the smallest, at only 0.018. The slopes of CO2 emissions in urban areas
of Yangtze River Delta and Pearl River Delta were both larger than those in the other two
urban circles.

On the contrary, CO2 emissions per unit in urban areas, first-level urban circles and
second-level urban circles in Beijing-Tianjin-Hebei were the highest among three urban
agglomerations (Figure 8d–f). The temporal trends of CO2 emissions per unit in three
urban circles of Yangtze River Delta and Pearl River Delta have increased significantly.
The temporal slopes of CO2 emissions per unit in first-level urban circle and second-level
urban circle of Yangtze River Delta were larger than that of Pearl River Delta, respectively
(Figure 8d–f).
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significance test of trend was passed (p < 0.05).

In order to further investigate the pattern of CO2 emissions along urbanization gradi-
ents, the section line that passed through the city center was used to obtain profile lines,
which represented the structure of CO2 emissions along the distance away from urban
centers. In this study, cities with high CO2 emissions and low CO2 emissions were selected
respectively in each urban agglomeration (Figure 9). Profiles of CO2 emissions along urban-
ization gradients behaved as a radiation peak pattern with a high peak and a wide range in
big cities (Figure 9a–c). Correspondingly, profiles of CO2 emissions showed an independent
peak pattern with a low peak and a narrower range in small cities (Figure 9d–f).

3.3. Influencing Factors of Spatial Pattern of CO2 Emissions

Significant positive relationships between CO2 emissions and population density can
be observed in each urban agglomeration (rBTH = 0.486; rYRD = 0.470; rPRD = 0.535; all
p < 0.05) (Figure 10). Meanwhile, there were significant negative correlations between
terrain slope and CO2 emissions in three agglomerations (rBTH = −0.178; rYRD = −0.156;
rPRD = −0.335; all p < 0.05), which meant that CO2 emissions were generally decreasing
when terrain slope increased. Furthermore, CO2 emissions have weak correlations with
annual mean temperature in each agglomeration (rBTH = 0.172; rYRD = 0.004; rPRD = −0.124;
all p < 0.05). It indicated that population density was the primary influencing factor of CO2
emissions in all urban agglomerations. Meanwhile, the Pearl River Delta was one of the
three urban agglomerations which CO2 emissions most affected by terrain slope.
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Figure 10. Correlations between CO2 emissions and influencing factors, such as population density,
annual mean temperature and terrain slope, in three major urban agglomerations. BTH: Beijing-
Tianjin-Hebei; YRD: Yangtze River Delta; PRD: Pearl River Delta.

In general, there were significant positive correlations between carbon emissions
and population density among three urban circles (Table 2), which indicated that CO2
emissions were increasing when population density increased. In detail, the correlations
between CO2 emissions and population density in urban areas were more robust than other
two urban circles, expect for Pearl River Delta, where CO2 emissions in second-level urban
circle has largest correlations with population density. Meanwhile, CO2 emissions in urban
areas of three urban agglomerations have the smallest correlation with the terrain slope,
compared to other two urban circles. Additionally, temperature has the smallest impact on
CO2 emissions (Table 2).
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Table 2. Relationships between CO2 emissions and population density, annual mean temperature
and terrain slope among urban circles, such as urban area, first-level urban circle and second-level
urban circle.

Factor Urban Agglomeration Urban First-Level
Urban Circle

Second-Level
Urban Circle

Population
density

Beijing-Tianjin-Hebei 0.209 * 0.184 * 0.152 *

Yangtze River Delta 0.257 * 0.087 * 0.188 *

Pearl River Delta 0.333 * 0.172 * 0.384 *

Annual mean
temperature

Beijing-Tianjin-Hebei −0.013 −0.062 −0.012

Yangtze River Delta −0.020 * −0.047 −0.016

Pearl River Delta −0.283 * −0.122 * 0.025

Terrain slope
Beijing-Tianjin-Hebei −0.026 * −0.070 * −0.091 *

Yangtze River Delta −0.060 * −0.101 * −0.113 *

Pearl River Delta −0.062 * −0.178 * −0.175 *
* Means significant at confidence level 5%.

4. Discussion
4.1. NPP/VIIRS Nighttime Light Integrated Genetic Neural Network Showed a Good Performance
in Estimating CO2 Emissions

Remote sensing nighttime light data can distinguish human urban areas with artificial
lights from the dark background at night [14], and have a high correlation with the energy
consumptions and carbon emissions [20]. One the one hand, the county-level statistical car-
bon emissions based on published energy use data were limited to coarse spatial/temporal
resolution and short period [47]. Remote sensing nighttime light data were often selected
as a good indicator to downscale the county-level statistical CO2 emissions [13,26]. Be-
cause the nighttime light data have wide time-span and coverage [48]. On the other hand,
a range of methods, including linear regression model [26], power regression model [24]
and log-log regression model [32] have been used in modeling spatiotemporal patterns of
CO2 emissions based on nighttime light data and statistical energy consumption. How-
ever, traditional regression methods were not effective to track the nonlinear relationship
between statistical CO2 emissions and nighttime light data due to fixed parameters [17].
Genetic neural networks have higher feasibility and reliability than traditional regres-
sion models. Jasiński (2019) modeled total electricity consumption based on nighttime
light images with artificial neural networks, and found that the results achieved by ar-
tificial neural networks has higher precision than that using linear regressions [18]. For
three northeastern provinces in China, Yang et al. (2020) found that the performance of
a neural network model was superior to traditional regression models in analyzing the
nonlinear relationship between nighttime light data and statistical carbon emissions [17].
For central and western regions of China, Lin et al. (2022) confirmed that a deep neural
network ensemble model was the best method to establish the relationship between the
multi-dimensional data characteristics and carbon emissions [49]. Our study demonstrated
that genetic neural network can estimate the spatiotemporal patterns of CO2 emissions by
integrating multiple datasets.

However, some limitations of nighttime light data will lead to uncertainty of CO2
emissions regardless of the linear function, power function or even complex methods. To
a certain extent, over-estimation of CO2 emissions may exist in urban areas due to the
limitation of nighttime light data. For example, some factories without any nighttime lights
were likely to have intensive human activities and CO2 emissions during the day [50]. In
general, the statistical carbon emissions consisted of whole urban CO2 emissions during
the day and night. Many studies have reported that nighttime light data have a high
correlation with energy consumptions and carbon emissions [17,35]. It indicated that
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brighter the nighttime lights, more daytime human activities in urban areas. For example,
nighttime light data was commonly used as an indicator of overall energy use in urban,
though electricity was often considered as the primary source of energy used for producing
artificial light [51]. Therefore, remote sensing nighttime light data can still be considered as
a good proxy of CO2 emissions in large-scale areas.

4.2. Three Urban Agglomerations Exhibited Diverse Spatial Patterns of CO2 Emissions

Beijing-Tianjin-Hebei Region behaved as three-core, Yangtze River Delta showed
multiple-core and Pearl River Delta presented null-core structure in CO2 emissions, re-
spectively (Figures 4 and 5). The differential spatial patterns of CO2 emissions may be
ascribed to various development modes in three urban agglomerations. Beijing-Tianjin-
Hebei Region is one of China’s heavy industrial bases, which consists of a large number of
high-energy-consuming enterprises, such as thermal power, steel and cement manufactur-
ing. A Study indicated that energy was wasted in most cities in the Beijing-Tianjin-Hebei
region [52]. Yangtze River Delta has low variations in urban development levels within
agglomerations [53]. Shanghai, Zhejiang and Jiangsu Provinces in Yangtze River Delta
could be classified as high development level regions, where CO2 emissions are relatively
high and concentrated. As a hotspot for investment in the manufacturing industry, Pearl
River Delta is making efforts on promoting green energy and building the national green
development [54]. For example, cities like Shenzhen has witnessed great progress in cleaner
production [55]. Therefore, diverse spatial patterns of carbon emissions among urban
agglomerations reflected differences in socioeconomic structure.

4.3. Population Density Versus Terrain Slope Featured Opposite Effects on Spatial Pattern of
CO2 Emissions

Positive relationships between population density and CO2 emissions while nega-
tive correlations between terrain slope and CO2 emissions were observed in three urban
agglomerations (Figure 10). A study using STIRPAT model with panel data of China’s
30 provinces from 1997 to 2012 indicated that population size has a strong explanatory
power on CO2 emissions [56]. The expansion of population scale directly leads to the extru-
sion of individual living space, posing a huge threat to population and environment [39].
Meanwhile, previous studies found that topographical factors were important limiting
factors that influence population distribution and economic development [57]. Generally,
the terrain of urban areas which less restricted the development of human activities is flat.
But, in areas with complex terrain, such as mountainous areas and forest areas, human
activities are greatly affected by slope, and the paving of roads and railways is also af-
fected by natural environment. Therefore, inclination of terrain slope may decrease CO2
emissions. In addition, CO2 emissions decreased gradually with the increase of distance
away from urban center in each urban agglomeration (Figures 8 and 9). Decrease in effects
of population density while increase in effects of terrain slope on CO2 emissions were
found along the gradients from urban areas to first-level urban circles then to second-level
urban circles (Table 2). So, differences in urban circles should be taken into consideration in
formulating emission reduction policies.

5. Conclusions

Urban agglomerations, such as Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl
River Delta are the most developed regions in China, which are playing leadership roles in
low-carbon development. We proposed a neural networks model based on nighttime light
data to estimate CO2 emissions of three major urban agglomerations from 2014 to 2019.
The results indicated that spatial distribution of CO2 emissions exhibited diversity among
urban agglomerations. The areas appearing upward temporal trends of CO2 emissions
were larger than that with downward temporal trends in each urban agglomeration. The
total amount of CO2 emissions in the urban areas was largest among three urban circles,
followed by first-level urban circle and second-level urban circle. In addition, population
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density had the greatest impact on spatial pattern of CO2 emissions, while temperature
had the least impact. Urban agglomerations should coordinate development strategies in
economic growth versus carbon reduction.
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