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Abstract: Long-term and high-intensity coal mining has led to the increasingly serious surface
subsidence and environmental problems. Surface subsidence monitoring plays an important role in
protecting the ecological environment of the mining area and the sustainable development of modern
coal mines. The development of surveying technology has promoted the acquisition of high-resolution
terrain data. The combination of an unmanned aerial vehicle (UAV) point cloud and the structure
from motion (SfM) method has shown the potential of collecting multi-temporal high-resolution
terrain data in complex or inaccessible environments. The difference of the DEM (DoD) is the main
method to obtain the surface subsidence in mining areas. However, the obtained digital elevation
model (DEM) needs to interpolate the point cloud into the grid, and this process may introduce errors
in complex natural topographic environments. Therefore, a complete three-dimensional change
analysis is required to quantify the surface change in complex natural terrain. In this study, we
propose a quantitative analysis method of ground subsidence based on three-dimensional point
cloud. Firstly, the Monte Carlo simulation statistical analysis was adopted to indirectly evaluate
the performance of direct georeferencing photogrammetric products. After that, the operation of
co-registration was carried out to register the multi-temporal UAV dense matching point cloud.
Finally, the model-to-model cloud comparison (M3C2) algorithm was used to quantify the surface
change and reveal the spatio-temporal characteristics of surface subsidence. In order to evaluate
the proposed method, four periods of multi-temporal UAV photogrammetric data and a period of
airborne LiDAR point cloud data were collected in the Yangquan mining area, China, from 2020 to
2022. The 3D precision map of a sparse point cloud generated by Monte Carlo simulation shows that
the average precision in X, Y and Z directions is 44.80 mm, 45.22 and 63.60 mm, respectively. The
standard deviation range of the M3C2 distance calculated by multi-temporal data in the stable area is
0.13–0.19, indicating the consistency of multi-temporal photogrammetric data of UAV. Compared
with DoD, the dynamic moving basin obtained by the M3C2 algorithm based on the 3D point cloud
obtained more real surface deformation distribution. This method has high potential in monitoring
terrain change in remote areas, and can provide a reference for monitoring similar objects such
as landslides.

Keywords: unmanned aerial vehicle (UAV); structure-from-motion (SfM); airborne LiDAR; precision
maps; co-registration; point cloud; dynamic moving basin

1. Introduction

As a main energy source in the world, coal plays an important role in national economic
construction [1]. However, the activities of intensive mining may cause severe surface
subsidence, and subsequently damage buildings, infrastructure, roads and the ecological
environment [2,3]. It is necessary to monitor the surface subsidence in mining areas with
purpose of mitigating these damages. Traditional ground-based monitoring methods,

Remote Sens. 2023, 15, 374. https://doi.org/10.3390/rs15020374 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020374
https://doi.org/10.3390/rs15020374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6034-3062
https://orcid.org/0000-0001-6900-6425
https://doi.org/10.3390/rs15020374
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020374?type=check_update&version=1


Remote Sens. 2023, 15, 374 2 of 19

such as total station and leveling, can provide high-precision measurements at the level
of centimeters to millimeters. The problems of ground-based methods are the high cost,
point-like observation and the difficulty in monitoring remote areas, limiting the further
uses of these tools [4,5].

The development of remote sensing technologies, such as interferometric synthetic
aperture radar (InSAR) and unmanned aerial vehicles (UAV), has promoted the acquisition
of high-resolution terrain data and therefore improved the ability to monitor terrain changes
with wide coverage and high accuracy [6,7]. InSAR has shown its potential in monitoring
coal mining subsidence due to the advantages of all-weather, all-time operation, and an
accuracy of centimeters to millimeters [8–10]. The main limitation of InSAR technology
in coal mining is the decorrelation since mining-induced deformation always exceeds the
InSAR maximum detectable deformation.

With the development of the UAV platform and computer vision technology, more
and more camera-captured images are processed by using structure from motion (SfM)
and multi-view stereo (MVS) algorithms to produce high-resolution terrain data, namely,
point clouds, digital surface models (DSM) and digital orthophoto maps (DOM) [11]. These
products are further used in the field of precision agriculture [12,13], landslide monitor-
ing [14,15], coastal decline [16,17] and glacier dynamics [18,19]. Compared with the InSAR
or airborne LiDAR, the advantages of UAV SfM photogrammetry are flexibility, suitability
for complex terrains, and the option for users to define the spatio-temporal resolution to
generate time-series terrain changes. These characteristics promote the application of UAV
in coal mining subsidence monitoring [20].

The most common method of UAV subsidence monitoring is calculating the verti-
cal or horizontal displacement by differencing two images which are gridded through
interpolating point clouds [21–26]. This process may introduce errors in complex natural
topographic environments. Therefore, a complete three-dimensional change analysis is
required to quantify the surface change in complex natural terrain. The method based
on point clouds can capture the multi-directional surface changes and accurately mon-
itor the spatial displacement characteristics, which has been successfully used in rock
glaciers [27,28], landslides [29,30], and other fields. There are relatively few studies on
mining subsidence monitoring using the point cloud method. In addition, the reliability of
multi-temporal point cloud change analysis on complex terrain surfaces is affected by the
uncertainty sources such as point density, surface roughness and registration error.

Georeferencing is the key to obtaining repeatable data to monitor surface changes.
With the development of global navigation satellite system (GNSS) technology and accurate
time measuring systems, UAV equipped with real time kinematic (RTK) and post processed
kinematic (PPK) can accurately determine the position and orientation of UAV at the
imaging moment. UAV photogrammetry has made a breakthrough in reducing the number
of ground control points (GCPs), and even not using GCPs [31,32]. Considering the
rapid development of UAV technology, it is necessary to evaluate the accuracy of UAV
georeferencing results obtained by the GNSS RTK/PKK technology. Nolan et al. obtained
the data with a ground sampling distance (GSD) of 10–20 cm in an area of dozens of
square kilometers, and verified that the accuracy and precision (repeatability) of direct
georeferencing are better than ±30 and ±8 cm, respectively [33]. Padr et al. evaluated the
UAV georeferencing accuracy of a farm, and showed that the horizontal and vertical RMSE
were not greater than 0.256 and 0.238 m, respectively [34]. Precision assessment benefits
from a larger and more evenly distributed number of checkpoints, which are often difficult
in areas with undulating terrain and steep slopes where it is difficult for people to access.
Therefore, it is necessary to evaluate the precision of photogrammetric products without
ground control.

The purpose of this study is to evaluate the relative precision of photogrammetric
products without ground control, and then to quantify the topographic changes caused by
mining subsidence. Four UAV photogrammetric datasets and one airborne LiDAR point
cloud dataset from 2020 to 2022 were collected in the Yangquan mining area, China, to
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evaluate the performance of the proposed method. Firstly, the three-dimensional precision
of sparse point clouds was obtained through Monte Carlo simulation. Then, the airborne
LiDAR point cloud was used as the reference data to co-register the multi-temporal UAV
dense matching point cloud. Finally, the surface changes were quantified through the mul-
tiscale model-to-model cloud comparison (M3C2) algorithm to reveal the spatio-temporal
development characteristics.

2. Study Area and Data
2.1. Study Area

The study area is a working face of No. 1 Coal Mine of Yangquan Coal Group, Shanxi
Province, as shown in Figure 1. The characteristics of the working face are as follows: the
strike length is 1345 m, the dip length is 226 m, the average dip angle of the coal seam
is 4◦, the average mining depth is 446.8 m, and the average coal thickness is 7.24 m. The
working face began in October 2019 and was completed in April 2021. The terrain of the
mining area is high in the middle, low in the south and north, and the surface is covered
with vegetation. A half strike and dip observations were conducted at A and B in the
study area, respectively. The black rectangle in the Figure 1 is the boundary of the mining
working face.
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Figure 1. Relative position relationship of working face, observation station, and study area.

Figure 2 shows the mining-induced surface changes, and we can see the obvious
environmental damages including the destroyed vegetation, landslide, ground fissures and
sinkholes. These damages could have different degrees of influence on roads, buildings,
and other infrastructures.
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2.2. Data
2.2.1. Data Acquisition

Five UAV datasets between March 2020 and January 2022, including one airborne
LiDAR dataset and four UAV photogrammetric datasets, were acquired in the study area,
as shown in Table 1. The data collected on 14 June 2020 will be abbreviated as 06.14 in the
following, and the data in other periods are similar.

Table 1. The collected UAV datasets in the study area.

Number Time Acquisition Mode Achievements Form Number of
Point Clouds

Area
km2

Density per
m2

1 2020.06.14 UAV image Point cloud, DSM, DOM 2.3 × 108 4.5 52
2 2020.07.20 UAV image Point cloud, DSM, DOM 2.4 × 108 4.5 53
3 2020.09.07 UAV image Point cloud, DSM, DOM 2.2 × 108 4.2 53
4 2021.07.31 UAV image Point cloud, DSM, DOM 4.7 × 108 4.3 110
5 2022.01.16 Airborne LiDAR Point cloud 2.5 × 108 4.0 62

The D2000 quad-rotor UAV (Feima Robotics Technology Co., Ltd., Shenzhen, China)
was used to carry the D-CAM2000 aerial survey module, as shown in Figure 3a. The
platform is equipped with a SONY a6000 digital camera, with a focal length of about 25 mm
and an image size of 6000 × 4000 pixels. Compared with the fixed-wing UAV, the D2000
requires only a small take-off and landing space, and has high flexibility and stability
in most situations, which is advantageous in mountainous terrain conditions. The main
parameters input in the route planning stage are relative flight altitude, GSD and image
overlap. GSD of 4 cm/pixel can be provided at a flight altitude of 255 m relative to the
ground. An 80% forward overlap and 60% side overlap are set for each flight to ensure the
overlap of consecutive photos, which is essential for the image matching algorithm used
in SfM.
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The airborne LiDAR data was collected using the Feima D2000 equipped with the
D-LiDAR2000 LiDAR module, as shown in Figure 3c. The route was planned according to
the site topographic relief and expected point cloud density, and the overlap was set to not
less than 50%. The average flight speed was 14 m/s, and the point cloud with a density of
64 points/m2 was obtained at a flight altitude of 177 m relative to the ground. The raw data
includes: lvx format laser data, load IMU file, bin format flight log file, fmcompb format
airborne GPS observation data, and fmnav format RTK trajectory file. Detailed information
about the camera and LiDAR modules is shown in Table 2.

Table 2. Parameter configuration of aerial survey module and LiDAR module.

D-CAM2000 Aerial Module D-LiDAR2000 LiDAR Module

Camera SONY a6000 Ranging 190 m@10%Reflectivity@100 klx
450 m@80%Reflectivity@0 klx

Effective pixels 24.3 million Scanning frequency 240 kHz
Sensor 23.5 × 15.6 mm(aps-c) Ranging accuracy ±2 cm

Focal length 25 mm Horizontal positioning accuracy 0.02 m

In addition to the multi-temporal data from the UAV, ground-based observations
were obtained. Using GPS for connection measurements, with not less than five sets of
static GPS receivers for static measurement, the static plane and elevation accuracy are
5 mm + 1 ppm × D and 1 cm + 1 ppm × D, respectively. RTS-332 total station with the
nominal angle measurement accuracy of 2” and ranging accuracy of 3 mm was used for
daily observation and comprehensive observation, including GPS RTK measurements for
some monitoring points located in complex terrain. The leveling instrument used in the
patrol survey was DL-101C, and the round-trip leveling accuracy of 1 km was 3 mm. Based
on the accuracy of all instruments, the accuracy of this field observation was controlled at
the centimeter level. The control and monitoring points of the observation station were
buried by concrete pouring, and a steel bar was used as the material to mark the observation
signs. A total of 23 comprehensive observations spanning from July 2019 to November 2021
were obtained, which provided the reference data for calculating the surface movement.
Among them, the data collected on 22 June 2020, 21 July 2020, 23 September 2020 and
30 June 2021 were consistent in time with the UAV images.
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2.2.2. UAV Data Processing

Direct georeferencing of the UAV images was conducted through the high precision
differential GNSS. First, the position data of each photo was solved through the network
RTK/PKK fusion differential operation mode. This mode gives priority to the PPK fixed
solution results so as to reduce the risk of data loss due to link interruption. For the non-
fixed solution part of the PPK, the RTK fixed solution data was used for fusion. The image
exchangeable image file format (EXIF) was then written in turn, where GPS positioning
data is stored in the image’s header file so that the GPS data can be read directly from the
image in the imported software.

These geotagged images were processed using Agisoft Photoscan Professional Ver-
sion 1.7.0 software (https://www.agisoft.com/, accessed on 15 June 2020) [35]. The soft-
ware uses an SfM algorithm to generate the point cloud, DSM and DOM of the measured
area. The process includes four main steps: feature extraction and matching, bundle ad-
justment, dense matching and generating DSM and DOM. Firstly, the feature points were
extracted, which are invariant to the scale and rotation of the image, and also maintain a
certain stability to the change of illumination and 3D camera perspective. Based on each
pair of overlapping images, the feature matching was performed and the external direc-
tion parameters were solved; the model was georeferenced with the additional position
information of the image, and the camera position was optimized by minimizing the error
between the position of the model points and the measurement position, while reducing
the nonlinear deformation; the dense point cloud was built, the point density was increased
by several orders of magnitude, and the DSM and DOM were generated on this basis.
The original LiDAR data was preprocessed by trajectory solution, point cloud solution,
feature extraction and strip adjustment to obtain the point cloud in las format. The working
platform for UAV data processing was Dell Tower Workstation (Intel (R) Xeon (R) W-2245
CPU @ 3.90 GHz 3.91 GHz, 128 GB RAM). It took about six hours to complete the workflow
of UAV image data processing for each survey.

Point cloud post-processing included point cloud denoising and filtering to remove the
non-ground points. The outliers in the original multi-temporal point cloud were removed
by using the statistical outlier removal (SOR) tool in CloudCompare software (2.10, https:
//www.danielgm.net/cc/, accessed on 15 June 2020) [36], as shown in Figure 4. The filter
performs a statistical analysis on the neighborhood of each point and calculates its average
distance to all nearby points. Assuming that the result is a Gaussian distribution whose
shape is determined by the mean and standard deviation, the points whose average distance
were outside the standard range (by the global distance mean plus the defined standard
deviation) were defined as outliers and removed from the data. Then, the progressive
triangulation densification filtering algorithm in TerraSolid software (2019, Finland, https:
//terrasolid.com/, accessed on 15 June 2020) was used to classify ground points and
non-ground points [37]. The DEM generated by the initial automatic filtering results was
visually checked to find irregular bumps and low surfaces. The corresponding point cloud
with obvious misclassification was detected by the profile line, and the misclassification
points were manually adjusted by the classification tool to improve the initial filtering
results. DOM can be referred to determine the category of each point in the manual
classification process. WGS-84 was adopted for all data coordinate systems to ensure the
consistency of coordinate data.

https://www.agisoft.com/
https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
https://terrasolid.com/
https://terrasolid.com/
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3. Method

The study monitored the mining surface subsidence by integrating of the multi-
temporal UAV photogrammetric data and airborne LiDAR data. The precision of sparse
point cloud was evaluated through Monte Carlo simulation to illustrate the spatial variabil-
ity of precision and the influencing factors of photogrammetry. Then, the airborne LiDAR
point cloud was used for co-registration of the multi-temporal UAV dense matching point
cloud to improve the consistency of the data. Finally, the M3C2 algorithm was applied to
obtain the distance along the surface normal direction of the two point clouds, quantify the
surface displacement, and reveal the spatio-temporal development characteristics of the
dynamic moving basin. The technical flow chart of this study is shown in Figure 5.
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3.1. Precision Estimation Based on Monte Carlo Simulation

Precision estimation is a part of strict photogrammetric processing. Here, precision
refers to an expected standard deviation of the estimated value or measured value. The
feature extraction and matching step are to identify the tie points (i.e., sparse point cloud)
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in the image and match them in multiple images, and preliminarily estimate their three-
dimensional point coordinates according to the observations of two-dimensional images.
As shown in Figure 6, the position of tie points on the ground can be determined by
observing the points in different images. Each tie point can be accompanied by a three-
dimensional measurement precision ellipsoid [38]. When there is no georeferencing in
Figure 6a, the uncertainty of the tie point leads to the uncertainty of the surface shape, as
shown by the gray band around the black line. In Figure 6b, the correct orientation of the
model in the ground coordinate system is determined by georeferencing. At this time, the
uncertainty of the scale, translation and rotation of the model is small. For example, control
measurement is carried out through the black ellipse representing GCP in Figure 6b.
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To demonstrate how the uncertainty of the tie point changes spatially, the Monte
Carlo method was used to generate the precision maps when using PhotoScan software.
The precision map is a three-dimensional precision estimation of the tie point coordinates,
and it can be used to define repeatability of measurements in the results, given the error
associated with the input measurements (i.e., the tie point image observations). By using
the Gaussian distribution iteration and randomly adjusting the camera model parameters,
each point in the sparse point cloud will migrate around its original coordinates (i.e., the
original position after the photo alignment operation) in 3D space, and the magnitude of
point migration can be regarded as the proxy of product precision [38]. The image network
was constructed by using the image alignment function to automatically match and orient
images in PhotoScan. Subsequently, a Monte Carlo analysis was performed by calling the
Python script in PhotoScan to automatically repeat the bundle adjustment. Finally, in the
SfM_georef toolbox [11], all files output by the script iteration were compiled into point
precision estimation, representing the variable precision of each point in the sparse point
cloud in three different spatial dimensions. The precision maps reflect the factors affecting
the point precision and the precision differences in the three directions of XYZ. Point
precision is affected by a range of factors that are either internal to the photogrammetric
network, such as imaging geometry and the quality of the tie point identification within
the images, or related to the georeferencing. Precision maps showing broad, systematic
variations indicate weakness in the overall survey georeferencing, which is symptomatic of
weak control. If precision maps indicate strong localized variations, then photogrammetric
factors are being expressed, e.g., differences in image measurement quality for individual tie
points, and image network geometry aspects such as image overlap and convergence [38].

3.2. Co-Registration of Multi-Temporal Point Clouds

To improve the consistency of data in different periods, co-registration was carried
out for the multi-temporal UAV dense matching point cloud. In vegetation covered areas,
airborne LiDAR measurement has higher accuracy due to its penetration. Therefore, the
airborne LiDAR point cloud of 16 January 2022 was taken as a reference. The iterative
closest point (ICP) algorithm was used to conduct automatic co-registration for the dense
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matching point clouds in June 2020, July 2020, September 2020, and July 2021, respectively.
ICP was applied to a subset of point clouds located in stable areas that did not change
between data acquisitions, and then the resulting transform parameters were applied to
the complete point cloud to minimize the impact of georeferencing mismatches.

The surfaces near the control points arranged for the surface movement observation
were taken as the stable area for the co-registration, and three of them were selected, as
shown in Figure 7a. The control points were generally arranged outside the moving basin.
The nearest distance between the three areas and the boundary of the working face is
about 368 m, and the mining depth is 446.8 m, and the nearest distance accounts for more
than 0.82 of the mining depth, the three areas are outside the area of mining influence and
were not affected by mining. These areas have flat terrain, less vegetation coverage, and
basically no subsidence, and the images obtained in these areas do not have the problem of
insufficient overlap. Figure 7b represents the number of overlapping images used in the
calculation of each pixel, while the red and yellow areas indicate a low degree of overlap
and may produce poor results. The green area indicates that each pixel has more than
5 image overlaps, indicating that the data obtained from these stable areas will not be
affected by insufficient image overlap.
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3.3. Quantification of Surface Change Based on Three-Dimensional Point Cloud

The M3C2 tool of the CloudCompare software [40] was used to calculate the distance
between two adjacent photogrammetry point clouds. The distance between 06.14 and the
last three photogrammetry point clouds was estimated to quantify the three-dimensional
surface changes and reveal the spatial-temporal characteristics of surface deformation.

The M3C2 algorithm calculated the distance between the reference point cloud and
the comparison point cloud relative to the local surface normal direction using user-defined
normal scale D and projection scale d. Normal scale D was mainly used to create the best fit
plane for the local neighborhood in the reference point cloud. The normal vector was used
to project a cylinder of diameter d and calculate the average position of two clouds in the
cylinder along the normal direction, and then give the local distance between the two point
clouds. The uncertainty associated with each change was estimated by quantifying the
level of detection (LoD). Using statistical t test and assuming that the error obeys normal
distribution, LoD was calculated at 95 % confidence level [38]:

LoDetection = ±1.96(

√
σ1(d)

2

n1
+

σ2(d)
2

n2
+ reg) (1)

where n1 and n2 are the number of local point clouds, σ1 and σ2 are the standard deviations
of the orthogonal distance from the point to the best fit plane. In the M3C2 algorithm, these
standard deviations are used as the measurement standard of point cloud roughness, and
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reg is the registration error. Ultimately, only surface changes that exceeded the relevant
LoD were considered statistically significant at a 95% confidence level.

4. Results
4.1. The 3D Precision of the Sparse Point Cloud

For terrain change detection, it is necessary to quantify the precision of each surface.
Figure 8 shows the tie point precision map measured at 06.14 through 1000 Monte Carlo
iterations. The center of the study area has the greatest image overlaps, while the edge
images do not have side overlap. The 3D point coordinate precision shows a correlation
with the change in image overlap, i.e., the precision decreases as the distance from the
center increases.
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Figure 9 shows the precision values along profile AA’ and BB’. It was found that the
precision was limited by the photogrammetry factors (i.e., image network geometry). The
error propagation mode has different modes in X, Y and Z directions, respectively. The
phenomenon that the center precision is not the highest is observed in the Z direction,
which is called the dome effect, and the maximum error is still located at the edge of the
study area. These precision changes can highlight areas with poor image coverage due
to the partial occlusion in complex terrain or areas where image matching is difficult due
to vegetation.
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Figure 10 shows the three-dimensional precision histogram. Without clipping the
result boundary, the precision error ranges are 0.026 m–0.093 m, 0.030–0.077 m, and
0.043–0.134 m for the X, Y and Z directions, respectively. The precision histograms in
X and Z directions show positive skewness, and the Y direction is approximately normal
distribution. The average precision in the Y direction is slightly larger than that in the X
direction, but both are smaller than the Z direction, which is a foreseeable result because
the elevation measurement is more affected by uncertainties.
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4.2. Co-Registration Performance Evaluation

The basic statistics of the M3C2 distance are used as indicators of solution quality,
where the standard deviation of the M3C2 distance is used as an indicator of measure-
ment precision, and the average distance is considered as the accuracy of the point cloud.
Table 3 shows the mean and standard deviation of the M3C2 distance in the stable region.
Although the distance calculation was performed on the surfaces considered to be stable,
the microtopography of these surfaces may change due to weathering or vegetation while
maintaining the overall surface structure. Therefore, the result of co-registration may never
reach the theoretical value of 0 m.

Table 3. The mean and standard deviation of M3C2 distance calculated in the stable region.

Dataset Mean (m) Standard
Deviation (m) Duration (Day) Platform

01.16/06.14 0.24 0.13 581 LiDAR/UAV
01.16/07.20 0.34 0.15 545 LiDAR/UAV
01.16/09.07 0.30 0.19 496 LiDAR/UAV
01.16/07.31 0.35 0.15 169 LiDAR/UAV

Figure 11 shows the M3C2 distance histogram for each period. The distance distri-
bution is approximately Gaussian distribution, and there is a certain degree of positive
skewness. Among them, the mean of M3C2 distance calculated by 07.20 and 07.31 data
is larger, which may be because of the dense vegetation at this time, which affected the
results to some extent. In the study of multi-temporal monitoring of UAV, the repeatability
(precision) of the data is more important than the accuracy of geolocation. The standard
deviation of the M3C2 distance is between 0.13 and 0.19, indicating that the repeatability of
the UAV multi-temporal photogrammetry data is comparable.
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4.3. Surface Change of Three-Dimensional Point Cloud

The multi-temporal three-dimensional topographic changes at different measured
time intervals was obtained by calculating the M3C2 distance of the dense point cloud.
Figure 12a–c shows the change maps obtained by subtracting the two adjacent point
clouds and Figure 12d–f shows the cumulative change maps obtained by subtracting
the point clouds of 07.20, 09.07, and 07.31 from the point clouds of 06.14, respectively.
The red line segment is the advancing position of the working face at the corresponding
time, which shows good consistency with the influence range of surface movement. It is
observed that the surface in front of the working face is subsiding under the influence of
mining. The surface moving basin is gradually formed during the advancement of the
working face. With the advancement of the working face, the influence range of the surface
expands accordingly, the maximum change value of the surface gradually increases, and
the maximum deformation range moves closer to the center of the goaf. Abnormal values
with large deformation were observed outside the working face, which may be due to the
error caused by the low density of ground points after filtering due to dense vegetation.
The reason for the greater values in Figure 12a may be that the vegetation was dense at this
time, blocking the ground and affecting the acquisition of topographic data.
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Figure 12. The mining-induced subsidence during 2020.06.14–2021.07.31. (a) 07.20–06.14;
(b) 09.07–07.20; (c) 07.31–09.07; (d) 07.20–06.14; (e) 09.07–06.14; (f) 07.31–06.14.

The positive value of the calculated M3C2 value represents the ground subsidence.
Obvious surface changes can also be seen from the statistical histogram of cumulative
changes in Figure 13, and the mean and standard deviation of the distance increase with
the increase of the time interval. With the advance of the working face, more and more
surface points are subsiding under the influence of mining.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

working face. With the advancement of the working face, the influence range of the sur-
face expands accordingly, the maximum change value of the surface gradually increases, 
and the maximum deformation range moves closer to the center of the goaf. Abnormal 
values with large deformation were observed outside the working face, which may be due 
to the error caused by the low density of ground points after filtering due to dense vege-
tation. The reason for the greater values in Figure 12a may be that the vegetation was 
dense at this time, blocking the ground and affecting the acquisition of topographic data. 

 
Figure 12. The mining-induced subsidence during 2020.06.14–2021.07.31. (a) 07.20–06.14; (b) 09.07–
07.20; (c) 07.31–09.07; (d) 07.20–06.14; (e) 09.07–06.14; (f) 07.31–06.14. 

The positive value of the calculated M3C2 value represents the ground subsidence. 
Obvious surface changes can also be seen from the statistical histogram of cumulative 
changes in Figure 13, and the mean and standard deviation of the distance increase with 
the increase of the time interval. With the advance of the working face, more and more 
surface points are subsiding under the influence of mining. 

 
Figure 13. Histogram of M3C2 value distribution calculated by multi-temporal dense point cloud. 
(a) 07.20–06.14; (b) 09.07–06.14; (c) 07.31–06.14. 

The surface changes calculated by the M3C2 distance were compared with the field 
monitoring points data measured by the total station/GPS RTK and the difference of the 
DEM (DoD) method to quantitatively verify the accuracy of the M3C2 distance. The range 
of 1 m2 is determined by taking each measured monitoring point as the center, and all 
point clouds in the range are searched to calculate the average of the M3C2 distance. For 
each monitoring point, the average of the M3C2 distance value was used as a proxy and 
compared with measured data. Taking the data of 06.14–07.20 and 06.14–07.31 as exam-
ples, the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) 
were calculated simultaneously. The calculation results are shown in Table 4, where the 
mean error is small, basically in the range of ±0.2 m. The average error of the M3C2 dis-
tance in the 07.31–06.14 result of line A is greater than the DoD, which may be caused by 

Figure 13. Histogram of M3C2 value distribution calculated by multi-temporal dense point cloud.
(a) 07.20–06.14; (b) 09.07–06.14; (c) 07.31–06.14.

The surface changes calculated by the M3C2 distance were compared with the field
monitoring points data measured by the total station/GPS RTK and the difference of the
DEM (DoD) method to quantitatively verify the accuracy of the M3C2 distance. The range
of 1 m2 is determined by taking each measured monitoring point as the center, and all
point clouds in the range are searched to calculate the average of the M3C2 distance. For
each monitoring point, the average of the M3C2 distance value was used as a proxy and
compared with measured data. Taking the data of 06.14–07.20 and 06.14–07.31 as examples,
the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were
calculated simultaneously. The calculation results are shown in Table 4, where the mean
error is small, basically in the range of ±0.2 m. The average error of the M3C2 distance in
the 07.31–06.14 result of line A is greater than the DoD, which may be caused by the offset
of positive and negative errors caused by a large error value. The average absolute error is
the average of the absolute values of the deviations between all individual observations
and predicted values, which can better reflect the actual error. In addition, because it is
proportional to the square of the deviation, the RMSE is greatly affected by the outlier error,
generally greater than the ME and the MAE, mostly between 0.2 m and 0.3 m. Due to the
influence of time decoherence, the data with the larger time interval with 06.14 has greater
RMSE. Compared with the DoD extraction values, the M3C2 distance values show the
lower RMSE in both line A and line B.
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Table 4. Comparison error calculation between measured points and subsidence value extracted
by UAV.

Dataset
Mean Error (m) Mean Absolute Error (m) Root Mean Square Error (m)

Line A Line B Line A Line B Line A Line B

DoD 07.20–06.14 −0.16 −0.11 −0.20 0.14 0.24 0.17
M3C2 07.20–06.14 −0.14 −0.10 0.18 0.14 0.22 0.16
DoD 07.31–06.14 0.06 −0.28 0.31 0.29 0.34 0.32

M3C2 07.31–06.14 −0.13 −0.14 0.19 0.23 0.23 0.25

Taking the intersection of line A and B as the origin, the comparison among the mea-
sured deformation, the M3C2 distance and the DoD subsidence value is shown in Figure 14.
The two curves extracted from the UAV data are close to the trend of the measured subsi-
dence curve. The deviation is small near the measured maximum subsidence value, and the
M3C2 distance value alleviates the problem of more elevation jump points in the UAV data
compared with the DoD extraction value. The difference between field measured data and
UAV measurements may be caused by the following factors: (1) the time between the UAV
and the GPS monitoring point measurement is not completely matched; (2) The spatial
position between the UAV extraction point and GPS monitoring station is inconsistent.
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5. Discussion
5.1. Precision Analysis of Monte Carlo Simulation

In this study, the mean value of precision error in the Y direction is slightly larger than
that of the X direction, and the cross-flight can be used to reduce the difference in precision
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between X and Y directions. The dome effect is observed in the Z direction precision map,
which is also recorded in the evaluation of the UAV SfM photogrammetry by Rosnell and
Javernick et al. [41,42]. Parallel flight will lead to a dome effect in the vertical direction [43].
The dome effect can be alleviated by strengthening the network geometry by including
oblique images [11].

According to the study of Carbonneau et al. [44], the error of 0.06 shows that the
optimal precision of flight height is 0.1% when the flight height is 60 m, which means that
1:1000 can be regarded as the inherent limit of the SfM precision level. The median ratio
between the RMSE and survey range is about 1:640 in more than 40 published studies [45].
Our maximum error in the Z direction is 0.134 m and the ratio of precision to observation
distance is about 1:1900 at the relative ground flight height of 255 m, which is similar to the
results of Li et al. in the polar region, where the maximum precision of sparse point clouds
is 0.83 m and the ratio is about 1:1800 at the flight height of approximately 1500 m [46].
Therefore, we can classify our terrain data as high-quality data. In terms of image ground
sampling distance, the simulated horizontal mean is roughly the same as that of the GSD
(4 cm), and the vertical mean precision is about 1–3.5 times that of the GSD, which has
similar results in previous studies [46,47].

Regarding the number of iterations, the Monte Carlo simulation processing in this
manuscript took several hours, and the precision of simulation results was acceptable.
Considering the tradeoff between processing efficiency, storage space and result precision,
we set the number of iterations to 1000, which is the same as the research of Zhang et al. [32].

5.2. Advantages of Monte Carlo Simulation

Calculating the RMSE value at the ground checkpoint is a commonly used error evalu-
ation method when the ground data is a set of distribution points rather than a continuous
surface. This operation does not fully describe the spatial variable precision of SfM pho-
togrammetry and the lower average error value may mask the larger uncertainty [44]. Error
assessments thus benefits from a larger number of more evenly distributed checkpoints,
which are not easy to carry out in some remote areas. The three-dimensional precision of
the UAV SfM sparse-point-cloud-based Monte Carlo simulation is an effective method to
analyze the uncertainty of photogrammetry and direct georeferencing.

The Monte Carlo iterations generate not only the precision map but also the associ-
ated covariance. Therefore, the point coordinate error ellipsoid can be derived and the
correlation between the camera parameters can be evaluated, which is helpful to check the
over-parameterization of the camera model [38]. The layout of ground control points is
inevitable when there is a high requirement for the quality of the results. Meanwhile, it is
still necessary to achieve a compromise between the measurement time and the quality of
surface reconstruction. The different numbers of GCPs can be used to evaluate the change
of precision at GCPs and checkpoints within different GCP density ranges, and to estimate
the minimum GCP density that meets specific precision requirements, minimizing the
relevant field work with minimal impact on measurement precision [38,48].

Attention should be paid to error control in the UAV SfM processing process, but
most software cannot provide detailed precision information at present. As emphasized
by Micheletti et al., SfM has the advantage of providing a black box tool without expert
supervision, and may become a disadvantage, resulting in less user participation in data
quality control, and the source of data error may not be identified [49]. Using code to
flexibly operate the UAV SfM project is helpful to accurately understand the error size,
spatial variability and error sources, so as to improve the accuracy of results based on UAV
SfM [50].

5.3. Methods to Improve the Quality of UAV SfM Results

Many recent studies have shown that there are systematic errors in the processing
flow of automated UAV SfM [44,51]. This systematic error usually comes from image
sensor characteristics, camera distortion model, imaging network geometry, surface texture,
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weather conditions, and camera parameter over-parameterization. It is time-consuming and
expensive to establish a well-distributed control point network, and it is also dangerous in
mountainous areas. Therefore, some measures can be taken to improve the quality of UAV
SfM results using direct georeferencing: additional UAV cross-flight routes, adjustment of
flight speed to reduce the risk of image blur at high speed, and the acquisition of images
with large overlap, strengthens the geometry of the imaging network, and improves the
reliability of image matching; adding additional oblique images to the network to provide
convergent image acquisition [52]; selecting a period of time with clean air and sufficient
light for data acquisition; and a well-defined camera distortion model [50].

5.4. The Advantages of M3C2 Compared with DoD

For complex terrain scenarios, M3C2 is described as the most suitable point cloud
quality descriptor [53]. The M3C2 algorithm runs directly on the point cloud without grid
division and avoids the errors introduced in the process of point cloud interpolation to DEM,
so it is widely used in the research of point cloud change detection [7,54]. The M3C2-based
method is more suitable for detecting changes in complex three-dimensional environments
than DoD [40]. DoD may overestimate errors on steep terrain while small lateral shifts may
produce large vertical differences. Figure 15 shows the comparison between M3C2 and
DoD during 06.14–07.31. It is clear that M3C2 algorithm is smoother than the DoD method,
where significantly more noise in the form of white grids is observed. The M3C2 method
qualitatively shows the improvement in the reliability of surface deformation distribution.
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The multi-temporal LiDAR data in this study is expected to achieve better results,
because the penetration of LiDAR makes it possible to obtain the terrain under vegetation.
In addition, the long-period surface change sequence can be combined with the vegetation
change data to reduce the influence of vegetation on multi-temporal monitoring of UAV by
analyzing the change law of surface vegetation cover.

The spatial and temporal resolution of data collection should be adapted to the dy-
namic changes observed in the scene, and the appropriate monitoring frequency depends
on the stage of the surface movement process. In the active stage of surface point movement,
the subsidence rate is greater than 5 cm/month, and the subsidence is mainly concentrated
in this stage. At this time, increasing the number of observations can better reveal the law
of surface movement caused by mining and avoid cumulative effects.

Due to the influence of local terrain roughness and point cloud density, the calculated
M3C2 distance detection level threshold limits the application of UAV to obtain small-
scale data such as horizontal surface movement. With the advancement of UAV hardware
technology and the development of computer vision technology, multi-temporal point
clouds based on high density and high precision have the opportunity to reveal finer
surface deformation.
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6. Conclusions

In this paper, multi-temporal data collected by UAV with visible camera and LiDAR
sensor were used to monitor mining-induced subsidence. The main conclusions can be
summarized as follows:

(1) Monte Carlo simulation is an effective method to evaluate the relative precision of
photogrammetric products without ground checkpoint. Repeated bundle adjustment
through Monte Carlo simulation iteration can generate 3D precision maps of sparse
point clouds. The results show that the average precision in the three directions is
44.80 mm, 45.22 and 63.60 mm, respectively. This operation is helpful to understand
the factors affecting the precision and optimize the future measurement planning.

(2) Co-registration of multi-temporal UAV data can reduce dependence on GCPs. The
consistency between different measurements is very important when comparing
multi-temporal measurement data. Taking the standard deviation of the M3C2 dis-
tance as the index, the repeatability of multi-temporal UAV SfM data was evaluated
by airborne LiDAR data. The results show that the standard deviation of the M3C2
distance is between 0.13 and 0.19, indicating the comparable results of UAV multi-
temporal photogrammetry data.

(3) The surface displacement related to mining activities along the local normal direction
among multi-temporal three-dimensional point clouds was obtained from the M3C2
algorithm. The results show that the M3C2 algorithm based on three-dimensional
point clouds can obtain subsidence information and identify the characteristics of
dynamic moving basin development. It is a valuable supplement to the traditional
2.5D method for analyzing topographic changes, and can provide reference for the
monitoring of similar objects such as landslides and rock glaciers.
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