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Abstract: Under the strong influence of climate change and human activities, the frequency and 

intensity of disturbance events in the forest ecosystem both show significant increasing trends. Pine 

wood nematode (Bursapherenchus xylophilus, PWN) is one of the major alien invasive species in 

China, which has rapidly infected the forest and spread. In recent years, its tendency has been to 

spread from south to north, causing serious losses to Pinus and non-Pinus coniferous forests. It is 

urgent to carry out remote sensing monitoring and prediction of pine wilt disease (PWD). Taking 

Anhui Province as the study area, we applied ground survey, satellite-borne optical remote sensing 

imagery and environmental factor statistics, relying on the Google Earth Engine (GEE) platform to 

build a new vegetation index NDFI based on time-series Landsat images to extract coniferous forest 

information and used a random forest classification algorithm to build a monitoring model of the 

PWD infection stage. The results show that the proposed NDFI differentiation threshold classifica-

tion method can accurately extract the coniferous forest range, with the overall accuracy of 87.75%. 

The overall accuracy of the PWD monitoring model based on random forest classification reaches 

81.67%, and the kappa coefficient is 0.622. High temperature and low humidity are conducive to the 

survival of PWN, which aggravates the occurrence of PWD. Under the background of global warm-

ing, the degree of PWD in Anhui Province has gradually increased, and has transferred from the 

southwest and south to the middle and northeast. Our results show that PWD monitoring and pre-

diction at a regional scale can be realized by using long time-series multi-source remote sensing 

data, NDFI index can accurately extract coniferous forest information and grasp disease information 

in a timely manner, which is crucial for effective monitoring and control of PWD. 

Keywords: pine wood nematode; Google Earth Engine; time-series; vegetation index;  

remote sensing monitoring 

 

1. Introduction 

Pine wood nematode (Bursapherenchus xylophilus, PWN) is a kind of forest pest that 

spreads through the insect vector Monochamus alternatus in a specific environment and 

invades the Pinus Linn plant, which is one of the major alien invasive species in China [1], 

causing rapid wilt and death of pine trees [2,3]. PWN was first found in North America. 

It was introduced into Nagasaki, Japan, in 1905, and then gradually spread to Europe and 

Asian countries. It was not until 1971 that PWN was confirmed as a pathogen. It is listed 

as a quarantine pest in more than 40 countries around the world [4]. Pine wilt disease 

(PWD) is a fatal disease caused by invasion and parasitism of PWN, known as the ‘cancer 

of pine trees’ [5], also referred as the COVID-19 virus of pinewoods. It only takes about 

40 days from the invasion of PWN to reducing the resin secretion to its death, and the 
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forest will be destroyed in 3–5 years. The high spread-speed of PWD leads to great diffi-

culty controlling it. 

Due to the suitable conditions for the survival of PWN in China, PWD was first found 

in Nanjing in 1982. In the past four decades, the disease has spread to the middle temper-

ate zone, showing a rapid westward and northward spread. It has spread to 5479 town-

ship administrative regions in 742 county-level administrative regions of 19 provinces in 

China, covering an area of 1.81 million hectares [6], posing a huge threat to the balance of 

pine forest resources and ecosystems in China. It has invaded many national scenic spots 

and key ecological areas, which not only affects the development of the social economy, 

but also seriously damages the natural landscape and ecological environment [7,8]. Accu-

rate prevention and control of this disease is of top priority in current forest protection. 

Anhui Province belongs to the transitional area of warm temperate zone and sub-

tropical zone. Because of its monsoon climate and four distinct seasons, the precipitation 

has obvious seasonal changes. It has diverse landforms including plains, platforms, hills, 

mountains, etc. Anhui Province is an important constituent province of the Yangtze River 

Delta Economic Circle, promoting the coordinated development pattern of ‘one circle and 

five regions’. At the same time, as one of the provinces with rich pine forest resources in 

China [9], PWD has caused serious losses to the forest resources of this province since 

PWD was first found in 1988, so monitoring and prevention of PWD in Anhui Province is 

particularly important, and has indicative and representative significance for PWD disas-

ter prevention and control in other regions with the similar forest structure, climate char-

acteristics and biogeographical environment. 

Accurate and efficient monitoring is the premise of disease prevention and control. 

Sexual attraction and field survey are two traditional pest monitoring methods [10]. How-

ever, field survey is limited by climate, terrain and other conditions, with poor real-time 

performance, high cost, and low efficiency. It is unable to conduct macro dynamic moni-

toring, and cannot essentially identify the mechanism that the ecosystem structure is in-

fected by PWD. Although the government has been making great efforts to coordinate the 

prevention and control of the disease, the traditional field investigation and monitoring 

methods often delays the best time for disease control, thus causing incalculable losses 

[11]. 

Remote sensing technology has incomparable advantages over conventional ground 

survey methods in forest pest monitoring research [12]. When the host plant of PWN is 

infected, the color of its needles will change from green to grayish green and yellow, until 

the whole crown becomes reddish brown; the plant will die, but the needles of the plant 

will not fall off [13]. This feature of needle discoloration of infected plants will produce a 

spectral feature change response on satellite-borne optical remote sensing imagery. Satel-

lite-based remote sensing imagery has the advantage of a wide covering range and detect-

ability of fine features of ground surfaces, which can be monitored in a large range and in 

real time. Therefore, remote sensing technology plays an incomparably important role in 

the study of forestry pests and diseases with its advantages of wide monitoring range, 

detectability of fine features of ground surfaces and so on. Because the vegetation has a 

special spectral characteristic curve, the most significant change of the host plant after 

infection by PWN is the variation of its external morphology and internal organizational 

structure of the leaves, which makes trees respond to spectral changes in remote sensing 

imagery [14]. Qin Lin et al. [15] used Beijing-3 data to conduct remote sensing monitoring 

of PWD through image fusion, index calculation and information extraction. The results 

showed that the accuracy and recall rate of intelligent extraction of discolored pine trees 

based on deep learning were high, which improved the solubility of quantitative moni-

toring of individual discolored pine tree, and was conducive to accurate monitoring, pre-

vention and control of PWD. Qin Jun [16] used SCANet to obtain the spatial information 

of PWD, in order to enhance the spatial and spectral detailed features of the disease and 

integrate its shallow features. The results showed that the recall rate of PWD extracted by 

SCANet was 0.9322, which realized the rapid, high-precision and automated intelligent 
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monitoring of PWD by unmanned aerial vehicle remote sensing. With the support of ge-

ostatistics, machine learning and other technologies, it is possible to use image processing, 

information extraction, and parameter inversion for remote sensing monitoring of pests 

and diseases. 

At present, satellite remote sensing monitoring also has many limitations, such as 

low recognition rate due to the limitation of spatial spectrum resolution, the difference 

between PWD-induced needle leaves discoloration and normal physiological discolora-

tion of broad leaves, etc. [17]. In view of this, this study takes Anhui Province as the study 

area, and with the support of ground survey, satellite-borne optical remote sensing, geo-

spatial analysis technology and machine learning technology, integrates the biological 

and ecological characteristics, living environment, human activities, spatial distribution 

of host plants and other factors of PWN, and uses the vegetation index of time-series to 

build disease degree monitoring model. Through the screening research on the influenc-

ing factors of disease occurrence, the meteorological change of long time-series and the 

analysis of disease occurrence and disease degree, reliable basis is provided for disease 

prevention and control. The focus and innovations of this research are as follows: 

a Proposing a new index for extracting the coniferous forest range based on time-series 

Landsat images. 

b Building a monitoring model of infection areas of PWD based on the time-series 

Landsat images. 

c Analyzing the spatio-temporal dynamics of PWD to strengthen the understanding of 

disaster occurrence and spread. 

2. Materials and Methods 

2.1. Study Area 

Anhui Province is located in East China, with geographical coordinates ranging from 

29°41′ to 34°38′N, 114°54′ to 119°37′E. It borders Shandong Province in the north, Jiangsu 

Province in the east, Jiangxi Province in the south, and Hubei Province in the west, with 

a total area of 140.1 thousand km2. The landform of its territory includes mountains, hills, 

plains, etc. The mountains are mostly distributed in the northeast and extends roughly in 

an east–west direction. The mean annual precipitation is 773~1670 mm, and the mean an-

nual temperature is 14~17 °C. Anhui Province is a key province of the southern collective 

forest area in China, with rich forest resources. According to the ninth national forest re-

sources inventory statistics, the area of coniferous forests in Anhui Province accounts for 

27.29% of the total forest area [18]. Among the coniferous forests, the forest area domi-

nated by Pinus massoniana is the largest, followed by Cunninghamia lanceolata. According 

to the survey announcement of Anhui Forestry Bureau, Anhui Province strictly enforced 

quarantine and law enforcement on PWD, paid close attention to the source of infected 

trees, practically eliminated the hidden danger of epidemic transmission, and prevented 

external invasion and internal diffusion. The province has carried out a special campaign 

to control the violations of laws and regulations against infected trees, actively applied 

the refined supervision platform of the National Forestry and Grass Administration for 

PWD epidemics, and targeted the epidemic monitoring and control to the pine forest sub-

compartments. At present, 14,599 sub-compartments of the PWD epidemic have been rec-

orded, accounting for 95.50% of the total sub-compartments, providing more accurate 

data support for the prevention and control of the PWD epidemic. 

We conducted a field survey in Huoshan County, Lu’an City, Anhui Province. Hu-

oshan County is located at the northern foot of Ta-pieh Mountains, with typical mountain 

features. It is one of the key mountain counties in Anhui Province, with a mean annual 

temperature of 15.2 °C, the highest temperature of nearly 40 °C, and the lowest tempera-

ture of minus 10 °C. In 2014, sporadic dead pine trees suspected of PWD were found in 

Mozitan Town for the first time. Later, they were also found in other towns, and were 

identified as PWD at the end of the year [19]. In recent years, PWD has broken out 
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seriously, and Huoshan County is one of the worst hit PWD areas in Anhui Province. The 

location and sample plot data of the study area are shown in Figure 1. 

 

Figure 1. Location of study area and sample plot. (a) Location of the study area. (b) True color Land-

sat image and sample plot. (c1) Picture of healthy pine trees in the study area. (c2) Picture of infected 

pine trees in the study area. 

2.2. Data 

2.2.1. Field Survey Data 

In order to obtain the damage characteristics of the different infection stages of the 

forest by PWD for extracting the diagnostic spectrum band, vegetation index, and texture 

information from the remotely sensed imagery, in October 2021, field research was con-

ducted in Huoshan County, Lu’an City, Anhui Province to determine the location of the 

study area, and a field survey was conducted at the end of October of the same year. In 

the study area, randomly distributed single trees with an interval of more than 30m were 

selected to obtain the data of the infected single trees. RTK was used to obtain the location 

of the single tree infected by PWD. We recorded the detailed information of infected trees, 

and took photos of infected trees and the surrounding environment. A total of 614 single 

trees were obtained, including 249 infected single trees and 365 healthy single trees, in 

which the selection of healthy single trees met the requirements that the host plants within 

30m around them were healthy. 

2.2.2. Remote Sensing Imagery 

The Landsat remote sensing data selected for this study was Landsat 8 OLI surface 

reflectance data, and the image data ID was ‘LANDSAT/LC08/C01/T1_SR’. Considering 

that the onset time of the infected host plants was from late August to early November 

and the influence of cloud cover in the study area, as the single and cloudless Landsat 

images could not cover the entire province, the mean value data of the monthly cloud 

removal synthetic images from 2019 to 2020 was selected as the basic data source to extract 

the coniferous forest range, and the mean data of the cloud removal synthetic images from 
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August to November of each year from 2018 to 2021 was selected as the basic data for 

monitoring the occurrence of PWD. 

2.2.3. Other Auxiliary Data 

The forest screened from the GlobeLand30 Version 2020 land cover data was selected 

as the basic data for extracting the coniferous forest in Anhui Province. With the spatial 

resolution of 30m, the overall classification accuracy of 85.72%, and the kappa coefficient 

of 0.82. 

Digital Elevation Model (DEM) data was from Shuttle Radar Topography Mission 

(SRTM) products with a spatial resolution of 30m released by the data center of United 

States Geological Survey (USGS, https://www.usgs.gov/products/data (accessed on 18 

July 2021)). 

All data were called on Google Earth Engine (GEE); GEE is a tool subordinate to Big 

Google, it can quickly batch process a large number of ‘huge’ satellite images, quickly 

calculate various vegetation indices, predict crop related yields, monitor drought growth, 

and monitor global forest changes. Its interface is intuitive and friendly to new users. 

In this study, the statistical data of sub-compartment dominated by pine tree species 

in the Forest Management Inventory of Anhui Province in 2020 and the data of PWD ep-

idemic area in Anhui Province over the years were obtained, which were provided by the 

forestry department of Anhui Province. 

2.3. Method 

This study takes Anhui Province as the study area, and with the support of ground 

survey, satellite-borne optical remote sensing, geospatial analysis technology and ma-

chine learning technology, integrates the biological and ecological characteristics, living 

environment, human activities, spatial distribution of host plants and other factors of 

PWN, and uses the vegetation index of time-series to build a disease degree monitoring 

model. Through the screening research on the influencing factors of disease occurrence, 

the meteorological change of long time-series and the analysis of disease occurrence and 

disease degree, a reliable basis is provided for disease prevention and control; its technical 

route is shown in Figure 2. 

 

Figure 2. Technical route chart of this study. 
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2.4. Coniferous Forest Extraction Based on Time-Series Landsat Images 

With the increasing adaptability of PWN in China in recent years, the host plants of 

PWN have gradually expanded from dozens of pine species such as Pinus massoniana and 

Pinus densiflora to other non-Pinus coniferous species [20]. According to the statistical data 

of the sub-compartment area in the forest resources inventory of Anhui Province, the sub-

compartment area with pine forest as the dominant tree species accounts for 25.09% of the 

forest area in Anhui Province. According to the ninth national forest resource inventory 

statistics in China, the coniferous forest area in Anhui Province accounts for 27.29% of the 

total forest area in the province. Therefore, this paper took the distribution area of conif-

erous forest in the study area as the potential adaptive area for PWN to conduct PWD 

monitoring and disease analysis. 

2.4.1. Data Analysis and Selection 

GlobeLand30 land cover data, as a product with high classification accuracy among 

the global same-type data, has been cited by many organizations [21]. In this study, the 

forests in the primary type of GlobeLand30 land cover data were used as the basis for 

information coniferous forest extraction. The range of forests in Anhui Province in 2020 is 

shown in Figure 3. 

 

Figure 3. GlobeLand30 woodland range map of Anhui Province in 2020. 

Based on the forest range in the GlobeLand30 land cover data in 2020, the vegetation 

sample points were selected on Google Earth Pro and uploaded to the GEE platform. The 

monthly mean information of the changes in the time-series of vegetation indexes of dif-

ferent forest types in 2020 was extracted based on Landsat 8 images, the forest types in the 

study area were divided into coniferous forest and other forests. The selected characteris-

tics of sample points are shown in Table 1. 
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Table 1. Interpretation characteristics of forest types from Google Earth Pro high-definition images. 

Forest Types Example Description 

Coniferous forest 

 

Most of them are distributed in sheets, with 

uniform tone of dark green and clear bound-

ary with other woodlands 

Other forests 

 

Chaotic shape and uneven tone 

The commonly used vegetation index is mainly composed of the difference and ratio 

of the reflectance of the red band and the near-infrared band, so as to excavate the im-

portant information hidden in vegetation, which can more comprehensively reflect the 

condition of vegetation coverage and growth. There have been many studies on forest 

type classification through vegetation index. Considering the objective of this study is to 

extract coniferous forest areas, and combined with the various characteristics of different 

vegetation indices, this paper selected five indices, Normalized Difference Vegetation In-

dex (NDVI), Difference Vegetation Index (DVI), Ratio Vegetation Index (RVI), Soil-Ad-

justed Vegetation Index (SAVI) and Land Surface Water Index (LSWI), to construct the 

coniferous forest extraction index. See Table 2 for details. 

Table 2. Vegetation indices for extracting coniferous forest. 

Index Formula Reference 

NDVI 
 

Rouse et al. [22] 

DVI  Demetriades et al. [23] 

RVI 
 

Pearson et al. [24] 

SAVI 
 

Huete et al. [25] 

LSWI 
 

Maki et al. [26] 

Note: NIR, RED, SWIR1 and SWIR2 represent the reflectivity of near-infrared band, red band, 

shortwave infrared band 1 and shortwave infrared band 2, respectively. 

2.4.2. Extraction of Vegetation Index Time-Series Data 

Different forest types will show different characteristics as time changes, so the time-

series data of vegetation index can be used to identify forest types [27]. On the basis of 

forest range, the GEE cloud platform was used to calculate the monthly values of NDVI, 

DVI, RVI, SAVI and LSWI in 2020 for 2000 samples points of two forest types in Anhui 

Province using expression function.Ee.Reduce.mean( ) function was used to process the 

mean value of the same vegetation index of the samples in each month, to obtain the 

monthly mean time-series spectral curves of NDVI, DVI, RVI, SAVI and LSWI of the two 

forest types in 2020, and to find the best time point for coniferous forest information ex-

traction, so as to build the coniferous forest extraction index and complete the coniferous 

forest extraction. The index time-series change curves of different forest types are shown 

in Figure 4. 
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Figure 4. Comparison of five vegetation indices time-series change curves of coniferous forest and 

other forest types. 

As shown in Figure 4, the changes curves of each index of coniferous forest and other 

forests were basically consistent. All the vegetation index values showed a trend of first 

increasing and then declining. Furthermore, each vegetation index value of coniferous 

forest was slightly higher than that of other forests. Anhui Province belongs to the transi-

tional region between warm temperate zone and subtropical zone, and is one of the re-

gions with a distinct monsoon climate. From north to south, Anhui Province is divided 

into four regions: warm temperate zone humid region, north subtropical sub-humid re-

gion, north subtropical humid region and middle tropical humid region [28]. With abun-

dant natural resources, the vegetation in this region is growing well. It can be seen from 

Figure 4 that each vegetation index shows an overall upward trend from January to April, 

and the trends of coniferous forest and other forests are basically consistent. From May to 

August, there is no obvious fluctuation in each vegetation index of coniferous forest, while 

the vegetation index of other forests witnesses obvious change, forming a trend of first 

rising and then falling. It can be seen from the analysis of the change curve of vegetation 

indices that the vegetation indices of coniferous forest and other forests are quite different 

from May to August. This time-series feature provides a good indicator to distinguish 

coniferous forest and other forests, which can be used to construct a new vegetation index 

extracting coniferous forest information. 

2.4.3. Construction of Normalized Difference Forest Index (NDFI) 

According to the results of annual change analysis of different vegetation indices, 

this study combined different vegetation indices at different times to build a new vegeta-

tion index to extract the distribution information of coniferous forests by analyzing the 

best distinction time of each vegetation index of coniferous forest and other forests. It can 

be seen from the annual change curve of vegetation index that although the change trend 

of each vegetation index of coniferous forest and other forest types is nearly the same, 

there are still some differences, mainly due to the differences in leaf structure characteris-

tics and phenological changes of different forest types [29]. Since NDVI can highlight veg-

etation information, and facilitate the differentiation of vegetation, this paper used NDVI 

to participate in construction of the new forest index. At the same time, according to the 
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vegetation index annual change figure (Figure 4) of different forest types, the reflectivity 

of DVI from May to June, NDVI and SAVI from June to July, RVI from June to August 

and LSWI from July to August can provide a good differentiation between coniferous for-

est and other forests. Therefore, the Normalized Difference Forest Index (NDFI) that dis-

tinguishes coniferous forest from other forests was constructed by using the time-series 

change characteristics of each vegetation index. The formula is as follows (Formula (1)): 

 (1) 

Among them, NDFI represents the constructed Normalized Difference Forest Index, 

and NDVI6, NDVI7, DVI5, DVI6, RVI6, RVI8, SAVI6, SAVI7, LSWI7 and LSWI8 represent 

the monthly mean value of NDVI, DVI, RVI, SAVI and LSWI, in May, June, July and Au-

gust, respectively. 

In order to better extract the information of coniferous forest, the probability density 

curve analysis was conducted on NDFI corresponding to different forest types, which was 

the distribution of all sample points of each forest type in NDFI. The frequency of occur-

rences of the index values of 2000 samples of two forest types on the NDFI image were 

analyzed. The horizontal axis represents the change of the NDFI values, and the vertical 

axis represents the frequency of the sample points (as shown in Figure 5). According to 

the probability density curve of different forest types, the intersection value of coniferous 

forest and other forests curve was calculated as the threshold of coniferous forest infor-

mation extraction. The calculation formula is as follows (Formula (2)): 

𝑋 = (𝜎1𝜇1 + 𝜎2𝜇2)/(𝜎1 + 𝜎2) (2) 

among which X is the discrimination threshold for extracting coniferous forest infor-

mation, µ1, µ2 and σ1, σ2 represent the mean value and standard deviation of NDFI of the 

two types of samples, respectively. 

 

Figure 5. Probability density curves of coniferous and other forest type. 

As shown in Figure 5, in the NDFI density curve, the best separation threshold value 

of coniferous forest and other forests can be calculated by using the intersection value 

calculation Formula (2), where the differentiation point of coniferous forest and other for-

ests is 0.28. So far, the differentiation threshold for extracting coniferous forest information 

has been determined and can be used for coniferous forest information extraction. 
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2.4.4. Coniferous Forest Information Extraction Based on Time-Series Index Change 

Analysis 

In order to extract coniferous forest information, the forest range in the study area 

was first extracted using GlobeLand30’s land cover data. Then, the forest range was di-

vided into coniferous forest and other forests. After that, the annual change curves of five 

vegetation indexes were obtained through the GEE platform, so as to obtain the time-

series characteristics of vegetation indices to build a new vegetation index NDFI. Then, 

classification thresholds were extracted by establishing probability density curves of dif-

ferent forest types, from which the extraction of coniferous forest information was com-

pleted. The specific steps were as follows: (1) Uploaded the vector data of GlobeLand30’s 

land cover forest range to the GEE cloud platform, and took the forest vector range as the 

boundary to obtain the Landsat image of Anhui Province in 2020; (2) The GEE cloud plat-

form was used to build a cloud removal algorithm to remove cloud and synthesize the 

Landsat images in the forest area of Anhui Province in 2020 on a monthly basis to obtain 

the monthly cloud removal and synthesis images in 2020. According to the vegetation 

index formula, monthly images of five vegetation indexes, NDVI, DVI, RVI, SAVI and 

LSWI, were obtained; (3) Uploaded two forest type sample points to the GEE cloud plat-

form to extract the samples corresponding to different vegetation index values and obtain 

the annual change curves of five vegetation indexes; (4) NDFI was calculated based on the 

GEE platform, and NDFI.gt (0.28) was set according to NDFI threshold to complete the 

extraction of coniferous forest information. 

2.5. Monitoring Model of PWD Based on Landsat Imagery 

2.5.1. Feature Extraction and Selection 

Considering the influence of cloud cover on the optical images in the study area and 

the onset time of the infected host plants (from late August to early November), this paper 

obtained the cloud removal synthetic image of Anhui Province from August to November 

in 2021, based on the GEE platform, and extracted the original spectrum of the feature 

band, vegetation indices, texture information and topographic features from 614 sample 

points obtained from the field survey in Huoshan County, Anhui Province at the end of 

October 2021. The characteristic parameters were selected by means of analysis of vari-

ance (F test) and importance feature selection, including seven original spectra B1~B7; six 

vegetation indexes, including Red-Green Index (RGI) [30], Normalized Difference Vege-

tation Index (NDVI) [31], Normalized Difference Moisture Index (NDMI) [32], Moisture 

Stress Index (MSI) [33], Normalized Burn Ratio (NBR) [34] and Tasseled Cap Transfor-

mation Wetness (TCW) [35]; eight common texture feature metrics, including Mean 

(MEA), Variance (VAR), Correlation (COR), Contrast (CON), Dissimilarity (DIS), Homo-

geneity (HOM), Second Moment (SM) and Entropy (ENT); and three topographic fea-

tures, including Elevation, Slope and Aspect. 

Analysis of variance (ANOVA) was usually used to test the significance of differ-

ences between the mean values of multiple samples, which can be divided into one-factor 

analysis of variance (one-way ANOVA) and multi-factor analysis of variance (MANOVA) 

[36]. This paper use MANOVA as the first step of feature selection. When the significance 

of the variable is less than 0.05, it means that at the 0.05 significance level, the variable has 

a significant difference on the occurrence of the dependent variable PWD. This study took 

the variables with significance less than 0.05 as the next-step monitoring features. Through 

MANOVA, we obtained 47 features in total, including B2~B4, B6 and B7 in the original 

spectrum, MSI, NBR, NDMI, NDVI, RGI and TCW8 in the vegetation index, CON65, 

CON75, COR65, DIS65, ENT15, ENT75, HOM15, HOM65, HOM75, WEA15, WEA35, WEA45, 

WEA65, WEA75, SM15, SM75, VAR15, VAR35, VAR65, VAR75, CON69, CON79, COR29, DIS69, 

DIS79, ENT79, HOM69, HOM79, MEA69, MEA79, SM69, SM79, VAR69 and VAR79 in the texture 

information, and Elevation and Aspect in the topographic features. 
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Through the importance metrics of the random forest method, the classification fea-

tures with complex relationships can be ranked, and the relative importance of each fea-

ture to prediction can be obtained [37]. Generally speaking, for the dataset with relatively 

large dimension, this method can be used to eliminate the features with relatively small 

impact in the dataset, and ensure the training speed as well as the accuracy of the data. 

The two most commonly used methods in ranking important features of random forests 

are permutation importance and Gini importance. In this paper, based on the results of 

the variables selected from the analysis of variance, we used R language to process rank-

ing of Gini importance features, and further selected the feature variables. In this study, 

we set the number of optimal trees (ntree) to 1900, and the number of pre-selected char-

acteristic variables at the optimal tree node (mtry) to 29. The results of the first 10 im-

portant characteristics are shown in Table 3. 

Table 3. Ranking results of Gini importance features. 

Feature Mean Decrease Accuracy Mean Decrease Gini 

Elevation 88.20875 38.609919 

MSI 38.38783 16.877994 

NBR 36.80615 15.824209 

B2 47.7794 14.303737 

RGI 41.53761 13.566015 

NDMI 28.44070 12.623385 

Aspect 38.16040 11.632085 

COR29 30.11671 9.689533 

COR65 25.90826 9.26472 

TCW8 29.65953 8.234906 

Based on the ranking results of the above important features, this paper selected the 

features with an average decreasing Gini value of more than 10, which were the first seven 

features, Elevation, MSI, NBR, B2, RGI, NDMI and Aspect to construct the classification 

model of PWD. The infected and non-infected sample points in the field survey were di-

vided into 430 training samples and 184 test samples according to the ratio of 7:3. Based 

on the GEE cloud platform, the random forest classification method was used to monitor 

the occurrence of PWD in the epidemic areas of Anhui Province. 

2.5.2. Construction of Monitoring Model 

The key of constructing the pest monitoring model is to find out the indicators that 

are sensitive to the infection symptoms of their host plants. At present, there are three 

types of forest pest monitoring models, namely, various index model, combined model of 

various channel bands, and mixed model of various channels and ecological factors [38]. 

In this study, the monitoring model of PWD in the study area was constructed by using 

the selected characteristic variables and the random forest classification method based on 

the GEE cloud platform, and the monitoring results were analyzed. 

Random forest (RF) is a classifier composed of voting mechanisms of different deci-

sion trees. Samples are trained and predicted through multiple decision trees to obtain the 

final classification results [39]. The random forest classification algorithm is suitable for 

high-dimensional data processing, and because of the use of random sampling in the clas-

sification process, it can reduce the occurrence of the over-fitting phenomenon. At present, 

this algorithm has been widely used in remote sensing imagery classification, artificial 

intelligence and other fields. Based on Landsat remote sensing imagery combined with 

random forest and decision tree algorithms, Huang Fangfang et al. [40] carried out remote 

sensing monitoring on PWD of Pinus massoniana in Yiling District, Yichang City, Hubei 

Province. The results showed that the random forest classification algorithm with original 

spectrum and vegetation index had the best classification results, and the classification 
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accuracy reached 80.5%. This research was based on the GEE cloud platform, using 

ee.Classifier.randomForest( ) function in the random forest classification algorithm, 

through repeated experiments, selected and set the number of decision trees num-

berOfTrees in the classifier to 20 at which the classification result was the most stable and 

the best. 

3. Results 

3.1. Evaluation of Extraction Accuracy of Coniferous Forest in Anhui Province 

This paper used the method of constructing a confusion matrix to evaluate forest re-

sources classification results in Anhui Province. Using Google Earth Pro software, 1000 

coniferous forest sample points and other forests’ 1000 sample points were selected within 

the range of forest resources in Anhui Province as verification samples of classification 

results. General classification accuracy and kappa coefficient were analyzed and calcu-

lated (see Table 4). 

Table 4. Accuracy evaluation of classification results. 

Forest Type Coniferous Forest Other Forests Total 

General  

Classification  

Accuracy (%) 

Kappa  

Coefficient 

Coniferous Forest 870 130 1000 

87.75 0.755 Other Forests 115 885 1000 

Total 985 1015 2000 

As shown in Table 4, the total accuracy of the classification results based on the con-

structed vegetation index NDFI in Anhui Province in 2020 reaches 87.75%, and the kappa 

coefficient is 0.755. This shows that the classification results have a high accuracy, and can 

be used for the extraction of coniferous forest information in this area. 

Table 5 shows the coniferous forest area extracted in this paper and the statistical area 

of sub-compartments taking pine trees as the dominant tree species, as well as the relative 

error between the two. Figure 6 compares the coniferous forest area extracted in this paper 

and the distribution area from the sub-compartment survey where the pine trees are the 

dominant tree species. 

Table 5. Classification area accuracy evaluation. 

Year 

Area of Coniferous Forest Compartment in the 

Forest Management  

Inventory (ha) 

Area of Coniferous Forest 

Extracted in This Paper 

(ha) 

Relative Error (%) 

2020 1,046,586 963,495 7.93 

 



Remote Sens. 2023, 15, 360 13 of 19 
 

 

 

Figure 6. Comparison of the extracted coniferous forest area and the distribution area of pine forest 

sub-compartments. (a) Area of coniferous forest extracted in this paper. (b) Area of coniferous forest 

in Forest Management Inventory. 

According to the statistical table and the comparison of distribution areas, the extrac-

tion results of coniferous forests are basically consistent with the statistical results of sub-

compartments of pine forests. The statistical area of the sub-compartments is relatively 

larger than that of the classification results, and the distribution range is different in some 

regions, with a relative error of 7.93%. Considering that the sub-compartment area is the 

forest area with pine trees as the dominant tree species, which is generally larger than the 

actual pine forest area, this paper believes that the extraction range of the coniferous forest 

meets the accuracy requirements, and can be used as the monitoring range of the potential 

PWD occurrence area. 

3.2. Monitoring of PWD Based on Random Forest 

The results show that the overall classification accuracy of random forest is 81.67%, 

and the kappa coefficient is 0.622. On this basis, we continued to complete the monitoring 

of PWN epidemic areas in the study area from 2018 to 2021. After the monitoring was 

completed on the GEE platform, the results were exported to ArcGIS, and the raster data 

was converted into vector data to calculate the annual disease occurrence area and com-

pare it to the statistical data of the disease occurrence area over the four years. The relative 

error evaluation index was used to complete the precision evaluation of the disease mon-

itoring results over the years. See Table 6 for accuracy evaluation of the monitoring area 

over the years and Figure 7 for classification of monitoring results. 

Table 6. Accuracy evaluation of monitoring area over the years. 

Year Statistical Area (ha) Monitoring Area (ha) Relative Error (%) 

2018 20,820 26,871 29.06 

2019 110,000 137,772 25.24 

2020 101,333 128,142 26.45 

2021 92,700 115,274 24.35 

As shown in Table 6, the relative errors in 2018, 2019, 2020 and 2021 are 29.06%, 

25.24%, 26.45% and 24.35%, respectively, and the precision is higher than 70%, which can 

be used as the basis for focal monitoring of PWD epidemic areas. The monitoring areas 

are larger than the statistical areas over the four years, which may be due to the fact that 

the monitoring data source of this paper uses Landsat images which have a lower spatial 

resolution of 30m. In addition, during the monitoring process, this study sticks to the rule 

that if there is infected wood in the pixel, the entire pixel is the infected area, so the mon-

itoring results are larger than the statistical results. 
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Figure 7. Distribution map of PWD from 2018 to 2021. 

In 2017, China began to implement the forest leader system reform. Anhui Province 

gradually established a complete forest leader system, ensuring the optimal allocation of 

resources in terms of manpower, technology and equipment, which plays a crucial role in 

the prevention and control of PWD. According to the monitoring results of PWD in Anhui 

Province as shown in Figure 7, from 2018 to 2021, the disease occurrence areas showed a 

downward trend as a whole, and the distribution of epidemic areas gradually changed 

from local aggregation to discrete type. In September 2018, the Anhui Provincial Govern-

ment launched a special campaign to control PWD, fully implementing the prevention 

and control idea of taking clearing and cutting infected trees as the core and managing the 

source of infected trees as the root. Due to the timeliness of the achievements of the special 

campaign to kill PWN, the area and range of the disease in 2018 were the smallest, mainly 

in the middle and southeast of Anhui Province. However, because the host plant infected 

by PWN first changes its internal physiological parameters, with the external symptoms 

having the feature of time delaying, it will not be thorough to only rely on human visual 

identification and cleaning of infected trees in a short period of time. In 2019, the disease 

was still relatively serious, and the disease occurrence areas expanded from the middle to 

the west and south, respectively, with local aggregation distribution. With the gradual 
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improvement of PWD prevention and control measures, although the range of disease 

occurrence areas expanded in 2020, the characteristics of disease occurrence areas changed 

from clustered distribution to discrete points distribution. In 2021, the disease occurrence 

areas continued to show a decreasing trend. 

3.3. Disease Degree Analysis 

In order to study the degree of disease, this paper, based on the monitoring results, 

classified the degree of disease according to the infected area of PWN in the grid and the 

infection rate obtained from the total area of coniferous forest. Before disease degree divi-

sion, the grids were constructed in ArcGIS based on coniferous forest. Considering the 

size of the study area and other factors, the grid size was set to 10 km × 10 km. Then, the 

vectorized classification results of each year were imported into ArcGIS for classification 

post-processing. We calculated the infected area of each spot and removed the small spots 

caused by the salt-and-pepper phenomenon based on pixel classification, then merged the 

adjacent spots. Then we overlaid the grids and the classified spots of each year, and 

counted the ratio of the area of infected spots to the area of coniferous forests in each grid, 

then completed the disease degree division according to the ratio (as shown in Figure 8). 

 

Figure 8. Grading map of PWD degree from 2018 to 2021. 
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According to statistics, the range of infection rates of PWD in 2018, 2019, 2020 and 

2021 were 0~67%, 0~59%, 0~47% and 0~35%, respectively. In this paper, they were divided 

into four categories: healthy/asymptomatic, light, moderate and severe. According to the 

grading map of PWD degree, in 2018, there were a small number of diseases with severe 

degree in the middle of Anhui Province, while healthy/asymptomatic and light degree 

accounted for the majority. In 2019, except for a small number of moderate diseases in the 

southwest and south part of Anhui Province, other regions showed healthy/asymptomatic 

and light distribution. In 2020, the disease grade was healthy/asymptomatic and mild, 

mainly distributed in the southwest of Anhui Province. In 2021, the health/asymptomatic 

degree was the main level, indicating that with the provincial government’s efforts to pre-

vent and control PWD, great achievements have been made. 

4. Discussion 

4.1. Effectiveness and Feasibility of NDFI for Extracting Coniferous Forest Distributions 

PWN is a destructive disease of pine trees, and its rapid propagation is an important 

cause of death of pine trees [41]. With the increasing potential adaptability of PWN in 

China in recent years, the host plants of PWN have gradually expanded from dozens of 

pine forest trees such as Pinus massoniana and Pinus densiflora to other non-Pinus conifer-

ous trees [42]. In this study, the forest types in the GlobeLand30 land cover were taken as 

the forest range of the study area. Based on the GEE cloud platform, through the study of 

the time-series characteristics of the annual change curve of five vegetation indexes, 

NDVI, DVI, RVI, SAVI and LSWI, we found that the reflectance values of different vege-

tation indexes of coniferous forests and other forests were significantly different from May 

to August. Using this feature, a new vegetation index NDFI was constructed based on 

different vegetation indexes. By means of probability density curve analysis, the differen-

tiation threshold of NDFI is 0.28, which is used for information extraction of the host plant 

range. The results show that the overall accuracy of coniferous forest information extrac-

tion results reaches 88.75%, kappa coefficient is 0.755, showing the extraction method is 

quite effective. The method of constructing a new vegetation index has a certain portabil-

ity. Liu et al. [43] established hyperspectral vegetation index and differentiation equation 

of wheat dry-hot wind damage level index according to the spectral range of EOS/MODIS 

visible light channel by constructing RVI, NDVI, PVI, DVI and other vegetation indexes. 

The results showed that the reflectance spectra of spring wheat with different degrees of 

dry-hot wind damage were significantly different, which provided a basis for remote 

sensing monitoring and assessment of spring wheat dry-hot wind damage. Zhang et al. 

[44] combined the mechanism of nitrogen movement between different functional leaves 

of rice, and built a red edge curve shoulder angle vegetation index (RSAVI) based on the 

red edge position and the red edge slope to monitor the nitrogen nutrition status of rice. 

He analyzed the correlation between nitrogen content and RSAVI at different growth 

stages. The results showed that RSAVI was significantly correlated with leaf nitrogen con-

tent, and the correlation coefficient was between 0.867 and 0.938, the models all passed 

the 0.01 level test. The study shows that it is feasible to use RSAVI to estimate rice nitrogen 

nutrition. According to the information extraction results of the coniferous forest and the 

statistical data of the area and distribution range of the pine forest, the extraction results 

of the coniferous forest are basically consistent with the statistical distribution range of 

the sub-compartments of the pine forest, and the relative error of the area is 7.93%, which 

is completely available in PWD monitoring practice at province level. 

4.2. Practicability and Popularization of Periodic Monitoring of PWD 

Global climate change has a tremendous impact on all aspects of society and nature 

[45], PWD has caused great damage to the pine forest resources in China, so timely and 

effective control of the spread of PWD has become the working focus of governments at 

all levels. With the development and application of remote sensing technology and 
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artificial intelligence, intelligent remote sensing monitoring with remote sensing technol-

ogy as the platform and artificial intelligence technology as the core has become a feasible 

and high-precision automatic monitoring method for PWD. In view of the widespread 

range of PWN and the high requirements for monitoring accuracy, the multi-platform 

remote sensing monitoring method of PWD with satellite wide area survey, UAV regional 

detailed survey and artificial ground verification as the main line has become one of the 

important research methods of PWD control [46]. In this study, various classification fea-

tures were extracted through GEE cloud platform, and seven classification features in-

cluding Elevation, MSI, NBR, B2, RGI, NDMI and Aspect were selected after feature eval-

uation by using MANOVA and importance feature ranking. The monitoring model of 

PWD was established using random forest classification algorithm based on the extracted 

coniferous forest range. The overall classification accuracy is 81.67%, and the kappa coef-

ficient is 0.622. Analyzing the temporal and spatial variation characteristics of PWD de-

gree in the study area by grid division, the study found that from 2018 to 2021, the occur-

rence area range of PWD gradually changed from aggregated distribution to discrete dis-

tribution. The overall disease degree gradually decreased, while the proportion of 

healthy/asymptomatic and mildly infected areas gradually increased, showing that the 

government has made great achievements in coordinating the prevention and control of 

PWD. The value and significance of this study is that medium resolution satellite remote 

sensing can achieve regional monitoring periodically at low cost. Although it cannot 

achieve the high accuracy of UAV monitoring, it can find suspected disease areas in a 

large range through repeated observation data in a short period, providing a basis for 

airborne fine monitoring, which is practical and promotional. 

5. Conclusions 

This paper took Anhui Province as the study area, a large area of which was suffering 

from PWD. We used Landsat continuous multi-year vegetation index data to establish a 

new vegetation index NDFI to extract coniferous forest information in Anhui Province for 

its disease prevention and control. With the support of a big data processing platform and 

long time-series vegetation index remote sensing data in field investigation, spatial anal-

ysis technology and machine learning technology, we realized the identification of PWN 

host plants and the construction of disease monitoring model, and analyzed the charac-

teristics of spatial and temporal changes of PWD level in the study area. It provides a 

feasible application scheme for the monitoring, prevention and control of PWD using sat-

ellite-borne remote sensing technology. 

In recent years, many scholars have conducted a lot of research on the characteristics, 

mechanism and dynamic spread of PWN, and made great progress in theory and practice, 

which has played an important role in providing decision-making support for govern-

ment departments. There is no denying that the spread of PWD is a complex problem of 

interaction between human beings and the environment, and its scientific research still 

faces many difficulties and challenges. For example, for a long time, early recognition of 

PWD from remote sensing images, ‘early’ definition and real-time dynamic spread mon-

itoring of PWD have been the expected goals of scholars, but the effect of remote sensing 

information recognition is not very ideal at present. The realization of fine early identifi-

cation of PWD and real-time dynamic spread monitoring can greatly improve the accu-

racy and efficiency of monitoring PWD, and will provide more powerful support for na-

tional economic construction. Therefore, comprehensive research based on multi-scale 

and high-precision remote sensing big data will be an essential direction in the study of 

spatial patterns of PWN in the future. 
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